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1. Introduction  
 

Flight delays encountered in the aviation sector constitute 

a significant problem for both airline companies and 

passengers. Flight delays can cause operational costs to 

increase for airline companies, passenger satisfaction to 

decrease, and air traffic service providers to encounter certain 

complexities in airspace management. In addition, flight 

delays can cause operational congestion and confusion for 

airport operators. In the literature, flight delay predictions have 

been examined by analyzing weather data that directly affects 

flight timings (Dursun, 2023; Fernandes et al., 2020; Gui et al., 

2019). On the other hand, operational factors such as traffic 

density at an airport can also have a significant impact on 

delays. Especially in large and busy airports, traffic congestion 

experienced during the landing and take-off phases of flight 

operations is considered as one of the crucial factors that 

prevent flights from taking place on time. 

Risk management in the aviation sector is considered a 

particularly important process to ensure the safety, efficiency, 

and sustainability of flight operations. Risk management 

requires proactive measures to minimize the negative effects 

that operational disruptions, air traffic density, weather 

variables, and technical failures may cause. Operational risks 

such as flight delays can cause significant costs and service 

disruptions for airlines, airport operators and passengers. 

Therefore, an effective risk management process analyzes the 

causes of delays, develops preventive strategies, and optimizes 

operational processes. In addition, the use of advanced 

analysis techniques such as data mining and artificial 

intelligence provides important support to decision makers in 

decision processes by making risk estimation more precise. In 

this context, the development of risk management applications 

in aviation is especially important for the development of both 

sectoral practices and academic research. 

The aim of this study is to analyze the relationship between 

airport traffic density and flight delays in detail using data 

mining techniques and to perform multi-dimensional 

evaluations by estimating delays based on this relationship. 

While flight delays are generally estimated with weather data 

in the literature (Zhao et al., 2024; Schultz et al., 2021; Qu et 

al., 2020), this study investigates, the effect of airport traffic 

density data on delays will be investigated in addition to 

weather data, and in this context, comprehensive delay models 

will be created by taking into account factors such as airport 
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landing and take-off traffic, ground handling density and 

aircraft waiting times. 

The study will make significant contributions to both the 

literature and the managerial practices in the aviation sector. 

Research investigating the effects of operational factors other 

than weather conditions on delays are quite limited in the 

literature, and this study aims to fill the gap in the literature 

and provide a unique perspective on delay estimation. In 

addition, the study will provide airline companies and airport 

managers with opportunities to develop strategies to increase 

operational efficiency by creating new decision-support tools 

and mechanisms in air traffic management. Estimating flight 

delays is a particularly critical issue in terms of optimizing 

operational processes, reducing costs, and increasing 

passenger satisfaction. In this regard, the study will enhance 

both existing literature and practical applications in the sector 

by introducing a novel approach to flight delay estimation. 

In the literature, the topic of delay prediction in the aviation 

sector has received attention in recent years with numerous 

studies investigating various data mining and machine 

learning techniques to increase accuracy and reliability. These 

studies focus on predictive modeling approaches based on 

spatiotemporal data features, causal factors, and various 

aviation applications.  

Zhang et al., (2020) and Jiang et al., (2022) analyzed the 

causes of flight delays with spatiotemporal data mining and 

graph-based models, and Zhu et al., (2024) and Jiang et al., 

(2024) developed flight delay predictions model by focusing 

on air traffic congestion and flight network effects. 

While (Fernandes et al., 2020) used the logistic regression 

method to examine operational inefficiencies that cause flight 

delays, (Zeng et al., 2021) proposed an optimization model to 

reduce flight delays by taking operational uncertainties into 

account. Truong, (2021) evaluated flight delay risks with 

causal machine learning techniques and determined the 

underlying causes of flight delays. In addition, Zhao et al., 

(2024) examined flight delays caused by airspace demand-

capacity imbalances, Binias et al., (2020) evaluated the effects 

of human factors on flight operations by addressing pilots' 

reaction processes with neurological analyzes. 

In addition, flight delays and their consequences have been 

discussed in the literature with multi-step prediction models. 

Zhang et al., (2021) and Reitmann & Schultz, (2022) 

developed multi-step prediction models with spatiotemporal 

analysis to optimize air traffic management, while Luo et al., 

(2021) and Zhang et al., (2023) used graph-based techniques 

(graph convolutional networks (GCN)) to analyze flight 

delays. In addition, Cai et al., (2022) used time-evolving graph 

models to predict flight delays in the context of dynamic air 

traffic. 

The effects of weather conditions on flight delays have 

been discussed in the literature. (Esmaeilzadeh et al., 2020) 

focused on identifying patterns in historical flight and weather 

data to increase the prediction accuracy in flight delays, while 

Schultz et al., (2021) and Ma et al., (2024), which examined 

the direct and indirect effects of weather conditions on flight 

delays, focused on reducing flight delays by applying agent-

based modeling and simulation methods. In addition, Gui et 

al., (2019), Wang et al., (2021) and Qu et al., (2020) tried to 

increase the prediction accuracy in flight delays by combining 

air traffic and meteorological data. 

Studies in the literature show that machine learning and big 

data analytics play a critical role in flight delay prediction. In 

addition, the integration of spatial-temporal analytics and 

operational factors increases efficiency and forecast accuracy 

in air traffic management. 

 

2. Materials and Methods  
 

The datasets used in this study consist of two main sources, 

“En-route IFR Flights and ATFM Delays (FIR)” 

(EUROCONTROL, 2024) and “Airport Traffic” 

(EUROCONTROL, 2024), published by EUROCONTROL 

(European Organization for the Safety of Air Navigation), an 

international organization that coordinates air traffic 

management (ATM) in Europe and aims to use airspace 

effectively and efficiently by optimizing air traffic flow. These 

datasets are considered to be of critical importance in terms of 

in-depth examination of the relationship between flight delays 

and airport traffic density. 

The “En-route IFR Flights and ATFM Delays (FIR)” 

(EUROCONTROL, 2024) dataset covers Instrument Flight 

Rules (IFR) flights and Air Traffic Flow Management 

(ATFM) delays on specific routes. IFR flights are defined as 

flights coordinated by air traffic control under adverse weather 

conditions or when visual references are insufficient. ATFM 

delays are delays that occur on routes due to reasons such as 

airspace capacity limitations, disruptions in air traffic 

management and operational restrictions. The “Airport 

Traffic” (EUROCONTROL, 2024) dataset includes 

information on airport-based landing and take-off operations 

and the traffic density associated with them. Airport traffic is 

related to airport capacity and is considered the main cause of 

delays during heavy traffic periods. These two datasets aim to 

reveal the effect of airport traffic density on delays by 

analyzing different dimensions of flight delays. These data, 

provided on a daily basis, provide more meaningful and up-to-

date information in terms of short-term planning and 

operational decisions. Daily forecasts can optimize flight delay 

management by evaluating the instantaneous effects of factors 

such as airspace capacity and ground handling. In addition to 

all this, daily fluctuations in flight traffic and delays are 

analyzed in detail to predict possible delays. 

The data mining process consists of four stages: data 

understanding, data preparation, modeling, and evaluation 

(Gui et al., 2021). In the first stage, Data Understanding, delay 

data and airport traffic density data will be combined with 

spatial-temporal features. (Zhang et al., 2021) emphasized in 

their studies that flight delays vary according to time, location, 

and seasonal factors and stated that spatial-temporal data 

fusion is a critical step in terms of delay estimation. This 

method will allow the development of unique models for each 

airport and route. In the second stage, Data Preparation, the 

Automated Feature Engineering (AFE) method will be used. 

(Liu et al., 2024) showed that AFE offers a significant 

advantage in automatically creating meaningful and 

interpretable features. Thanks to this method, the data 

preparation process will be accelerated and the features 

required for analysis will be created systematically. In the third 

stage, Modeling, the Random Forest (RF) method was 

preferred. RF is quite successful in modeling nonlinear 

relationships and shows effective performance on structured 

data sets without requiring stationarity. Sarveswararao et al., 

(2023) stated that RF achieves lower Symmetric Mean 

Absolute Percentage Error (SMAPE) in time series predictions 

compared to Long-Short Term Memory (LSTM) models and 

captures complex data structures better. In the last stage, 

Evaluation, the performance of the model will be evaluated 
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multidimensionally using cross-validation and various error 

metrics. Jiang et al., (2020) emphasized that cross-validation 

helps prevent overfitting in large data sets. Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) metrics 

will be used to measure model performance. These metrics are 

critical for evaluating the generalization ability and predictive 

accuracy of the model. 

 

2.1. Data Understanding and Preparation 
 In the data preparation phase, the “En-route IFR Flights 

and ATFM Delays (FIR)” and “Airport Traffic” datasets were 

merged, cleaned, and made suitable for analysis. From the 

“Airport Traffic” dataset, the “Country Daily Airport 

Summary Dataset” was created based on flight operational 

information such as departures (FLT_DEP_1), arrivals 

(FLT_ARR_1) and total flights (FLT_TOT_1). This dataset 

includes daily operational flight data for each region. The “En-

route IFR Flights and ATFM Delays” dataset provides data 

classified according to the reasons for the delays on the route 

(accident/incident, weather, equipment, environmental 

problems, other, etc.). In the data integration phase, the two 

datasets were merged based on the variables (FLT_DATE) and 

(STATE_NAME). This process ensured that the flight 

operations were consistently matched with the delay criteria. 

In addition, column names were rearranged to ensure naming 

standards between data sets and the structure obtained by 

merging the two datasets was made suitable for analysis and 

modeling. The missing data problem was considered as a 

critical issue when evaluated over total flight or delay times. 

In this study, a zero-input strategy was adopted to process 

missing data. In line with this strategy, the consistency of the 

data was preserved by replacing the empty values with zeros 

and a complete data set was obtained. In the feature 

engineering phase, a series of derived features were created to 

better analyze the causes and patterns of flight delays. For 

temporal analyses, time-based features such as year, month, 

day, weekday, and week of the year were obtained from the 

flight date (FLT_DATE). In order to measure the density of 

the airspace, the traffic density metric was developed and the 

ratio of total flights to departures (FLT_TOT_1 / FLT_DEP_1) 

was calculated. In order to evaluate the prevalence of delays, 

the delay ratio was derived using the ratio of delayed flights to 

total flights. To reduce the skewness in the distribution of the 

data, logarithmic transformation was applied to the total delay 

time (DLY_ERT_1) and a log-transformed total delay feature 

was created. In addition, the average delay per flight was 

calculated to develop the average delay metric and obtain an 

intuitive measure of the delay severity. As a result of all these 

steps, an enriched dataset containing the original and derived 

features was created. The final dataset was saved as 

“Merged_Country_Daily_Data_Optimized.csv” to be used in 

the modeling phase. This file provides a strong basis for 

developing forecasting models by providing comprehensive 

features regarding flight operations and delays. 

 

2.2. Data Exploration 

During the data exploration phase, various analyses were 

performed to understand the temporal patterns of flight delays 

and to improve model performance. In this context, temporal 

feature engineering was applied and the trends of delays in 

certain periods were evaluated. Within the scope of temporal 

feature engineering, temporal variables such as year, month, 

weekday, and season were derived from the flight date. These 

features enabled the analysis of seasonal and monthly trends 

in delays and allowed the model to capture short- and long-

term temporal changes. For example, it was observed that 

flight delays peaked in the summer months due to increased 

traffic density and in the winter months due to adverse weather 

conditions. This analysis also paved the way for the 

development of category-specific delay estimates. Regression 

analysis results are shown in Table 1. 

 

Table 1. Regression Analysis Results 

Delay 

Category 

Adjusted 

R² 

Significant 

Predictors 

Coefficien

t (β) 
P-value 

DLY_ERT_

A_1 0.78 

Traffic Density 2.01 <0.01 

Log-

Transformed 

Total Delay 

1.56 <0.01 

Season (Summer 

Indicator) 
0.43 0.02 

DLY_ERT_

E_1 
0.82 

Traffic Density 2.13 <0.001 

Log-

Transformed 

Total Delay 

1.74 <0.001 

Average Delay 0.87 0.003 

Season (Winter 

Indicator) 
0.51 0.015 

DLY_ERT_

W_1 
0.78 

Traffic Density 1.90 <0.01 

Log-Delay 

(DLY_ERT_W_

1) 

1.84 <0.001 

Temporal 

Feature (Month 

Indicator) 

0.41 0.002 

 

 Regression analyses allowed the determination of the 

effect of traffic density on delays and category-specific 

models. It was found that traffic density had a strong effect on 

all types of delays. In peak periods, inadequate capacity of air 

traffic management causes delays to increase. In category-

specific analyses, factors such as accidents and incidents 

(DLY_ERT_A_1), equipment failures (DLY_ERT_E_1) and 

weather conditions (DLY_ERT_W_1) were examined. It was 

observed that delays due to accidents and incidents 

(DLY_ERT_A_1) increased during the summer months when 

traffic was heavy. However, the absence of specific accident 

records in the data set in this category prevented further 

analysis. This category was excluded from the study due to the 

lack of details such as the frequency, severity, and operational 

impact of the accidents. To provide a comprehensive and 

reliable analysis, only categories with sufficient data were 

focused on. Accordingly, (DLY_ERT_E_1) (delays due to 

equipment failures) and (DLY_ERT_W_1) (delays due to 

weather conditions) categories were selected. This selection 

was supported by the strong statistical significance and high 

adjusted R-squared values obtained as a result of regression 

analyses. It was observed that delays due to equipment failures 

increased especially in winter months; this situation was 

associated with adverse weather conditions, increasing 

equipment fragility or complicating maintenance processes. 
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Delays due to weather conditions reached their peak levels in 

winter months when visibility was low and adverse weather 

effects were intense. 

 

2.3. Clustering 
In this study, the aim is to create strategic solutions for 

delay management by separating delay models into 

homogeneous groups. Cluster analysis process includes data 

pre-processing, feature selection, scaling, determination of 

optimum number of clusters and visualization of results. In the 

Data Preprocessing stage, temporal indicators and delay 

measures were used. Temporal indicators were formed from 

variables such as weekday, weekend indicators, month, and 

season. In addition, criteria such as delay rates and log-

transformed delay values belonging to (DLY_ERT_E_1) and 

(DLY_ERT_W_1) categories were included in the clustering 

process. In the Feature Selection and Scaling step, temporal 

indicators and delay measures were evaluated together. These 

features were scaled using the Standard Scaler method and 

thus the differences between numerical data and binary 

indicators were balanced. Elbow Method and Silhouette 

Scores were used to determine the optimum number of 

clusters. As shown in Figure 1, the Elbow Method plot shows 

that the within-cluster sum of squares (WCSS) decreases 

significantly at k = 4. This point represents the critical 

threshold above which additional clusters provide limited 

improvement on compactness. 

 

 
Figure 1. Elbow Method for optimal number of clusters 

The analysis results regarding the silhouette scores are 

presented in Figure 2. Although the silhouette score has the 

highest value for k = 2, this poses a risk of oversimplification. 

While the score drops significantly with k = 3, it is seen that 

the scores stabilize, and the clustering quality improves after k 

= 4. As a result of these analyses, it was determined that k = 4 

clusters are the optimum number of clusters. 

 

 
Figure 2. Silhouette Score for optimal number of clusters 

The clustering process was performed using the k-Means 

algorithm and the data was divided into four clusters. Cluster 

labels were added to the data set as a new column. Principal 

Component Analysis (PCA) was applied to visualize the 

clustering results in two dimensions and the results are shown 

in Figure 3. In the PCA plot, Cluster 0 and Cluster 3 show a 

clear separation, while partial overlaps are observed between 

Cluster 1 and Cluster 2. This shows that there are some 

common features among the delay models. 

 

 
Figure 3. Analysis of Delay Instances 

In the Figure 4, a heat map is created showing the average 

values of each cluster within the scope of Cluster Feature 

Analysis. Cluster 0 represents efficient operations with low 

delay rates. Cluster 1 stands out with serious delays due to 

equipment failures, where delays (DLY_ERT_E_1) are 

effective. Cluster 2 reflects the winter months, where delays 

due to weather conditions are high. Cluster 3 is characterized 

by high delays observed in the summer months due to 

increased air traffic. 
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Figure 4. Heatmap of Clustering Features by Cluster 

 

2.4. Train-Test Splitting and Homogeneity Testing 

In the training and test set splitting process, it was aimed to 

represent clusters and geographic regions proportionally. In 

the Feature Preparation stage, temporal features (weekday, 

weekend, month, and seasonal indicators) and category-

specific features (DLY_ERT_E_1) and (DLY_ERT_W_1) 

log-transformed lag values) obtained from the previous 

clustering analysis were reused. In addition, cluster labels were 

included in the data set as additional features. In the Data 

Stratification step, a new column named “stratify_col” was 

created by combining the variables STATE_NAME 

(geographic region) and Cluster (lag category segmentation). 

This stratification provided a balance of both geographic and 

cluster distributions in the training and test sets. The data set 

was split into training and test sets in a ratio of 80/20. Figure 5 

and Figure 6 show the cluster distributions in the training and 

test sets for the categories (DLY_ERT_W_1) and 

(DLY_ERT_E_1), respectively. The graphs confirm that both 

delay categories are proportionally represented in the training 

and test sets. 

 

 
Figure 5. Distributions of training and test set clusters for DLY_ERT_W_1 

 
Figure 6. Distributions of training and test set clusters for DLY_ERT_E_1 

Homogeneity tests were performed to verify the statistical 

homogeneity of the training and test sets. For the distribution 

comparison, the distributions of the Cluster and 

STATE_NAME variables in the training and test data sets 

were visualized with bar graphs. Figure 7 and Figure 8 show 

the distributions for (DLY_ERT_W_1), and Figure 9 and 

Figure 10 show the distributions for (DLY_ERT_E_1). It is 

seen in the graphs that both clusters and geographical regions 

are distributed equally in the training and test sets. 
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Figure 7. Cluster distributions for DLY_ERT_W_1     

 

Figure 8. "STATE_NAME" cluster distributions for DLY_ERT_W_1 

 

Figure 9.  Cluster distributions for DLY_ERT_E_1 
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Figure 10. "STATE_NAME" cluster distributions for DLY_ERT_E_1  

Statistical test was performed to compare Cluster and 

STATE_NAME distributions between two datasets. In H0  

 

 

 

Hypothesis, it was assumed that there was no significant 

difference between training and testing distributions. 

 

Table 2. Chi Square Test and Results 

Test 

Chi-

Square 

value 

p-value 

Degrees 

of 

Freedom 

Result 

Cluster 

(DLY_ER

T_E_1) 

0.02 0.9994 3 

There is no 

significant 

difference 

between the 

distributions. 

STATE_N

AME 

(DLY_ER

T_E_1) 

0.04 1.0000 63 

There is no 

significant 

difference 

between the 

distributions. 

Cluster 

(DLY_ER

T_W_1) 

0.02 0.9994 3 

There is no 

significant 

difference 

between the 

distributions. 

STATE_N

AME 

(DLY_ER

T_W_1) 

0.04 1.0000 63 

There is no 

significant 

difference 

between the 

distributions. 

 

The Chi-Square statistics and p-values confirm that the 

Cluster and STATE_NAME variables are distributed 

proportionally in the training and test sets. For example, the p-

value for the Cluster variable is 0.9994, indicating that the 

clusters are represented evenly in both data sets. Similarly, the 

p-value for the STATE_NAME variable is 1.0000, indicating 

that the regional features are distributed equally in the training 

and test sets. 

 

3. Result and Discussion  
 

In this study, the Random Forest algorithm is used for 

delay estimation for (DLY_ERT_W_1) (delays due to weather 

conditions) and (DLY_ERT_E_1) (delays due to equipment 

failures). The modeling process includes preparation of data 

features, hyperparameter optimization, calculation of model 

evaluation metrics and feature importance analysis. 

Target variables are determined as weather-related delays 

(DLY_ERT_W_1) and equipment failure-related delays 

(DLY_ERT_E_1). Numerical variables such as traffic density, 

delay rate, and log-transformed delay measurements are used 

in these models. In order to capture the effect of regional 

variations, categorical variables such as STATE_NAME are 

included in the model with a one-hot encoding method. In 

addition, temporal and operational characteristics (such as 

seasonal indicators, weekdays, and weekends) are used as 

important predictor variables in delay analysis. 

The hyperparameter tuning process was performed for the 

optimization of model parameters. Overfitting and underfitting 

analyses were performed (see Appendix), and the performance 

of different hyperparameter combinations was evaluated. 

During hyperparameter tuning, Root Mean Square Error 

(RMSE) was calculated to measure performance and 

recommended ranges were determined. According to the 

results of underfitting and overfitting analyses performed for 

(DLY_ERT_W_1) and (DLY_ERT_E_1), recommended 

ranges for hyperparameter tuning are shown in Table 3. 

 

Table 3. Recommended ranges for hyperparameter tuning 

 
DLY_ERT_

W_1 

DLY_ERT_E_1 

n_estimators (number of 

trees) 
[150,200,250] [100, 150,200] 

max_depth (tree depth) [20,25,30] [20,25,30] 

min_samples_split 

(minimum number of 

samples to split a node) 

[3,5,6] [2, 3,5] 

min_samples_leaf 

(minimum number of 

samples in a leaf node) 

[1, 2] [1, 2] 

max_features 

(maximum number of 

features to use for 

splitting) 

['sqrt'] ['sqrt'] 

 



JAV e-ISSN:2587-1676                                                                                                                                                   9 (2): 372-381 (2025) 

379 

 

According to the analysis results, the optimum 

hyperparameters were obtained by the Grid Search method and 

5-fold cross-validation (5-fold CV). The final hyperparameter 

values were optimized for both delay categories as presented 

in Table 4.  

 

Table 4. Chi Square Test and Results 
DLY_ERT_W_1  DLY_ERT_E_1  

n_estimators  250 n_estimators  100 

max_depth 30 max_depth 30 

min_samples_split 3 min_samples_split 3 

min_samples_leaf  1 min_samples_leaf  1 

max_features  'sqrt' max_features  'sqrt' 

 

Model performance was evaluated using Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE) metrics on 

both cross-validation (CV) and test set. As shown in Table X, 

RMSE value for (DLY_ERT_W_1) was calculated as 

“700.98” in cross-validation stage and “416.16” in test set. 

Similarly, RMSE value for (DLY_ERT_E_1) was obtained as 

“2.19” in cross-validation stage and “0.91” in test set. Low 

MAE and RMSE values in both models revealed that the 

models have high prediction accuracy and exhibit robust 

performance. The consistency between cross-validation and 

test metrics confirms that the models do not have overfitting 

problems and have strong generalization ability. 

 

Table 5. Evaluation Criteria Results for DLY_ERT_W_1 and 

DLY_ERT_E_1 
 DLY_ERT_W_1 DLY_ERT_E_1 

MAE (CV) 48.88 0.03 

RMSE (CV) 700.98 2.19 

MAE (Test) 39.93 0.01 

RMSE (Test) 416.16 0.91 

 

According to the feature importance analysis, traffic 

density is determined as the most critical variable predicting 

delays for both models. This situation emphasizes the impact 

of airspace congestion on delays and the importance of 

effective air traffic management. Especially in weather-related 

delays (DLY_ERT_W_1), the cascading effect of past delays 

stands out as a remarkable finding. In equipment failure-

related delays (DLY_ERT_E_1), regional and seasonal 

variables have a strong effect, which reveals the importance of 

preventive maintenance activities. 

Using separate Random Forest models for different delay 

categories provided significant advantages in the modeling 

process. While analyzing all delay types in a single model 

created difficulties in understanding varied factors, using 

separate models captured the specific factors of each delay 

type better. This approach increased the prediction accuracy 

and provided a simpler, more optimized structure for the 

models. 

As a result, the Random Forest algorithm performed well 

in predicting delays due to both weather conditions and 

equipment failures. Traffic density and past delays were the 

strongest predictors of the models, while regional and temporal 

variations also had an impact on delay analysis. 

 

 

 

 

  

4. Conclusion  
 

This study presents a comprehensive data mining and 

modeling process to provide a deeper understanding of the 

relationship between airport traffic density and flight delays 

and to evaluate the effectiveness of prediction models in this 

context. Delays due to weather conditions and equipment 

failures were determined as two important disruption points of 

flight operations and the Random Forest algorithm was used 

for delay prediction in these categories. The analyses 

conducted within the scope of the study clearly revealed the 

effects of traffic density, past delays, regional and temporal 

factors on flight delays. The low error rates, high prediction 

accuracy and generalization capacity of the Random Forest 

algorithm support the usability of this method in operational 

decision support systems. 

Risk management in the aviation sector is a principal 

element that aims to increase flight safety and minimize delay-

related disruptions by ensuring effective management of 

operational processes. In this context, the current study 

presents important findings in terms of risk management in the 

aviation sector by providing data-driven analyses for 

predicting flight delays. Proactive evaluation of airport traffic 

density data allows for the prediction of potential delays and 

the development of preventive strategies. The predictive 

models applied in the study offer new and effective approaches 

that can be used in aviation risk management processes and 

contribute to the making of strategic decisions to increase 

operational efficiency in the aviation sector. 

The findings have prepared the ground for strategic policy 

recommendations for managers for operational efficiency and 

minimizing flight delays. It has been observed that efficient 

and dynamic airspace allocation and alternative routing 

strategies should be implemented to control traffic congestion, 

especially during periods of high traffic density such as 

summer and winter. In addition, considering that past delays 

have gradually led to systemic disruptions, it is recommended 

to develop proactive maintenance processes and rapid 

intervention mechanisms. In this context, it is evaluated that 

optimizing operational processes and disseminating predictive 

analytical methods in the sector will contribute to both 

reducing costs and increasing passenger satisfaction. 

The study also highlights the importance of predictive 

analytical approaches for managing delays in the aviation 

sector and provides a valuable contribution to academic 

literature. This comprehensive approach, especially 

considering operational and environmental factors together, 

fills the gaps in the literature and offers a new perspective for 

predicting flight delays. However, the inclusion of missing 

data categories such as accidents and incident-related delays in 

the analysis scope stands out as an important research area for 

future studies. In addition, the use of alternative modeling 

approaches and wider data sets will increase the validity of the 

findings and strengthen their applicability in different 

scenarios. 

As a result, this study has examined the critical 

relationships between airport traffic density and flight delays 

in detail and has suggested innovative decision support 

mechanisms for both academic and sectoral applications in the 

light of the findings. In addition to all, the study provides a 

guide for managerial practices in the aviation sector in terms 

of increasing operational efficiency, reducing costs and 

ensuring customer satisfaction.  
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