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Abstract: Communication has undergone a continuous evolution as one of the most fun-

damental needs in human history. Initially, communication was established through body 

language and gestures, but it became more complex over time with the development of 

spoken language. The invention of writing marked a revolutionary milestone in the his-

tory of communication. However, this rapid advancement also brought about communi-

cation challenges. In today’s world, numerous studies focus on addressing these issues 

and finding effective solutions. Technological advancements and artificial intelligence 

hold significant potential for solving communication problems. Notably, the difficulties 

in communicating with individuals who are hearing impaired have become a prominent 

area of focus. In this study, a model was developed using artificial intelligence algorithms 

to facilitate communication through sign language, specifically detecting American Sign 

Language. The model was created using deep learning architectures such as InceptionV3, 

DenseNet169, and VGG16, and trained on a dataset sourced from Kaggle. The results 

were combined using the ensemble learning method. The performance of the models was 

optimized through Bayesian search optimization algorithm and evaluated using metrics 

derived from confusion matrices. The findings revealed that ensemble learning models 

demonstrated superior performance, indicating that this model could serve as an effective 

tool in improving communication with hearing-impaired individuals. 

Keywords: Ensemble learning; bayesian hyperparameter optimization; InceptionV3; 

Dense-Net169; VGG16 

 

Topluluk Öğrenmesi ve Bayes Optimizasyonu ile İşaret Dili Tanıma: Derin 

Öğrenme Temelli Bir Yaklaşım   

Özet: İletişim, insanlık tarihinin en temel ihtiyaçlarından biri olarak sürekli bir evrim 

geçirmiştir. İlk dönemlerde beden dili ve jestlerle kurulan iletişim, zamanla konuşma di-

linin gelişmesiyle daha karmaşık bir yapıya bürünmüştür. Yazının icadı ise iletişimde 

Received: 11.02.2025 

Accepted: 03.10.2025 

mailto:andac06148@gmail.com
mailto:musabalci833@gmail.com
mailto:huseyinaydilek@kku.edu.tr
mailto:mustafaerten@kku.edu.tr
https://orcid.org/0009-0006-4789-6029
https://orcid.org/0009-0001-8539-8083
https://orcid.org/0000-0003-3051-4259
https://orcid.org/0000-0002-5140-1213


International Journal of Pure and Applied Sciences 11(2): 393-409 (2025) 394 
 

 

IJPAS 2025, https://doi.org/10.29132/ijpas.1637971   https://dergipark.org.tr/tr/pub/ijpas 

devrim niteliğinde bir adım olmuştur. Ancak, bu hızlı gelişim iletişim sorunlarını da be-

raberinde getirmiştir. Günümüz dünyasında, bu problemler üzerine birçok çalışma 

yapılmakta ve çözüm yolları aranmaktadır. Teknolojik gelişmeler ve yapay zekâ, iletişim 

sorunlarına çözüm üretme potansiyeli taşımaktadır. Özellikle işitme engelli bireylerle 

iletişimde yaşanan zorluklar bu alanda öne çıkmaktadır. Bu çalışmada, işaret dili ile 

iletişimi kolaylaştırmak amacıyla yapay zekâ algoritmaları kullanılarak Amerikan İşaret 

Dili'ni tespit eden bir model geliştirilmiştir. InceptionV3, DenseNet169 ve VGG16 gibi 

derin öğrenme mimarileri kullanılarak oluşturulan model, Kaggle veri seti üzerinde 

eğitilmiş ve sonuçlar ensemble learning yöntemiyle birleştirilmiştir. Model perfor-

mansları, Bayes optimizasyonu ile optimize edilmiş ve karmaşıklık matrislerine dayanan 

metriklerle değerlendirilmiştir. Sonuçlar, ensemble learning modellerinin daha yüksek 

performans gösterdiğini ortaya koymuş, bu modelin işitme engelli bireylerle iletişimde 

kullanılabilecek etkili bir araç olabileceği sonucuna ulaşılmıştır. 

Anahtar Kelimeler:  Topluluk öğrenmesi; bayes hiperparametre optimizasyonu; Incep-

tionV3; DenseNet169; VGG16 

 

1. Introduction 

In today's world, communication is not only a fundamental right of every individual but also a 

crucial element for the healthy functioning of society. Sign language, developed to enable effective 

communication between hearing-impaired individuals and society, presents certain challenges in terms 

of learning and application. In this language, where each letter and word is represented by hand and 

finger movements corresponding to each alphabet letter, the clarity and accuracy of gestures are essential 

[1]. Incorrect usage of gestures can lead to confusion or misunderstandings. Due to advancements in 

artificial intelligence, people can now communicate easily through sophisticated translation applica-

tions, even without knowing the other person’s language. With the development of deep learning and 

machine learning algorithms, Natural Language Processing (NLP) and image processing algorithms 

now provide highly accurate translations at near-human speech speed [2]. Typically, these translations 

facilitate communication between the languages of different countries. However, the absence of a trans-

lation application for communication between hearing-impaired and non-hearing-impaired individuals 

has motivated this research. 

Various studies in literature have aimed to address this issue. In this study, recent studies from the 

last five years were examined. Abu-Jamie and Abu-Naser [3] used the MobileNet deep learning model 

to recognize sign language across a 29-class dataset. In a subsequent study, the authors [4] developed a 

deep learning model that translates sign language into text or speech. Their study, based on the Visual 

Geometry Group (VGG16) model and 43,500 images, produced more successful results than their pre-

vious studies. Murali et al. [5] developed a sign language recognition system using American Sign Lan-

guage (ASL), achieving over 90% accuracy through the application of computer vision techniques and 

deep learning algorithms. Pigou et al. [6] proposed a model utilizing both a deep learning architecture 

and Microsoft Kinect to recognize 20 Italian sign language gestures. Using Convolutional Neural Net-

work (CNN) architecture for feature extraction, the model reached a cross-validation accuracy of 91.7%. 

Daroya et al. [7] proposed a DenseNet-based model for recognizing ASL letters. This model can recog-

nize real-time hand movements from webcam input and classify static hand poses in RGB images with 

90.3% accuracy. Nareshkumar and Jaison [8] developed a lightweight neural network architecture for 
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mobile classification of ASL and Indian Sign Language letters. Despite operating in real-time and on 

low-resource devices, this MobileNet-based application achieved an accuracy rate of 98.77%. 

Bhattacharya et al. [9] utilized machine learning algorithms such as Support Vector Machine (SVM), 

K-Nearest Neighbors (KNN), Logistic Regression, and Naive Bayes to recognize finger alphabet ges-

tures in images. A comparative analysis demonstrated that SVM outperformed the other machine learn-

ing methods. Hasan et al. [10] achieved an accuracy of 97.62% in ASL character recognition using the 

MNIST dataset and a CNN architecture. In their study, Barbhuiya et al. [11] modified pre-trained CNN 

models, such as AlexNet and VGG16, to recognize ASL letters and numbers and used multi-class SVM 

for classification. Amrutha and Prabu [12] developed a hand-motion-based recognition model that com-

bines feature extraction using a convex hull with classification via the KNN algorithm to create an au-

tomatic sign language recognition system. While the model achieved 65% accuracy in a controlled en-

vironment with four participants, another approach in the same study attained 99.82% classification 

accuracy using a low-cost CPU. Abdul et al. [13] proposed a real-time deep learning model for Arabic 

sign language classification. This model aims to extract both spatial and temporal features, using an 

attention-based Inception model for spatial features and a Bidirectional Long Short-Term Memory 

(BiLSTM) model for temporal features. The model demonstrated high accuracy across various datasets, 

excelling in both static and dynamic signs, while achieving efficient performance with fewer layers and 

parameters. Leth [14] in his thesis, Leth combined ensemble learning and virtual reality technology to 

develop a Danish Sign Language recognition system, using vector encoding for gesture recognition and 

an n-gram linear classifier for NLP. Despite achieving only 41.5% accuracy, the UI’s usability indicated 

room for improvement. Similarly, Kothadiya et al. [15] proposed an Explainable Artificial Intelligence 

(XAI)-supported model for sign language recognition, incorporating a ResNet50 and self-attention mod-

ule-based ensemble learning model, which achieved 98.20% accuracy. Moreover, SHAP-based methods 

were used to make the model’s predictions interpretable. Öztürk et al. [16] proposed a deep learning 

model based on VGG16 and ResNet-50 for COVID-19 diagnosis; this model achieved an accuracy of 

88.06% using a Multi-Layer Perceptron (MLP) structure optimized with the whale optimization algo-

rithm . Benbakreti et al. [17] utilized pre-trained models such as GoogleNet and ResNet-18 to classify 

eye diseases from fundus images; GoogleNet achieved the best performance with a 92.7% accuracy rate 

using the Stochastic Gradient Descent with Momentum (SGDM) optimizer.  

Despite efforts to address this issue with deep learning methods, no studies in literature have ap-

plied both hyperparameter optimization and ensemble learning to enhance the performance of these 

methods. In this study, the proposed image classification model was created using InceptionV3, Dense-

Net169, and VGG16 algorithms and was trained individually on a dataset containing images of Ameri-

can Sign Language letters. An ensemble learning model was then created by combining the separately 

trained image classification algorithms, and Bayesian optimization was used for hyperparameter opti-

mization to assess the impact of hyperparameters on training. To identify the best performance, two 

different ensemble learning models were trained—one with and one without Bayesian optimization. The 

experimental outcomes aim to investigate the effect of the ensemble learning model on image classifi-

cation, as well as the impact of Bayesian optimization and fine-tuning on model performance. 
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2. Materials and Methods 

2.1. Materials 

In this study, ASL classification was conducted using the InceptionV3, DenseNet169, and VGG16 

algorithms on a dataset obtained from Kaggle [18]. The dataset comprises 24 classes, each representing 

one of the 24 letters of the ASL alphabet, with 1,000 images per class corresponding to a specific letter. 

Each image in the dataset contains static hand gestures representing a particular letter. However, the 

letters 'J' and 'Z', which are represented by dynamic hand movements in the ASL fingerspelling alphabet, 

are excluded due to their dynamic nature, which is not compatible with static image classification. Con-

sequently, the dataset focuses solely on static hand shapes. 

To ensure high variability, the images include a range of hand sizes, positions, and orientations, 

enhancing the model's ability to generalize to real-world scenarios. Furthermore, the dataset exhibits a 

balanced class distribution, with an equal number of 1,000 images per class. This characteristic prevents 

any single class from being overrepresented during the training process, thereby enabling the model to 

achieve balanced performance across all classes. 

2.2. Methods 

In this study, the sign language recognition performance of deep learning models were analyzed 

using a dataset representing 24 letters of the English alphabet in sign language. The deep learning archi-

tectures employed in the study include InceptionV3, DenseNet169, and VGG16. The dataset was pre-

processed using resized to 224x224 pixels and normalization techniques, including pixel value scaling 

to the [0,1] range and image resampling to ensure uniform input dimensions, followed by Bayesian 

optimization to determine the optimal hyperparameters for each model. 

2.2.1. VGG16 

In the VGG16 architecture, the network progresses from convolutional and pooling layers to fully 

connected layers. Each convolutional layer reduces the complexity of the image while enabling the dis-

covery of deeper features. Max-pooling layers reduce dimensions while preserving essential features, 

thus enhancing the overall performance of the network. This architecture allows VGG16 to perform 

complex tasks effectively. Figure 1 illustrates the VGG16 architecture [19]. 

 

Figure 1. Structure of VGG16 [20] 
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2.2.2. InceptionV3 

The InceptionV3 model is a 48-layer pre-trained convolutional neural network capable of pro-

cessing images of various sizes and resolutions, making it suitable for large datasets. It utilizes a spe-

cialized structure called "Inception," which includes three convolutional layers of different sizes and 

one max-pooling layer. These layers are used to capture critical features within images. Following this, 

the model combines the outputs of previous layers to form the final output. To address the issue of 

overfitting, a sigmoid layer is added, reducing the output layer's dimensionality, which also aids in clas-

sification. The model includes a fully connected layer containing hidden units that help recognize more 

complex patterns in images. In this model, weights are initialized using a Xavier initialization algorithm, 

enhancing the model's learning capabilities [21]. The architecture and layer structure of the InceptionV3 

model are visually detailed in Figure 2. 

 

Figure 2. Structure of InceptionV3 [22] 

2.2.3. DenseNet169 

The DenseNet-169 model, part of the DenseNet family and distinguished by its success in the 

ImageNet competition, is a deep learning model proposed by G. Huang and colleagues. In this model, 

each layer receives information from all preceding layers and passes its output to all subsequent layers. 

This design enhances the model's learning capacity and facilitates improved information flow. Dense-

Net-169 features an efficient and compact network structure. This compact design reduces the number 

of parameters and improves computational efficiency. The architecture and layer structure of the Dense-

Net-169 model are visually detailed in Figure 3 [23]. 
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Figure 3. Structure of DenseNet-169 [23] 

2.2.4. Bayesian Hyperparameters Optimization 

Bayesian optimization is a method used to optimize the performance of machine learning and deep 

learning models. Hyperparameters are parameters that control the learning process of a model; in neural 

networks, these typically include values like the number of layers, the number of neurons, and the learn-

ing rate. Hyperparameters are often adjusted manually, a time-consuming and inefficient approach. 

Bayesian optimization offers a faster and more efficient solution for hyperparameter optimization by 

applying Bayesian optimization principles. The primary objective is to model the hyperparameter space 

as a probability distribution and update this distribution based on observed performance metrics. By 

intelligently exploring the hyperparameter search space and focusing on promising regions, Bayesian 

optimization can identify better performing hyperparameter combinations more efficiently compared to 

traditional methods. The search space distribution is commonly modeled using a Gaussian Process, 

which is especially advantageous for complex models with large hyperparameter spaces [24, 25]. 

The method’s operating principle relies on Bayesian optimization techniques and involves core 

components such as Prior Distribution, Observations, Posterior Distribution, and Acquisition Function. 

The Prior Distribution represents the probability distribution of possible values in the hyperparameter 

search space, reflecting prior knowledge about these hyperparameters. In this study, the boundaries of 

the hyperparameter search space were defined based on a combination of domain knowledge, empirical 

observations, and computational constraints, aiming to balance search efficiency and model perfor-

mance. Observations are the performance measurements of models trained with specific hyperparame-

ters, obtained by evaluating the objective function. The Posterior Distribution is an updated probability 

distribution of hyperparameters based on observations. The Acquisition Function uses the Posterior Dis-

tribution to identify the most promising regions in the search space [26]. Figure 4 visually illustrates the 

behavior and key characteristics of a one-dimensional Gaussian Process. 
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Figure 4. One-dimensional Gaussian Process [25] 

2.2.5. Ensemble Learning 

Ensemble learning is an approach in machine learning that aims to achieve better results than a 

single model by combining the predictions of multiple models. This method is based on the idea that the 

errors of different models will average out, leading to higher accuracy, reduced variance, and improved 

generalization ability. Ensemble methods can include various models such as decision trees, neural net-

works, and regression models. The primary advantage of ensemble methods is that, in cases where one 

model makes an error, other models can compensate for these mistakes, thereby enhancing overall per-

formance. Another significant benefit of ensemble methods is their ability to reduce overfitting. When 

a single model overfits, it may focus too heavily on specific patterns or noise (irrelevant variance) in the 

training dataset. However, by combining multiple models, the impact of such errors is minimized, re-

sulting in more generalizable outcomes. Ensemble learning also has some disadvantages. Ensemble 

models tend to have more complex structures, making them harder to manage and interpret. Addition-

ally, training multiple models and combining their predictions require more computational power and 

time. Ensemble methods can also have drawbacks related to high resource usage and inter-model de-

pendencies. Generally, four main methods are highlighted when creating an ensemble model: voting, 

bagging, boosting, and stacking [26, 27]. 

Voting Ensemble is an ensemble learning method that aims to make an overall prediction by com-

bining multiple classifiers. This approach creates a model that generally outperforms a single classifier 

by aggregating the predictions of different classifiers, balancing each classifier's weaknesses with the 

strengths of others to achieve more stable and reliable predictions. There are two primary voting mech-

anisms: Soft Voting and Hard Voting. 

In Soft Voting, classifiers provide a probability distribution for all classes. These probabilities are 

multiplied by weights reflecting each classifier's strength, where stronger models are assigned, higher 

weights based on their performance, and then summed to produce the final prediction. The class with 

the highest total probability is selected as the final prediction. In this method, each classifier's prediction 

is given a weight corresponding to its confidence level, making the votes of more accurate classifiers 

more influential.  

In Hard Voting, each classifier selects the class it considers most probable, and one vote is cast for 

that class. The class with the most votes becomes the final prediction. In this method, all classifier votes 

are treated equally, disregarding probability values [28]. Figure 5 visualizes the hard and soft voting 

decisions. 
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Figure 5. Hard and Soft voting decisions [29] 

2.2.6. Performance Evaluation Metrics 

A Confusion Matrix is a table used to evaluate the performance of classification algorithms by 

providing insights into the predicted and actual classes. The rows of the matrix represent the actual 

classes, while the columns represent the predicted classes. This matrix comprises four fundamental ele-

ments [30, 31]: 

True Positive (TP): Instances that are actually positive and are correctly predicted as positive by 

the model. 

False Positive (FP): Instances that are actually negative but are incorrectly predicted as positive 

by the model. 

True Negative (TN): Instances that are actually negative and are correctly predicted as negative 

by the model. 

False Negative (FN): Instances that are actually positive but are incorrectly predicted as negative 

by the model. 

Accuracy is a performance evaluation metric calculated by the ratio of the number of correctly 

predicted instances to the total number of instances. It serves as an indicator of how well the model is 

performing. Accuracy is particularly useful as a performance measure when the classes are evenly dis-

tributed [32]. The method used to calculate the accuracy metric is presented in Equation 2.1. 

                              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                  (2.1) 

Precision is a performance evaluation metric defined as the ratio of true positive predictions to the 

total number of positive predictions made by the model. It serves as an indicator of the accuracy of the 

model's positive predictions. A high precision value indicates that the model has made a minimal number 

of FP predictions, demonstrating its effectiveness in identifying TP cases [32]. The method used to 

calculate the precision metric is presented in Equation 2.2. 

                                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                       (2.2) 

Recall is a performance evaluation metric that indicates how effectively the model identifies actual 

positive instances. It measures the proportion of TP instances that are correctly identified by the model. 

A high recall value suggests that the model has made few FN predictions, demonstrating its capability 
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to accurately detect positive cases [32]. The method used to calculate the recall metric is presented in 

Equation 2.3. 

                                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                        (2.3) 

The F1 score is a metric obtained by calculating the harmonic mean of precision and recall per-

formance evaluation metrics. It provides a balance between precision and recall, serving as a more com-

prehensive measure of performance, particularly in cases where there is an imbalanced class distribution 

[32]. The method used to calculate the F1-Score metric is presented in Equation 2.4. 

                         𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                             (2.4) 

3. Results and Discussion  

In this study, the ASL dataset obtained from Kaggle was utilized to perform ASL classification 

using the InceptionV3, DenseNet169, and VGG16 algorithms. Subsequently, the Bayesian optimization 

algorithm was employed to determine the optimal hyperparameters for the models used. Finally, the 

InceptionV3, DenseNet169, and VGG16 deep learning algorithms were individually trained on the same 

dataset to create an Ensemble Learning model using the Soft Voting method. To investigate the impact 

of hyperparameters on model performance, two different Ensemble Learning models were developed: 

one utilizing the Bayesian optimization algorithm and one that did not. Their performances were then 

compared. The dataset was split with 80% allocated for training and 20% for validation, and an early 

stopping function was added to prevent overfitting. The performance metrics used to measure the train-

ing were Accuracy, Precision, Recall, and F1 Score. The validation loss graphs for the model are pre-

sented below. 

3.1. Results without Hyperparameter Optimization 

In this section of the study, the classification performance of deep learning algorithms created 

without the use of Bayesian optimization, as well as the hyperparameter configurations and results, are 

presented. The classification performance of the models was measured using performance evaluation 

metrics such as accuracy, F1 score, and recall. The hyperparameters used in the models were determined 

manually, and the performance of these hyperparameters was evaluated for comparison with the models 

optimized using the Bayesian optimization algorithm. The obtained results are visually presented 

through tables and graphs.  

Table 1 presents the hyperparameter and architectural characteristics of the deep learning models 

created without the use of the Bayesian optimization algorithm. Common hyperparameters across all 

models include 30 epochs a batch size of 32, Adam optimizer, 2 dense layers, 104 neurons, categorical 

cross-entropy loss function, a dropout rate of 0.2%, and ReLU-Softmax activation functions. Due to the 

architectural differences of the deep learning models, the number of layers varies. 
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Table 1. Parameters of DL algorithms without Bayesian optimization  

 Inceptionv3 DenseNet169 VGG16 

Layer Size 48 169 16 

Model Nodes 5, 5, 2048 7, 7, 1664 7, 7, 512 

Epoch 30 30 30 

Batch Size 32 32 32 

Optimizer adam adam adam 

Learning Rate 5e-8 5e-8 2e-7 

Dense 2 2 2 

# of Neurons 104 104 104 

Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy 

Dropout 0.2 0.2 0.2 

Activation Function ReLU-Softmax ReLU-Softmax ReLU-Softmax 

Figure 6 shows the training and validation accuracy and loss curves for the InceptionV3 model. 

These graphs indicate that the model shows steady improvement across epochs. This demonstrates that 

the model's performance is improving and that it has undergone a successful learning process. 

 

Figure 6. Training and validation accuracy and loss of InceptionV3 model without Bayesian optimization algo-

rithm 

Figure 7 presents the training and validation accuracy as well as loss graphs for the DenseNet169 

model. These graphs illustrate that the proposed model continues to learn throughout each epoch, with 

a progressively increasing prediction accuracy. The increase in accuracy and the decrease in loss values 

during the training process indicate that the model's performance is improving and that it has undergone 

a successful learning experience. 
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Figure 7. Training and validation accuracy and loss of DenseNet169 model without Bayesian optimization al-

gorithm 

Figure 8 exhibits training and validation accuracy along with the loss graphs for the VGG16 

model. These graphs indicate that the proposed model continues to learn throughout each epoch, with a 

gradual increase in prediction accuracy. The rise in accuracy and the decline in loss values during the 

training process suggest that the model's performance is improving and that it has experienced a suc-

cessful learning process. 

 

Figure 8. Training and validation accuracy and loss of VGG16 model without Bayesian optimization algorithm 

As seen in the outputs of Table 2, the model that demonstrates the best performance on the ASL 

dataset is the Ensemble Learning model. 

Table 2. Performance Comparisons of Deep Learning Algorithm without Bayesian Optimization 

Algorithm  

Method Accuracy Precision Recall F1-Score 

InceptionV3 0.846 0.859 0.846 0.853 

DenseNet169 0.883 0.901 0.883 0.892 

VGG16 0.789 0.814 0.789 0.802 

Ensemble 0.921 0.933 0.921 0.927 
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3.2. Results with Hyperparameter Optimization 

In this section of this study, the classification performance, hyperparameters, and classification 

results of deep learning algorithms optimized using the Bayesian optimization are presented. The clas-

sification performance of the proposed deep learning models was measured using performance evalua-

tion metrics such as accuracy, F1 score, precision, and recall. The configurations of the hyperparameters 

used in the proposed models and their effects on performance were examined. The obtained results are 

visually presented through tables and graphs. The outputs in the tables and figures facilitate the obser-

vation and interpretation of the impact of hyperparameters on model performance, as assisted by the 

Bayesian optimization algorithm. The results indicate that the proposed approach can be successfully 

applied to similar classification problems. 

Table 3 presents the hyperparameter and architectural features of the deep learning models created 

using the Bayesian optimization algorithm. The common hyperparameters across all models include 30 

epochs a batch size of 32, the Adam optimizer, 2 dense layers, 104 neurons, the Categorical Crossen-

tropy loss function, and ReLU-Softmax activation functions, which are the same as those used in models 

without the Bayesian optimization algorithm. Due to architectural differences among the deep learning 

models, the number of layers varies; additionally, as a result of Bayesian optimization, the learning rate, 

dropout, and units values differ from model to model. The hyperparameters are specified in Table 3. 

Table 3. Parameters of DL algorithms with Bayesian optimization  

 Inceptionv3 DenseNet169 VGG16 

Layer Size 48 169 16 

Model Nodes 5, 5, 2048 7, 7, 1664 7, 7, 512 

Epoch 30 30 30 

Batch Size 32 32 32 

Optimizer adam adam adam 

Learning Rate 7e-8 -- 1.5e-7 7e-8 -- 1.5e-7 1e-7 – 6e-7 

Dense 2 2 2 

# of Neurons 104 104 104 

Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy 

Dropout 0.1 – 0.3 0.1 – 0.3 0.1 – 0.3 

Activation Function ReLU-Softmax ReLU-Softmax ReLU-Softmax 

Figure 9 presents the training and validation accuracy as well as loss graphs for the InceptionV3 

model, where hyperparameters have been optimized using the Bayesian optimization algorithm. These 

graphs demonstrate that the model continues to learn throughout each epoch and that the prediction 

accuracy is steadily increasing. The rise in accuracy and the reduction in loss values during the training 

process indicate that Bayesian optimization has improved the model's performance and facilitated a 

successful learning process. Furthermore, it has been observed that the Bayesian model outperforms the 

non-Bayesian approaches. 
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Figure 9. Training and validation accuracy and loss of InceptionV3 model with Bayesian optimization algo-

rithm 

Figure 10 presents the training and validation accuracy as well as loss graphs for the DenseNet169 

model, where hyperparameters have been optimized using the Bayesian optimization algorithm. These 

graphs illustrate that the model continues to learn throughout each epoch, with a consistent increase in 

prediction accuracy. The observed rise in accuracy and decrease in loss values during the training pro-

cess indicate that Bayesian optimization has improved the model's performance and led to a successful 

learning process. Additionally, it has been noted that the Bayesian model outperforms the non-Bayesian 

approaches. 

 

Figure 10. Training and validation accuracy and loss of DenseNet169 model with Bayesian optimization Algo-

rithm 

Figure 11 shows the training and validation accuracy as well as loss graphs for the VGG16 model, 

with hyperparameters optimized using the Bayesian optimization algorithm. These graphs indicate that 

the model continues to learn through each epoch, demonstrating a steady increase in prediction accuracy. 

The rise in accuracy and the decrease in loss values throughout the training process suggest that Bayesian 

optimization has enhanced the model's performance and facilitated a successful learning experience. 

Additionally, it has been observed that the Bayesian model outperforms non-Bayesian approaches. 
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Figure 11. Training and validation accuracy and loss of VGG16 model with Bayesian optimization algorithm 

According to the results in Table 4, the best-performing model on the ASL dataset is the Ensemble 

Learning model with hyperparameters optimized using Bayesian optimization. Furthermore, it has been 

observed that, in general, Bayesian models outperform non-Bayesian approaches. In this context, the 

Bayesian Ensemble model achieves the highest success due to both hyperparameter optimization and 

model combination techniques. 

Table 4. Performance Comparisons of Deep Learning Algorithm with Bayesian Optimization Algorithm 

Method Accuracy Precision Recall F1-Score 

InceptionV3 0.962 0.963 0.961 0.963 

DenseNet169 0.975 0.977 0.975 0.976 

VGG16 0.922 0.940 0.922 0.931 

Ensemble 0.986 0.987 0.986 0.986 

A comparison was made between an Ensemble Learning model created using the Bayesian opti-

mization algorithm and one that did not utilize this algorithm, with the impact of the Bayesian optimi-

zation algorithm on model performance illustrated in Figure 11. This comparison highlights the im-

provements achieved through the optimization process, showcasing the enhancements in accuracy, pre-

cision, recall, and F1 score that result from the effective tuning of hyperparameters. 

 

Figure 11. Performance Comparisons of Models 
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4. Conclusion 

The sign language detection application developed in this study offers an effective solution to the 

communication problems between individuals with hearing impairments and those who do not know 

sign language. The use of ensemble learning and Bayesian optimization algorithms has significantly 

enhanced model performance, providing important findings that could guide future research. It is be-

lieved that such applications will facilitate the integration of individuals with hearing impairments into 

society and improve their quality of life. The application leverages artificial intelligence technologies 

by utilizing image classification models such as InceptionV3, DenseNet169, and VGG16. To achieve a 

high success rate, these three algorithms have been combined to form an ensemble learning method. In 

this research, the Bayesian optimization algorithm was employed to examine the impact of hyperparam-

eters on model performance, with comparisons made against other models. According to the results 

obtained, the ensemble learning model utilizing the Bayesian optimization algorithm demonstrated su-

perior performance compared to other models. This indicates that the Bayesian optimization algorithm 

positively affects model performance. However, it was also observed that the algorithm has a negative 

impact on computational costs, particularly in terms of time consumption. This time-related overhead 

may limit its applicability in real-time or low-latency systems. Therefore, while Bayesian Search offers 

strong optimization performance, its use in real-time applications should be carefully evaluated, possibly 

by limiting the search space or applying it during the offline training phase. Nonetheless, it has been 

identified that the computational cost can be reduced by narrowing the search space. This finding sug-

gests that optimizing the search space should be a focus in future studies to enhance the effectiveness of 

the Bayesian optimization algorithm. In conclusion, the developed sign language detection application 

provides an effective solution to the communication problem between individuals with hearing impair-

ments and those who do not know sign language. The implementation of the ensemble learning method 

and the Bayesian optimization algorithm has played a significant role in improving the model's perfor-

mance. Future research should concentrate on optimizing the search space of the Bayesian optimization 

algorithm to reduce computational costs and further enhance model performance. This study is expected 

to facilitate the integration of individuals with hearing impairments into society and improve their qual-

ity of life. 
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