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Abstract: Communication has undergone a continuous evolution as one of the most fun-
damental needs in human history. Initially, communication was established through body
language and gestures, but it became more complex over time with the development of
spoken language. The invention of writing marked a revolutionary milestone in the his-
tory of communication. However, this rapid advancement also brought about communi-
cation challenges. In today’s world, numerous studies focus on addressing these issues
and finding effective solutions. Technological advancements and artificial intelligence
hold significant potential for solving communication problems. Notably, the difficulties
in communicating with individuals who are hearing impaired have become a prominent
area of focus. In this study, a model was developed using artificial intelligence algorithms
to facilitate communication through sign language, specifically detecting American Sign
Language. The model was created using deep learning architectures such as InceptionV3,
DenseNet169, and VGG16, and trained on a dataset sourced from Kaggle. The results
were combined using the ensemble learning method. The performance of the models was
optimized through Bayesian search optimization algorithm and evaluated using metrics
derived from confusion matrices. The findings revealed that ensemble learning models
demonstrated superior performance, indicating that this model could serve as an effective
tool in improving communication with hearing-impaired individuals.

Keywords: Ensemble learning; bayesian hyperparameter optimization; InceptionV3;
Dense-Net169; VGG16

Topluluk Ogrenmesi ve Bayes Optimizasyonu ile Isaret Dili Tamima: Derin
Ogrenme Temelli Bir Yaklasim

Ozet: Tletisim, insanlik tarihinin en temel ihtiyaclarmdan biri olarak siirekli bir evrim
gecirmistir. Ik donemlerde beden dili ve jestlerle kurulan iletisim, zamanla konusma di-
linin gelismesiyle daha karmasik bir yapiya biirlinmiistiir. Yazinin icad: ise iletisimde
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devrim niteliginde bir adim olmustur. Ancak, bu hizli gelisim iletisim sorunlarini da be-
raberinde getirmistir. Giinimiiz diinyasinda, bu problemler iizerine birgok ¢aligma
yapilmakta ve ¢6ziim yollar1 aranmaktadir. Teknolojik gelismeler ve yapay zeka, iletigsim
sorunlarma ¢dziim iiretme potansiyeli tasimaktadir. Ozellikle isitme engelli bireylerle
iletisimde yasanan zorluklar bu alanda 6ne ¢ikmaktadir. Bu calismada, isaret dili ile
iletisimi kolaylastirmak amaciyla yapay zeka algoritmalar1 kullanilarak Amerikan Isaret
Dili'ni tespit eden bir model gelistirilmistir. InceptionV3, DenseNet169 ve VGG16 gibi
derin 6grenme mimarileri kullanilarak olusturulan model, Kaggle veri seti iizerinde
egitilmis ve sonuclar ensemble learning yontemiyle birlestirilmistir. Model perfor-
manslari, Bayes optimizasyonu ile optimize edilmis ve karmasiklik matrislerine dayanan
metriklerle degerlendirilmistir. Sonuglar, ensemble learning modellerinin daha yiiksek
performans gosterdigini ortaya koymus, bu modelin isitme engelli bireylerle iletisimde
kullanilabilecek etkili bir arag olabilecegi sonucuna ulasilmistir.

Anahtar Kelimeler: Topluluk 6grenmesi; bayes hiperparametre optimizasyonu; Incep-
tionV3; DenseNet169; VGG16

1. Introduction

In today's world, communication is not only a fundamental right of every individual but also a
crucial element for the healthy functioning of society. Sign language, developed to enable effective
communication between hearing-impaired individuals and society, presents certain challenges in terms
of learning and application. In this language, where each letter and word is represented by hand and
finger movements corresponding to each alphabet letter, the clarity and accuracy of gestures are essential
[1]. Incorrect usage of gestures can lead to confusion or misunderstandings. Due to advancements in
artificial intelligence, people can now communicate easily through sophisticated translation applica-
tions, even without knowing the other person’s language. With the development of deep learning and
machine learning algorithms, Natural Language Processing (NLP) and image processing algorithms
now provide highly accurate translations at near-human speech speed [2]. Typically, these translations
facilitate communication between the languages of different countries. However, the absence of a trans-
lation application for communication between hearing-impaired and non-hearing-impaired individuals
has motivated this research.

Various studies in literature have aimed to address this issue. In this study, recent studies from the
last five years were examined. Abu-Jamie and Abu-Naser [3] used the MobileNet deep learning model
to recognize sign language across a 29-class dataset. In a subsequent study, the authors [4] developed a
deep learning model that translates sign language into text or speech. Their study, based on the Visual
Geometry Group (VGG16) model and 43,500 images, produced more successful results than their pre-
vious studies. Murali et al. [5] developed a sign language recognition system using American Sign Lan-
guage (ASL), achieving over 90% accuracy through the application of computer vision techniques and
deep learning algorithms. Pigou et al. [6] proposed a model utilizing both a deep learning architecture
and Microsoft Kinect to recognize 20 Italian sign language gestures. Using Convolutional Neural Net-
work (CNN) architecture for feature extraction, the model reached a cross-validation accuracy of 91.7%.
Daroya et al. [7] proposed a DenseNet-based model for recognizing ASL letters. This model can recog-
nize real-time hand movements from webcam input and classify static hand poses in RGB images with
90.3% accuracy. Nareshkumar and Jaison [8] developed a lightweight neural network architecture for
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mobile classification of ASL and Indian Sign Language letters. Despite operating in real-time and on
low-resource devices, this MobileNet-based application achieved an accuracy rate of 98.77%.
Bhattacharya et al. [9] utilized machine learning algorithms such as Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Logistic Regression, and Naive Bayes to recognize finger alphabet ges-
tures in images. A comparative analysis demonstrated that SVM outperformed the other machine learn-
ing methods. Hasan et al. [10] achieved an accuracy of 97.62% in ASL character recognition using the
MNIST dataset and a CNN architecture. In their study, Barbhuiya et al. [11] modified pre-trained CNN
models, such as AlexNet and VGG16, to recognize ASL letters and numbers and used multi-class SVM
for classification. Amrutha and Prabu [12] developed a hand-motion-based recognition model that com-
bines feature extraction using a convex hull with classification via the KNN algorithm to create an au-
tomatic sign language recognition system. While the model achieved 65% accuracy in a controlled en-
vironment with four participants, another approach in the same study attained 99.82% classification
accuracy using a low-cost CPU. Abdul et al. [13] proposed a real-time deep learning model for Arabic
sign language classification. This model aims to extract both spatial and temporal features, using an
attention-based Inception model for spatial features and a Bidirectional Long Short-Term Memory
(BiLSTM) model for temporal features. The model demonstrated high accuracy across various datasets,
excelling in both static and dynamic signs, while achieving efficient performance with fewer layers and
parameters. Leth [14] in his thesis, Leth combined ensemble learning and virtual reality technology to
develop a Danish Sign Language recognition system, using vector encoding for gesture recognition and
an n-gram linear classifier for NLP. Despite achieving only 41.5% accuracy, the UI’s usability indicated
room for improvement. Similarly, Kothadiya et al. [15] proposed an Explainable Artificial Intelligence
(XAI)-supported model for sign language recognition, incorporating a ResNet50 and self-attention mod-
ule-based ensemble learning model, which achieved 98.20% accuracy. Moreover, SHAP-based methods
were used to make the model’s predictions interpretable. Oztiirk et al. [16] proposed a deep learning
model based on VGG16 and ResNet-50 for COVID-19 diagnosis; this model achieved an accuracy of
88.06% using a Multi-Layer Perceptron (MLP) structure optimized with the whale optimization algo-
rithm . Benbakreti et al. [17] utilized pre-trained models such as GoogleNet and ResNet-18 to classify
eye diseases from fundus images; GoogleNet achieved the best performance with a 92.7% accuracy rate
using the Stochastic Gradient Descent with Momentum (SGDM) optimizer.

Despite efforts to address this issue with deep learning methods, no studies in literature have ap-
plied both hyperparameter optimization and ensemble learning to enhance the performance of these
methods. In this study, the proposed image classification model was created using InceptionV3, Dense-
Net169, and VGG16 algorithms and was trained individually on a dataset containing images of Ameri-
can Sign Language letters. An ensemble learning model was then created by combining the separately
trained image classification algorithms, and Bayesian optimization was used for hyperparameter opti-
mization to assess the impact of hyperparameters on training. To identify the best performance, two
different ensemble learning models were trained—one with and one without Bayesian optimization. The
experimental outcomes aim to investigate the effect of the ensemble learning model on image classifi-

cation, as well as the impact of Bayesian optimization and fine-tuning on model performance.
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2. Materials and Methods
2.1. Materials
In this study, ASL classification was conducted using the InceptionV3, DenseNet169, and VGG16

algorithms on a dataset obtained from Kaggle [18]. The dataset comprises 24 classes, each representing
one of the 24 letters of the ASL alphabet, with 1,000 images per class corresponding to a specific letter.
Each image in the dataset contains static hand gestures representing a particular letter. However, the
letters 'J' and 'Z', which are represented by dynamic hand movements in the ASL fingerspelling alphabet,
are excluded due to their dynamic nature, which is not compatible with static image classification. Con-
sequently, the dataset focuses solely on static hand shapes.

To ensure high variability, the images include a range of hand sizes, positions, and orientations,
enhancing the model's ability to generalize to real-world scenarios. Furthermore, the dataset exhibits a
balanced class distribution, with an equal number of 1,000 images per class. This characteristic prevents
any single class from being overrepresented during the training process, thereby enabling the model to
achieve balanced performance across all classes.

2.2. Methods

In this study, the sign language recognition performance of deep learning models were analyzed
using a dataset representing 24 letters of the English alphabet in sign language. The deep learning archi-
tectures employed in the study include InceptionV3, DenseNet169, and VGG16. The dataset was pre-
processed using resized to 224x224 pixels and normalization techniques, including pixel value scaling
to the [0,1] range and image resampling to ensure uniform input dimensions, followed by Bayesian
optimization to determine the optimal hyperparameters for each model.

2.2.1. VGG16

In the VGG16 architecture, the network progresses from convolutional and pooling layers to fully
connected layers. Each convolutional layer reduces the complexity of the image while enabling the dis-
covery of deeper features. Max-pooling layers reduce dimensions while preserving essential features,
thus enhancing the overall performance of the network. This architecture allows VGG16 to perform
complex tasks effectively. Figure 1 illustrates the VGG16 architecture [19].

224 x 224 x3 224 x224x64

112 x]|112 x 128

x 56 % 256
28 x 28 x 512 TxT7x%x512

/|fl'fl'f 1x1%4096 1x1x 1000
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Figure 1. Structure of VGG16 [20]
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2.2.2. InceptionV3

The InceptionV3 model is a 48-layer pre-trained convolutional neural network capable of pro-
cessing images of various sizes and resolutions, making it suitable for large datasets. It utilizes a spe-
cialized structure called "Inception," which includes three convolutional layers of different sizes and
one max-pooling layer. These layers are used to capture critical features within images. Following this,
the model combines the outputs of previous layers to form the final output. To address the issue of
overfitting, a sigmoid layer is added, reducing the output layer's dimensionality, which also aids in clas-
sification. The model includes a fully connected layer containing hidden units that help recognize more
complex patterns in images. In this model, weights are initialized using a Xavier initialization algorithm,
enhancing the model's learning capabilities [21]. The architecture and layer structure of the InceptionV3

model are visually detailed in Figure 2.

Transfer Model Classes
Basic Blocks (Based on Inception-v3 Model) Y P (62)
Input ‘ A N et P = :“ €% ;
CEETAC VT (U s et et avent LU I O
' R T N e e v ¥ |
. . N ‘.\\ . ¥ 7/‘ \ g
Convolution Inception Block ‘geoan Classifiers
= AvgPool L .
MaxPool Auxiliary Classifiers
= Concat
= Dropout
= Fully connected
= Softmax
Figure 2. Structure of InceptionV3 [22]
2.2.3. DenseNet169

The DenseNet-169 model, part of the DenseNet family and distinguished by its success in the
ImageNet competition, is a deep learning model proposed by G. Huang and colleagues. In this model,
each layer receives information from all preceding layers and passes its output to all subsequent layers.
This design enhances the model's learning capacity and facilitates improved information flow. Dense-
Net-169 features an efficient and compact network structure. This compact design reduces the number
of parameters and improves computational efficiency. The architecture and layer structure of the Dense-
Net-169 model are visually detailed in Figure 3 [23].
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Figure 3. Structure of DenseNet-169 [23]

2.2.4. Bayesian Hyperparameters Optimization

Bayesian optimization is a method used to optimize the performance of machine learning and deep
learning models. Hyperparameters are parameters that control the learning process of a model; in neural
networks, these typically include values like the number of layers, the number of neurons, and the learn-
ing rate. Hyperparameters are often adjusted manually, a time-consuming and inefficient approach.
Bayesian optimization offers a faster and more efficient solution for hyperparameter optimization by
applying Bayesian optimization principles. The primary objective is to model the hyperparameter space
as a probability distribution and update this distribution based on observed performance metrics. By
intelligently exploring the hyperparameter search space and focusing on promising regions, Bayesian
optimization can identify better performing hyperparameter combinations more efficiently compared to
traditional methods. The search space distribution is commonly modeled using a Gaussian Process,
which is especially advantageous for complex models with large hyperparameter spaces [24, 25].

The method’s operating principle relies on Bayesian optimization techniques and involves core
components such as Prior Distribution, Observations, Posterior Distribution, and Acquisition Function.
The Prior Distribution represents the probability distribution of possible values in the hyperparameter
search space, reflecting prior knowledge about these hyperparameters. In this study, the boundaries of
the hyperparameter search space were defined based on a combination of domain knowledge, empirical
observations, and computational constraints, aiming to balance search efficiency and model perfor-
mance. Observations are the performance measurements of models trained with specific hyperparame-
ters, obtained by evaluating the objective function. The Posterior Distribution is an updated probability
distribution of hyperparameters based on observations. The Acquisition Function uses the Posterior Dis-
tribution to identify the most promising regions in the search space [26]. Figure 4 visually illustrates the
behavior and key characteristics of a one-dimensional Gaussian Process.
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Figure 4. One-dimensional Gaussian Process [25]

2.2.5. Ensemble Learning

Ensemble learning is an approach in machine learning that aims to achieve better results than a
single model by combining the predictions of multiple models. This method is based on the idea that the
errors of different models will average out, leading to higher accuracy, reduced variance, and improved
generalization ability. Ensemble methods can include various models such as decision trees, neural net-
works, and regression models. The primary advantage of ensemble methods is that, in cases where one
model makes an error, other models can compensate for these mistakes, thereby enhancing overall per-
formance. Another significant benefit of ensemble methods is their ability to reduce overfitting. When
a single model overfits, it may focus too heavily on specific patterns or noise (irrelevant variance) in the
training dataset. However, by combining multiple models, the impact of such errors is minimized, re-
sulting in more generalizable outcomes. Ensemble learning also has some disadvantages. Ensemble
models tend to have more complex structures, making them harder to manage and interpret. Addition-
ally, training multiple models and combining their predictions require more computational power and
time. Ensemble methods can also have drawbacks related to high resource usage and inter-model de-
pendencies. Generally, four main methods are highlighted when creating an ensemble model: voting,
bagging, boosting, and stacking [26, 27].

Voting Ensemble is an ensemble learning method that aims to make an overall prediction by com-
bining multiple classifiers. This approach creates a model that generally outperforms a single classifier
by aggregating the predictions of different classifiers, balancing each classifier's weaknesses with the
strengths of others to achieve more stable and reliable predictions. There are two primary voting mech-
anisms: Soft Voting and Hard Voting.

In Soft Voting, classifiers provide a probability distribution for all classes. These probabilities are
multiplied by weights reflecting each classifier's strength, where stronger models are assigned, higher
weights based on their performance, and then summed to produce the final prediction. The class with
the highest total probability is selected as the final prediction. In this method, each classifier's prediction
is given a weight corresponding to its confidence level, making the votes of more accurate classifiers
more influential.

In Hard Voting, each classifier selects the class it considers most probable, and one vote is cast for
that class. The class with the most votes becomes the final prediction. In this method, all classifier votes
are treated equally, disregarding probability values [28]. Figure 5 visualizes the hard and soft voting

decisions.
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Figure 5. Hard and Soft voting decisions [29]

2.2.6. Performance Evaluation Metrics

A Confusion Matrix is a table used to evaluate the performance of classification algorithms by
providing insights into the predicted and actual classes. The rows of the matrix represent the actual
classes, while the columns represent the predicted classes. This matrix comprises four fundamental ele-
ments [30, 31]:

True Positive (TP): Instances that are actually positive and are correctly predicted as positive by
the model.

False Positive (FP): Instances that are actually negative but are incorrectly predicted as positive
by the model.

True Negative (TN): Instances that are actually negative and are correctly predicted as negative
by the model.

False Negative (FN): Instances that are actually positive but are incorrectly predicted as negative
by the model.

Accuracy is a performance evaluation metric calculated by the ratio of the number of correctly
predicted instances to the total number of instances. It serves as an indicator of how well the model is
performing. Accuracy is particularly useful as a performance measure when the classes are evenly dis-
tributed [32]. The method used to calculate the accuracy metric is presented in Equation 2.1.

TP+TN

Accuracy = m (21)

Precision is a performance evaluation metric defined as the ratio of true positive predictions to the
total number of positive predictions made by the model. It serves as an indicator of the accuracy of the
model's positive predictions. A high precision value indicates that the model has made a minimal number
of FP predictions, demonstrating its effectiveness in identifying TP cases [32]. The method used to
calculate the precision metric is presented in Equation 2.2.

TP
TP+FP

Precision = (2.2)

Recall is a performance evaluation metric that indicates how effectively the model identifies actual
positive instances. It measures the proportion of TP instances that are correctly identified by the model.
A high recall value suggests that the model has made few FN predictions, demonstrating its capability
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to accurately detect positive cases [32]. The method used to calculate the recall metric is presented in
Equation 2.3.

TP
TP+FN

Recall = (2.3)

The F1 score is a metric obtained by calculating the harmonic mean of precision and recall per-
formance evaluation metrics. It provides a balance between precision and recall, serving as a more com-
prehensive measure of performance, particularly in cases where there is an imbalanced class distribution
[32]. The method used to calculate the F1-Score metric is presented in Equation 2.4.

F1— Score = 2 x e s onenecel 2.4)

3. Results and Discussion

In this study, the ASL dataset obtained from Kaggle was utilized to perform ASL classification
using the InceptionV3, DenseNet169, and VGG16 algorithms. Subsequently, the Bayesian optimization
algorithm was employed to determine the optimal hyperparameters for the models used. Finally, the
InceptionV3, DenseNet169, and VGG16 deep learning algorithms were individually trained on the same
dataset to create an Ensemble Learning model using the Soft Voting method. To investigate the impact
of hyperparameters on model performance, two different Ensemble Learning models were developed:
one utilizing the Bayesian optimization algorithm and one that did not. Their performances were then
compared. The dataset was split with 80% allocated for training and 20% for validation, and an early
stopping function was added to prevent overfitting. The performance metrics used to measure the train-
ing were Accuracy, Precision, Recall, and F1 Score. The validation loss graphs for the model are pre-
sented below.

3.1. Results without Hyperparameter Optimization

In this section of the study, the classification performance of deep learning algorithms created
without the use of Bayesian optimization, as well as the hyperparameter configurations and results, are
presented. The classification performance of the models was measured using performance evaluation
metrics such as accuracy, F1 score, and recall. The hyperparameters used in the models were determined
manually, and the performance of these hyperparameters was evaluated for comparison with the models
optimized using the Bayesian optimization algorithm. The obtained results are visually presented
through tables and graphs.

Table 1 presents the hyperparameter and architectural characteristics of the deep learning models
created without the use of the Bayesian optimization algorithm. Common hyperparameters across all
models include 30 epochs a batch size of 32, Adam optimizer, 2 dense layers, 104 neurons, categorical
cross-entropy loss function, a dropout rate of 0.2%, and ReLU-Softmax activation functions. Due to the
architectural differences of the deep learning models, the number of layers varies.
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Table 1. Parameters of DL algorithms without Bayesian optimization

Inceptionv3 DenseNet169 VGGI16
Layer Size 48 169 16
Model Nodes 5,5,2048 7,7, 1664 7,7,512
Epoch 30 30 30
Batch Size 32 32 32
Optimizer adam adam adam
Learning Rate Se-8 5e-8 2e-7
Dense 2 2 2
# of Neurons 104 104 104
Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy
Dropout 0.2 0.2 0.2
Activation Function ReLU-Softmax ReLU-Softmax ReLU-Softmax

Figure 6 shows the training and validation accuracy and loss curves for the InceptionV3 model.
These graphs indicate that the model shows steady improvement across epochs. This demonstrates that
the model's performance is improving and that it has undergone a successful learning process.

InceptionV3 Accuracy InceptionV3 Loss

1.0 —— Training Loss
3.0 4 Validation Loss

081 2.5

2.0

o
o

Accuracy
Loss

0.4

0.5 1
0.24
—— Training Accuracy

Validation Accuracy 0.0 1

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Figure 6. Training and validation accuracy and loss of InceptionV3 model without Bayesian optimization algo-

rithm

Figure 7 presents the training and validation accuracy as well as loss graphs for the DenseNet169
model. These graphs illustrate that the proposed model continues to learn throughout each epoch, with
a progressively increasing prediction accuracy. The increase in accuracy and the decrease in loss values
during the training process indicate that the model's performance is improving and that it has undergone

a successful learning experience.
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Figure 7. Training and validation accuracy and loss of DenseNet169 model without Bayesian optimization al-

gorithm

Figure 8 exhibits training and validation accuracy along with the loss graphs for the VGG16
model. These graphs indicate that the proposed model continues to learn throughout each epoch, with a
gradual increase in prediction accuracy. The rise in accuracy and the decline in loss values during the
training process suggest that the model's performance is improving and that it has experienced a suc-
cessful learning process.

VGG16 Accuracy VGG16 Loss
—— Training Accuracy —— Training Loss
Validation A((ura(y/ Validation Loss
3.0 4

2.5

0.8

0.6
2.0

Accuracy
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0.4 15
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0.5 1

o 5 10 15 20 25 30 o) 5 10 15 20 25 30
Epochs Epochs

Figure 8. Training and validation accuracy and loss of VGG 16 model without Bayesian optimization algorithm

As seen in the outputs of Table 2, the model that demonstrates the best performance on the ASL
dataset is the Ensemble Learning model.

Table 2. Performance Comparisons of Deep Learning Algorithm without Bayesian Optimization

Algorithm
Method Accuracy Precision Recall F1-Score
InceptionV3 0.846 0.859 0.846 0.853
DenseNet169 0.883 0.901 0.883 0.892
VGG16 0.789 0.814 0.789 0.802
Ensemble 0.921 0.933 0.921 0.927
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3.2. Results with Hyperparameter Optimization

In this section of this study, the classification performance, hyperparameters, and classification
results of deep learning algorithms optimized using the Bayesian optimization are presented. The clas-
sification performance of the proposed deep learning models was measured using performance evalua-
tion metrics such as accuracy, F1 score, precision, and recall. The configurations of the hyperparameters
used in the proposed models and their effects on performance were examined. The obtained results are
visually presented through tables and graphs. The outputs in the tables and figures facilitate the obser-
vation and interpretation of the impact of hyperparameters on model performance, as assisted by the
Bayesian optimization algorithm. The results indicate that the proposed approach can be successfully
applied to similar classification problems.

Table 3 presents the hyperparameter and architectural features of the deep learning models created
using the Bayesian optimization algorithm. The common hyperparameters across all models include 30
epochs a batch size of 32, the Adam optimizer, 2 dense layers, 104 neurons, the Categorical Crossen-
tropy loss function, and ReLU-Softmax activation functions, which are the same as those used in models
without the Bayesian optimization algorithm. Due to architectural differences among the deep learning
models, the number of layers varies; additionally, as a result of Bayesian optimization, the learning rate,
dropout, and units values differ from model to model. The hyperparameters are specified in Table 3.

Table 3. Parameters of DL algorithms with Bayesian optimization

Inceptionv3 DenseNet169 VGG16
Layer Size 48 169 16
Model Nodes 5,5,2048 7,7, 1664 7,7,512
Epoch 30 30 30
Batch Size 32 32 32
Optimizer adam adam adam
Learning Rate 7e-8 -- 1.5e-7 7e-8 -- 1.5e-7 le-7 — 6e-7
Dense 2 2 2
# of Neurons 104 104 104
Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy
Dropout 0.1-0.3 0.1-0.3 0.1-0.3
Activation Function ReLU-Softmax ReLU-Softmax ReLU-Softmax

Figure 9 presents the training and validation accuracy as well as loss graphs for the InceptionV3
model, where hyperparameters have been optimized using the Bayesian optimization algorithm. These
graphs demonstrate that the model continues to learn throughout each epoch and that the prediction
accuracy is steadily increasing. The rise in accuracy and the reduction in loss values during the training
process indicate that Bayesian optimization has improved the model's performance and facilitated a
successful learning process. Furthermore, it has been observed that the Bayesian model outperforms the
non-Bayesian approaches.
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Figure 9. Training and validation accuracy and loss of InceptionV3 model with Bayesian optimization algo-
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Figure 10 presents the training and validation accuracy as well as loss graphs for the DenseNet169
model, where hyperparameters have been optimized using the Bayesian optimization algorithm. These
graphs illustrate that the model continues to learn throughout each epoch, with a consistent increase in
prediction accuracy. The observed rise in accuracy and decrease in loss values during the training pro-
cess indicate that Bayesian optimization has improved the model's performance and led to a successful
learning process. Additionally, it has been noted that the Bayesian model outperforms the non-Bayesian

approaches.
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Figure 10. Training and validation accuracy and loss of DenseNet169 model with Bayesian optimization Algo-

rithm

Figure 11 shows the training and validation accuracy as well as loss graphs for the VGG16 model,
with hyperparameters optimized using the Bayesian optimization algorithm. These graphs indicate that
the model continues to learn through each epoch, demonstrating a steady increase in prediction accuracy.
The rise in accuracy and the decrease in loss values throughout the training process suggest that Bayesian
optimization has enhanced the model's performance and facilitated a successful learning experience.

Additionally, it has been observed that the Bayesian model outperforms non-Bayesian approaches.
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Figure 11. Training and validation accuracy and loss of VGG16 model with Bayesian optimization algorithm

According to the results in Table 4, the best-performing model on the ASL dataset is the Ensemble
Learning model with hyperparameters optimized using Bayesian optimization. Furthermore, it has been
observed that, in general, Bayesian models outperform non-Bayesian approaches. In this context, the
Bayesian Ensemble model achieves the highest success due to both hyperparameter optimization and
model combination techniques.

Table 4. Performance Comparisons of Deep Learning Algorithm with Bayesian Optimization Algorithm

Method Accuracy Precision Recall F1-Score
InceptionV3 0.962 0.963 0.961 0.963
DenseNet169 0.975 0.977 0.975 0.976
VGGI16 0.922 0.940 0.922 0.931
Ensemble 0.986 0.987 0.986 0.986

A comparison was made between an Ensemble Learning model created using the Bayesian opti-
mization algorithm and one that did not utilize this algorithm, with the impact of the Bayesian optimi-
zation algorithm on model performance illustrated in Figure 11. This comparison highlights the im-
provements achieved through the optimization process, showcasing the enhancements in accuracy, pre-
cision, recall, and F1 score that result from the effective tuning of hyperparameters.
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Figure 11. Performance Comparisons of Models
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4. Conclusion

The sign language detection application developed in this study offers an effective solution to the
communication problems between individuals with hearing impairments and those who do not know
sign language. The use of ensemble learning and Bayesian optimization algorithms has significantly
enhanced model performance, providing important findings that could guide future research. It is be-
lieved that such applications will facilitate the integration of individuals with hearing impairments into
society and improve their quality of life. The application leverages artificial intelligence technologies
by utilizing image classification models such as InceptionV3, DenseNet169, and VGG16. To achieve a
high success rate, these three algorithms have been combined to form an ensemble learning method. In
this research, the Bayesian optimization algorithm was employed to examine the impact of hyperparam-
eters on model performance, with comparisons made against other models. According to the results
obtained, the ensemble learning model utilizing the Bayesian optimization algorithm demonstrated su-
perior performance compared to other models. This indicates that the Bayesian optimization algorithm
positively affects model performance. However, it was also observed that the algorithm has a negative
impact on computational costs, particularly in terms of time consumption. This time-related overhead
may limit its applicability in real-time or low-latency systems. Therefore, while Bayesian Search offers
strong optimization performance, its use in real-time applications should be carefully evaluated, possibly
by limiting the search space or applying it during the offline training phase. Nonetheless, it has been
identified that the computational cost can be reduced by narrowing the search space. This finding sug-
gests that optimizing the search space should be a focus in future studies to enhance the effectiveness of
the Bayesian optimization algorithm. In conclusion, the developed sign language detection application
provides an effective solution to the communication problem between individuals with hearing impair-
ments and those who do not know sign language. The implementation of the ensemble learning method
and the Bayesian optimization algorithm has played a significant role in improving the model's perfor-
mance. Future research should concentrate on optimizing the search space of the Bayesian optimization
algorithm to reduce computational costs and further enhance model performance. This study is expected
to facilitate the integration of individuals with hearing impairments into society and improve their qual-

ity of life.
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