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 Energy-dissipating pools or flip bucket structures reduce the energy of downstream flow in 
conventional spillways. Recently, stepped spillways have been widely used to dissipate the flow of 
energy downstream. Flows on the stepped spillways are complex and advanced techniques such as 
Fuzzy Logic (FL), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network 
(ANN), Genetic Programming (GP), Deep Learning, and Tree-Based models are required to 
calculate energy dissipation ratios. Fuzzy Logic has the advantage of considering physical 
processes when examining problems using rule bases. In this study, energy dissipation over stepped 
spillways is calculated using machine learning methods and the Fuzzy Inference System in Python 
programming language. Experimental data by different researchers are used to model stepped 
spillways. Two new parameters, such as an approach channel and step-top geometric ratios, are 
used in addition to the literature to obtain energy dissipation ratios on stepped spillways. Artificial 
Neural Network Regressor (ANN) from machine learning methods gives minimum percentages 
and absolute errors (-0.117% and 1.398) and maximum 𝑅𝑅2 values (0.976) for the testing dataset. 
Although the accuracy of the ANN method changes with hidden layer sizes and ratios between 
training and testing data, the Fuzzy Logic (FL) is independent to training data. The FL method 
represents good results with low Mean Percentages Error (MPE) and Mean Absolute Errors (MAE) 
(-1.688% and 2.000) and an 𝑅𝑅2 value (0.951), and the produced Python function using the fuzzy 
inference system can be applied easily to different flow conditions and stepped spillways. 
 
Keywords: Stepped spillways, energy dissipation, skfuzzy, fuzzy logic, artificial neural network regressor, 
machine learning methods. 
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 Enerji sönümleyici havuzlar veya sıçratma eşiği yapıları, klasik dolusavakların mansabındaki akım 
enerjisini sönümlemektedir. Son yıllarda, akım enerjisini sönümlemek amacıyla basamaklı 
dolusavaklar yaygın olarak kullanılmaktadır. Basamaklı dolusavaklardaki akım karmaşık olup 
enerji sönümleme oranlarını hesaplamak için ileri tekniklere sahip Bulanık Mantık (BM), Yapay 
Sinir Ağları Uyarlamalı - Bulanık Çıkarım Sistemi (YSA- BÇS), Yapay Sinir Ağları (YSA), 
Genetik Programlama (GP), Derin Öğrenme ve Ağaç Tabanlı modeller kullanılmaktadır. BM, kural 
tabanları kullanarak problemleri incelerken fiziksel süreçleri göz önünde bulundurabilme 
avantajına sahiptir. Bu çalışmada, Python programlama dilinde makine öğrenmesi yöntemleri ve 
Bulanık Çıkarım Sistemi kullanılarak basamaklı dolusavakların enerji sönümleme oranları 
hesaplanmıştır. Basamaklı dolusavakları modellemek için farklı araştırmacıların deneysel verileri 
kullanılmıştır. Basamaklı dolusavaklarda enerji sönümleme oranlarını tahmin edebilmek için 
literatürde kullanılan parametrelere ek olarak yaklaşım kanalı ve basamak üstü geometrik oranları 
gibi iki yeni parametre kullanılmıştır. Makine öğrenmesi yöntemlerinden YSA ile test veri seti için 
minimum yüzde ve mutlak hata (% -0.117 ve 1.398) ve maksimum 𝑅𝑅2 değerleri (0.976) elde 
edilmiştir. YSA yönteminin doğruluğu gizli katman boyutları ve eğitim-test veri oranlarıyla değişse 
de Bulanık Mantık (BM) yönteminin sonuçları eğitim verilerinden bağımsızdır. BM yönteminde 
düşük ortalama yüzdelik ve mutlak hatalar (% -1.688 ve 2.000) ve 0.951 𝑅𝑅2  değeri ile iyi sonuçlar 
elde edilmiştir ve BM yöntemi kullanılarak üretilen Python fonksiyonu farklı akış koşullarına ve 
basamaklı dolusavaklara kolayca uygulanabilme imkânına sahiptir.  
 
Anahtar Kelimeler: Basamaklı dolusavak, Enerji sönümleme, skfuzzy, Bulanık mantık, yapay sinir ağı 
regresörü, makine öğrenmesi yöntemleri. 
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1. INTRODUCTION  

Stepped spillways have been used for over 3500 years because it is easy to design and build them [1]. The 
Akarnian stepped spillway, claimed to be the world's earliest example of a stepped spillway, was built about 
1300 BC, according to the literature [1]. Since the beginning of the 20th century, stepped spillways have 
begun to be constructed with more demand to dissipate the flow energy [2].  
 
The flow energy is dissipated downstream of traditional spillways using energy-dissipating pools or flip 
bucket structures. Stepped spillways have recently become popular for dissipating the flow energy 
downstream of small dams [3]. The flow energy can be dissipated on the stepped channel about 70–80% 
more energy than other spillways [4]. Therefore, it is emphasized that the stepped spillways are more cost-
effective than the traditional ones since the size of the energy-dissipating structures installed downstream 
is decreased by 30–40% [3,5]. The high energy dissipation on the stepped spillway also decreases the flow 
momentum. Hence, the probability of cavitation decreases, and the cavitation index rises [6]. Stepped 
spillways are also frequently utilized in water treatment facilities to improve the water's oxygen quantity 
[7]. Stepped spillways are frequently constructed in roller compacted concrete (RCC) dams with a unit flow 
rate of up to q=10–15 m3/sm. Optimizing energy dissipation and extending the structure's active life are the 
main reasons of constructing stepped spillways [3]. Additionally, stepped spillways reduce ground 
cavitation in loose ground regions to their high energy dissipation capability. This high energy dissipation 
capability enables making necessary energy reduction in lower structure lengths. This situation is an 
advantage in terms of economics, as well as a selection criterion for construction of dams with location 
problems.  Floods affecting spillway design have occurred more frequently in recent years with higher 
discharges due to the effects of climate change. This necessitates the dissipation of higher discharges over 
shorter distances and increases the demand for stepped spillways.  
 
As a result of the widespread use of stepped spillways, many researchers have conducted intensive 
experimental studies on the subject [8–20]. Felder et al. [14] used three models besides the traditional 
stepped spillway model to assess the aeration rates and energy dissipation capabilities. The studies were 
carried out for discharges between 0.02 and 0.155 m3/s. The channel width is 0.52 m, the width of the steps 
is 0.20 m, and the height of the steps is 0.10 m. For pooled models, thresholds with dimensions of 0.031 m 
high and 0.015 m wide were put at the ends of the stairs. The results show that the pooled stepped spillway 
models dissipate energy more slowly than the traditional stepped spillways. Felder et al. [13] used three 
stepped spillway models: classical, pooled, and combined. In an experimental set with an 8.9° channel 
angle, a 0.50 m channel width, a 0.318 m step width, and a 0.05 m step height, the researchers conducted 
21 experiments with discharges between 0.02 and 0.117 m3/s. They discovered that the combination model 
had the highest energy dissipation rate while the conventional stepped spillways had the lowest.  
The numerical studies have also intensified with the development of computer technology [21–32]. 
Meanwhile, researchers in various fields of science and engineering have recently been interested in 
artificial intelligence (AI) approaches, including Fuzzy Logic, ANFIS, ANN, GP, and Deep Learning 
models, because these methods can correlate large and complicated datasets without previously knowing 
how they are related [33,34].  
 
Salmasi and Ozger [35] examined the applicability and accuracy of the ANFIS  technique in predicting the 
correct values of energy dissipation of the skimming flow regime across stepped spillways. The 
recommended ANFIS model's training and testing determination coefficients were 0.974 and 0.966, 
respectively. They emphasized that the formulation of accounting for the energy dissipation over stepped 
spillways using this technique is more effective than regression equations. 
 
Roushangar et al. [36] used the neural computing approach capability to evaluate the energy dissipation 
performance of the stepped spillway under the nappe flow regime. They utilized ANFIS and Feed-Forward 
Neural Network (FFNN) techniques to determine the most influential parameters. The findings show that 
neural computing-based approaches consistently predict energy dissipation over stepped spillways under a 
nappe flow regime. Also, the ANFIS model outperformed the FFNN model in terms of overall performance. 
Nevertheless, the essential depth, height, and number of steps were shown to be the variables that influence 
energy dissipation the most. 
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Mojtahedi et al. [37] conducted a comprehensive study about the energy dissipation performance of stepped 
chutes using experimental, numerical, and FL methods. They stated that the prediction accuracy of the FL 
data was evaluated using the mean absolute percentage error criterion (%7.8). The FL model can be used 
as an efficient tool for the design and operational control of stepped spillways. 
 
In this study, energy dissipation ratios on stepped spillways are calculated using a FL system with the 
skfuzzy toolbox, as well as Machine Learning (ML) and Linear Regression (LR) methods in the Python 
programming language. Experimental results from different researchers are used as the study datasets. The 
datasets are divided into two sub-series, training and testing datasets, for the ML and LR methods; however, 
FL does not require training datasets. The FL method uses a rule-based approach instead of training 
datasets. A function (endistepway) with low error ratios (mean percentage error, -1.688%, and mean 
absolute error, 2.000) and a high determination coefficient (0.951) has been developed for implementing 
the FL method in stepped spillways. The function enables easy calculation of energy dissipation ratios in 
stepped spillways. Also, it employs two new parameters - the approach channel and top step geometric ratio 
- that have never been used in the literature, along with the step height ratio and spillway angle parameters.  

2. MATERIAL and METHOD 

2.1 Geometrical Model and Data 

Three laboratory test results [13, 14, 38] of the flat-stepped spillway were used to compare the results of 
the ML, LR and FL methods. The sketch of the flat stepped model is shown in Fig. 1. In here, H is the 
height of the spillway, L is the length of the spillway, La is the length of the approach channel, Dc is the 
critical flow depth, D is the flow depth on the last step, Ls is the step length, Hs is the step height, and Ws is 
the channel width. 

 
Figure 1. A sketch of the longitudinal section of stepped spillways 

2.2 Dimensional Analysis for Stepped Spillways 

Considering the specific design of the spillway and the extensive research carried out by a number of 
experts, the following parameters have been identified as the most important factors influencing the flow 
over stepped spillways: 
 
The fluid's characteristics encompass essential parameters such as dynamic viscosity (μ), mass density (ρ), 
and gravitational acceleration (g). 
 



Sadık ALASHAN, Sedat GOLGİYAZ, Erdinç İKİNCİOĞULLARI, Eyyüp Ensar YALÇIN / HRU Muh Der, 10(1): 36-50 (2025) 

39 

Table 1. The Values of Discharges and Desing Parameters of Stepped Spillways 

 

Discharge 
(Q) (m³/s) 

Unit 
discharge (q) 

(m³ s-1 m-1) 
Ws (m) H (m) La (m) 

 Chute 
angle 
(α) (°) 

Step 
number 

Fe
ld

er
 e

t a
l. 

[1
3]

 

0.030 0.058 0.52 1.00 1.01  26.6 10 
0.038 0.073 0.52 1.00 1.01  26.6 10 
0.049 0.094 0.52 1.00 1.01  26.6 10 
0.063 0.121 0.52 1.00 1.01  26.6 10 
0.075 0.144 0.52 1.00 1.01  26.6 10 
0.090 0.173 0.52 1.00 1.01  26.6 10 
0.097 0.187 0.52 1.00 1.01  26.6 10 
0.113 0.217 0.52 1.00 1.01  26.6 10 

Fe
ld

er
 e

t a
l. 

[1
4]

 

0.018 0.036 0.5 1.05 0.318  8.9 21 
0.027 0.054 0.5 1.05 0.318  8.9 21 
0.039 0.078 0.5 1.05 0.318  8.9 21 
0.049 0.098 0.5 1.05 0.318  8.9 21 
0.061 0.122 0.5 1.05 0.318  8.9 21 
0.076 0.152 0.5 1.05 0.318  8.9 21 
0.091 0.182 0.5 1.05 0.318  8.9 21 
0.105 0.210 0.5 1.05 0.318  8.9 21 
0.117 0.234 0.5 1.05 0.318  8.9 21 

Ir
zo

ok
i e

t a
l. 

[3
8]

 

0.00183 0.00600 0.305 0.25 0.05  26.6 5 
0.00279 0.00914 0.305 0.25 0.05  26.6 5 
0.00607 0.01992 0.305 0.25 0.05  26.6 5 
0.00642 0.02105 0.305 0.25 0.05  26.6 5 
0.00737 0.02416 0.305 0.25 0.05  26.6 5 
0.00202 0.00661 0.305 0.25 0.05  45 5 
0.00210 0.00688 0.305 0.25 0.05  45 5 
0.00568 0.01862 0.305 0.25 0.05  45 5 
0.00665 0.02180 0.305 0.25 0.05  45 5 
0.00808 0.02650 0.305 0.25 0.05  45 5 
0.00065 0.00214 0.305 0.25 0.025  26.6 10 
0.00104 0.00342 0.305 0.25 0.025  26.6 10 
0.00320 0.01050 0.305 0.25 0.025  26.6 10 
0.00365 0.01198 0.305 0.25 0.025  26.6 10 
0.00750 0.02459 0.305 0.25 0.025  26.6 10 
0.00039 0.00128 0.305 0.25 0.025  45 10 
0.00084 0.00276 0.305 0.25 0.025  45 10 
0.00347 0.01137 0.305 0.25 0.025  45 10 
0.00439 0.01440 0.305 0.25 0.025  45 10 
0.00759 0.02489 0.305 0.25 0.025  45 10 

 
The hydraulic characteristics of the flow include critical parameters such as the depth of the flow (D) and 
the velocity of the flow (V). 
 
The shape and geometry characteristics of the spillway include key parameters such as step height (Hs), 
step length (Ls), length of the approach channel (La), number of steps (Ns), channel width (Ws) and spillway 
height (H). 
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Thus, the dimensional analysis for the stepped spillway is expressed as a function of the parameters f (H, 
Ws, Ns, Hs, Ls, La, V, D, g, ρ, μ) = 0. Within the framework of the π-Buckingham theory, the variables ρ, V 
and Dc were chosen as repetitive variables. From this analysis the Eq. 1 was derived: 
𝛥𝛥𝛥𝛥
𝛥𝛥0

= 𝑓𝑓(𝐻𝐻
𝐷𝐷𝑐𝑐

,𝑊𝑊𝑠𝑠
𝐷𝐷𝑐𝑐

, 𝐻𝐻𝑠𝑠
𝐷𝐷𝑐𝑐

, 𝐿𝐿𝑠𝑠
𝐷𝐷𝑐𝑐

, 𝐿𝐿𝑎𝑎
𝐷𝐷𝑐𝑐

,𝐹𝐹𝐹𝐹,𝑅𝑅𝑅𝑅,𝑁𝑁𝑠𝑠)                  (1) 
According to the laboratory studies [13, 14, 38], the difference in the total energy (EL) was calculated as 
Eq. (2). In here, E0 and E1 are the upstream and downstream energies on the stepped spillway, respectively. 
Then, the energy dissipation ratio (ΔE) was calculated as shown in Eq. (3). The parameters of the laboratory 
studies used in this study are given in Table 1. 

𝐸𝐸𝐿𝐿 = 𝐸𝐸0 − 𝐸𝐸1                     (2) 

∆𝐸𝐸 = 𝛥𝛥𝐿𝐿
𝛥𝛥0

                     (3) 

2.3 Random Forest Regressor 

Random Forest (RF) regressor is a popular machine learning algorithm widely employed in regression tasks 
due to its robustness and effectiveness [39]. RF is an ensemble method formed by multiple decision trees. 
Each decision tree is constructed using randomly selected features and trained on a subset of the dataset. 
The creation of these subsets and the way each tree is built introduces randomness to the algorithm. RF 
aggregates the predictions of each tree to make a more generalizable and robust prediction. This method is 
resistant to overfitting and often outperforms a single decision tree. Therefore, RF yields effective results 
even when applied to datasets with complex feature interactions and high dimensionality. 

2.4 XGB Regressor 

XGBoost (XGB) regressor stands as a prominent algorithm in the realm of gradient boosting, and it is 
celebrated for its exceptional performance in regression tasks [40]. XGB operates by sequentially adding 
weak learners, usually decision trees, to form a robust ensemble model. It achieves this by minimizing the 
gradient of the loss function at each iteration, thus correcting the errors made by the preceding trees. 
Additionally, XGB employs a weighted sum aggregation method during the ensemble construction, 
effectively balancing the contribution of each tree while minimizing the overall model error. This 
meticulous approach allows XGB to capture intricate relationships within the data and produce highly 
accurate predictions even in the presence of noise or outliers. 

2.5 K-Nearest Neighbors Regressor 

K-Nearest Neighbors (KNN) regressor stands as a fundamental and intuitive algorithm in the domain of 
machine learning, particularly in regression tasks [41]. Unlike parametric models, the KNN regressor makes 
predictions by computing the distance between the query instance and each data point in the feature space. 
Typically, the Euclidean or Manhattan distance metrics are utilized for this purpose. Subsequently, KNN 
identifies the k nearest neighbors to the query instance based on these distances. The prediction for the 
query instance is then calculated as the average (or weighted average) of the target values of these k 
neighbors. Notably, KNN does not assume any underlying functional form of data, making it particularly 
useful when the relationship between features and target variables is complex or nonlinear. However, it is 
essential to choose an appropriate value for the hyper parameter k, as selecting a too small or too large 
value may lead to suboptimal predictions. Despite its simplicity and interpretability, KNN may suffer from 
computational inefficiency when dealing with large datasets. Overall, KNN serves as a versatile tool in 
regression tasks, offering a balance between simplicity and performance. 
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2.6 Light Gradient Boosting Machine Regressor 

Light Gradient Boosting Machine (LGBM or LightGBM) is an algorithm that has gathered significant 
attention in the machine learning community in recent years. As one of the gradient boosting methods, 
LGBM stands out for its ability to provide fast training and high performance, especially on large datasets. 
LGBM is based on the Gradient Boosting Framework, which is a tree-based ensemble method [42]. 
However, the one of standout features of LGBM is its ability to work faster and more efficiently compared 
to other GBM implementations. This capability significantly reduces training times for large datasets, 
making it an ideal choice for large-scale machine learning projects. Another key feature that enhances the 
performance of LGBM is its ability to automatically capture interactions between features. This allows the 
model to learn more complex relationships and improve prediction accuracy. Additionally, LGBM offers 
better memory usage and scalability, enabling it to effectively handle large datasets. Therefore, LGBM is 
considered a powerful tool for solving regression problems in large datasets. 

2.7 Artificial Neural Network Regressor 

Artificial Neural Network (ANN) regressor is a powerful algorithm widely used in the field of ML. ANN 
are designed based on biological neural networks and form the foundation of deep learning techniques used 
to learn complex relationships [43]. The model is trained on an ANN which consisting of multiple layers, 
with each layer forming a network of interconnected nodes. Each node produces an output by weighted 
combinations of input features and then transforms this output using a function called an activation function. 
The training process is carried out to minimize the error between the actual output and the predicted output 
of the model. This is typically done using a loss function, and optimization techniques such as 
backpropagation algorithm are used to update the weights of the network. The ability of ANN to adapt to 
various data types and problem domains makes it a versatile tool in regression tasks. With its capacity to 
learn intricate functions and relationships, the ANN excels in capturing nonlinear patterns within datasets, 
offering valuable insights for predictive modeling. 

2.8 Linear Regressor 

Linear Regressor (LR) is a regression method that primarily predicts the output variable by utilizing a linear 
combination of input features. This model typically employs the least squares method to calculate 
regression coefficients. Regression coefficients represent the weighted sum of variables for each feature, 
indicating their contributions to changes in the output variable. Despite being a simple model, LR is robust 
in explaining and interpreting relationships among variables in the dataset, making it particularly preferred 
for data analysis and exploratory studies. However, this model requires the assumption of linearity in 
relationships within the dataset and has limitations in modeling complex, nonlinear relationships. In such 
cases, more complex models or feature engineering techniques may be employed. Nonetheless, LRs 
advantages, including high interpretability, fast training, and low computational cost, make it a preferred 
choice in many problem scenarios. 

2.9 Fuzzy Logic Model 

FL enables the examination of a complex phenomenon by using IF and THEN logical rule base (Fig. 2) 
[44]. Also, verbal interpretations in FL are used to separate fuzzy sets into subsets such as “Low”, 
“Medium”, and “High”, thus make easier to explain a nonlinear complex phenomenon. Spillways discharge 
floodwater from rivers downstream through very steep chute channels. This means that very large potential 
energy is converted into kinetic energy, resulting in complex air-water mixed flows with very high 
velocities in nappe, transition, and skimming flow conditions. In FL models, the complex flow is examined 
by input and output variables. Discharges, step heights, widths, lengths, numbers, and approach channel 
and spillway lengths are the main factors that form the flow in stepped spillways. According to dimension 
analysis, dimensionless variables (ratios) can be obtained to examine this complex flow situation and 
generalize solutions. The parameters are investigated to calculate the energy dissipation ratios(EL/E0) in 
stepped spillways include the approach channel ratio (La/L; approach channel length to spillway length), 
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step-top geometric ratio (LS/WS; step length to step width), spillway angle (H/n·LS; spillway height to 
cumulative step length) and step height ratio (Dc/Hs; critical depth to step height). 

 
Figure 2. A schematic representation of Fuzzy Inference System [45]. 

 
Figure 3. Membership functions of the parameters for design of stepped spillways. 
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The most important parameter frequently used in the literature to calculate energy dissipation is the step 
height ratio (Dc/Hs). The step height ratio to critical depth (step height ratio), step length to step width (step 
top geometric ratio), and energy dissipation values are categorized into five subsets: very low, low, medium, 
high, and very high (Figure 3). Additionally, the ratio of the spillway height to cumulative step length 
(spillway angle) is classified into four subsets: very low, low, medium, and high. Lastly, the ratio of the 
approach channel to spillway length (approach channel ratio) is divided into only two subsets: low and 
high.  
 
Spyder, a scientific Python development environment, is used with the "skfuzzy" FL toolbox to model 
energy dissipation on stepped spillways in fuzzy inference system (Appendix). Membership functions for 
related parameters are given in Figure 3. Trapezoidal and triangular membership functions are used to 
represent subsets and relations among them. Limit values and membership functions (triangular and 
trapeozidal) for these subsets are seen in Figure 3. 
 
A fuzzy rule base determines the relationship between 4 input parameters and 1 output parameter. The rule 
base has 17 rules, of which 7 trigger the very low energy dissipation subset, 6 the medium energy dissipation 
subset, 2 the low energy dissipation subset, and 2 the very low energy dissipation subset. 

3. RESULTS and DISCUSSIONS 

In this study, energy dissipation ratios have been predicted with the ratios of the approach channel to 
spillway length (La/L), step length to step width (LS/WS), spillway height to cumulative step length 
(H/n·LS), and critical depth to step height (Dc/Hs). Different datasets areas obtained from empirical studies 
conducted by different researchers in literature. 
 
RF, XGB, KNN, LGBM, ANN, and LR machine learning methods are used to search optimum parameters 
which can represent best models. The splitting rates between the training and test datasets significantly 
change the model performances (Figure 4). MAE, MPE, and R2 values are obtained to test the models’ 
accuracies using 20% testing and 80% training datasets (Figures 5 and 6).  

 

 
Figure 4. Model performances for different test data rates. 

For the decision tree LGBM model, optimum parameters have been calculated as n_estimators = 55, 
boosting_type = gbdt, learning_rate = 0.35, num_leaves = 23, feature_fraction = 0.8, bagging_fraction = 
0.85, max_depth = 2, and min_data_in_leaf = 1. The training and testing dataset give determination 
coefficients 0.978, and 0.897 respectively. Also, the method has a MAE of 0.87 in the training and 2.91 in 
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the testing dataset. MPE are -0.039% for the training dataset and -2.562% for the testing dataset. The 
training dataset has higher error rates than the testing dataset, but the error rates remain below 5%. Although 
the determination coefficient (𝑹𝑹𝟐𝟐 of testing data (0.897) is good it is significantly lower than that of training 
dataset This indicates that the method has a low degree  of overfitting. The models with high learning 
capacity and low complexity represent more successful results. 

 
Figure 5. The training data MAE, MPE, and R2 values obtained from the regression models. 

 

 
Figure 6. The testing data MAE, MPE, and R2 values obtained from the regression models. 

 
For the KNN model, the lowest neighbors number gives the best results in searching parameters. For 
example, n_neighbors=1, 2, and 3 provide 0.999, 0.98, and 0.92 determination coefficients in the training 
dataset. Similarly, the determination coefficients in the testing dataset are 0.895, 0.78, and 0.65 for the 
n_neighbors=1, 2, and 3 respectively. The MAE and MPE values in the training dataset are 0.024 and 
0.029%, whereas in the testing dataset, these values are 3.164 and -0.943% respectively.  As seen in the 
LGBM, the KNN model has a good R2 value of 0.895 in the testing dataset, but it (0.999) is very high in 
the training dataset. 
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For the RF model, the maximum depth parameter (max_depth) has been obtained as 7 in optimum 
parameter searching. The training and testing dataset have 0.987 and 0.864 determination coefficients for 
this value. The MAE values are 0.933 and 3.500 for the training and testing datasets, respectively. As for 
the MPE, it is -0.182% for the training dataset and 3.048% for the testing dataset. As seen in LGBM and 
KNN, the error of the method increases significantly in the testing dataset, however these errors remain 
below 5%. The R2 values of the testing dataset (0.999) is lower significantly than that of the training dataset 
(0.895).  
 
For the ANN model, the optimum parameters are detected as hidden_layer_sizes = 75, activation = 'logistic', 
solver= 'adam',  max_iter= 19000, and n_iter_no_change = 500.  As the hidden layer sizes increase, the 
performance of the model also increases (Figure 7).  The model’s performance increases with its complexity 
as different from the LGBM model. The training and testing R2 values are 0.99 and 0.98, respectively. The 
method has 0.646 MAE, -0.015% MPE in the training dataset and 1.398 MAE,  -0.117% MPE in the testing 
dataset. The errors of the method do not show a significant difference compared to the used ML models. 
The model is robust, considering that the training and testing performances are similar. 

 
Figure 7. Variations of the performance of the ANN model with hidden layer sizes. 

 
The XGB model gives the best results in low depths as the LGBM model. Optimum parameters for this 
model have been estimated as max_depth = 2 and n_estimators = 315. The XGB model has high 
performance with 0.999 and 0.953 R2 for the training and testing dataset performances. The model is robust 
for high estimator numbers in the aspect of R2 (Figure 8). The MAE and MPE is calculated as 0.094 and -
0.001% in the training dataset and 1.903 and -1.41% for the testing dataset. The errors in the testing dataset 
are significantly higher than those of the training dataset, however, it remains below 5%. The R2 value of 
the testing dataset is importantly lower than that of the training dataset; however, they are at good levels 
(0.999 and 0.953). 
 
For the LR model, the training and testing performances are similar. The R2 of the training and testing 
datasets are 0.89 and 0.86. Although the model’s accuracy is lower than the other models, similar results 
for the training and testing performances show that the model is robust. The training dataset has a 2.797 
MAE and -0.190% MPE, while the testing dataset has values of 3.315 MAE -2.65% MPE. The method 
shows a significant difference only in the MPE values, while the MPE and R2 values are approaching each 
other in the training and testing datasets.  
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Figure 8. Variations of the number of estimators and model performance for XGB model. 

Additionally, the XGB model has been executed to identify important levels in the input parameters. The 
step height ratio parameter, defined as the critical depth to step height, (Dc/Hs) is identified as the most 
effective parameter with importance percentage of 60.962% (Figure 9). The next most important parameter, 
step-top geometric ratio (Ls/Ws), defined as the step length to step width, has an importance percentage of 
26.062%. Additionally, the approach channel ratio parameter (La/L), defined as the approach channel length 
to spillway length, and spillway angle parameter (H/n·LS), defined as the spillway height to cumulative step 
length, have importance percentages of 8.389% and 4.586%, respectively.   

 
Figure 9. The percentage of the input parameters obtained from the XGB model. 

 
Moreover, an FL model was formed without using the training dataset. FL is not a black box, so the dataset 
enters fuzzy logic after the programming is finished and is free from training and testing series. Mamdani 
Inference System [46] provides a relationship between inputs and output parameters. FL yields fuzzy output 
sets and defuzzification provides crisp values, and the centroid method is used, which considers the center 
of the output set [47]. MAE and MPE are used to determine FLs efficiency on energy dissipation of stepped 
spillways. MAE and MPE values are calculated as 2.000 and -1.688%. The results can be accepted as a 
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good aspect of statistics. Also, observed and calculated energy dissipation values are plotted on graphs to 
visualize results (Fig. 10).  

  
Figure 10. Membership functions of the parameters for design of stepped spillways. 

 
In Fig. 10a, most of the scatter points, which give observed (calculated) energy values on the horizontal 
(vertical) axis, are in 5% error levels (red lines). This result shows that the error rate is less than some CFD 
results in the literature [8, 25, 48]. The determination coefficient between observed and calculated energy 
dissipation values is approximately 0.951 in Fig. 10b. 
 
4. CONCLUSION 

Machine Learning methods, including RF, XGB, KNN, LGBM, ANN, and LR regression models yield R2 

ranging from 0.976 (ANN) and 0.864 (LR) for the testing datasets. The FL model only uses testing datasets 
and has a higher R2 than the LGBM (0.897), KNN (0.896), RF (0.864), and LR (0.864) models in the testing 
dataset. As for the XGB model, it has similar MAE (1.903), MPE (-1.41%) and 𝑹𝑹𝟐𝟐 (0.954) values to the 
FL model, which has MAE, MPE and 𝑹𝑹𝟐𝟐 values of 2.000, -1.688%, and 0.951, respectively.  The ANN 
produces the best results with 𝑹𝑹𝟐𝟐=0.976, MAE=1.398, and MPE=-0.117. However, the errors vary 
significantly depending on hidden layers, and the ratio of training to testing datasets. Moreover, like other 
ML models, it is a black-box model and is not based on physical rules. Furthermore, the two new parameters 
introduced in this study, defined as the approach channel and step-top geometric ratios have importance 
percentages of 26.062% and 8.389%, respectively. 
 
Unlike ML models that rely on training and testing processes to evaluate complex flow events in stepped 
spillways, the fuzzy inference system may gain a physical basis using rule bases associated with examined 
problems. The accuracy of ML methods varies depending on the ratio of data sets divided into training and 
test data sets. The Fuzzy Inference System (FIS) is independent from the dataset and constructed with fuzzy 
rules. This represents its effectiveness and priority. The FIS model can be used safely and allows us to 
calculate the energy dissipation on stepped spillways quickly. The function (endistepway) produced in this 
study can calculate energy dissipation ratios with low MPE (-1.69) and MAE (2.00) ratios. It does not need 
advanced computers like computational fluid dynamics programs and has short processing times. It also 
has open-source codes and can be easily accessed and safely used to calculate the energy dissipation on 
stepped spillways. This situation enables engineers to model stepped spillways efficiently from economic 
and technical aspects. Unfortunately, floods continue to increase significantly with the negative effects of 
climate change [49]. Efficiently designed spillways play an important role in discharging floods from dam 
reservoirs, which cause great economic and loss of life. 
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