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ABSTRACT. This paper is about the identification of time dependent unknown function in a time frac-
tional diffusion problem with periodic boundary conditions. Nonlocal over-determined condition in
integral form is taken into account in the determination of unknown function as well as the solution
of the problem. The existence, uniqueness as well as continuous dependence on data for the inverse
problem is presented with certain regularity and consistency conditions. Generalized Fourier method
is utilized in this study. The algorithm of the method and an example are also presented to show the
effectiveness and accuracy of the proposed method.
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1. INTRODUCTION

Mathematical models play a substantial role in various fields of science such as thermoelasticity, en-
gineering, medical science, control theory, chemical diffusion, etc., |2H4L|15[18/20]. Therefore, numerous
researchers study on the construction of mathematical models which requires determination of unknown
functions. At this stage, the inverse problems are taken into account for their determination. Generally,
overdetermined conditions are utilized in the identification of unknown functions. The definition of in-
verse problem can be articulated as determination of unknown feature of an object under consideration
by employing overdetermined data obtained by using probing signals. Hence, the shape and features of
the unknown object is determined by means of remote sensing and nondestructive testing which form a
fundamental basis of the inverse problem. In real life, inverse problems have a great many of applications
such as the identification of submarines, shoals of fish immersed in water. Moreover, in the identifica-
tion of flying objects like airplanes and missiles, etc., inverse problems are used. Briefly, it is concluded
that remote sensing provide a great advantage to form the overdetermined data and inverse problem
as well [17]. Since analytical identification in inverse problems is a big challenge, various numerical
methods such as implicit finite-difference schemes, Crank—Nicolson implicit finite-difference formula, the
fourth-order implicit scheme have been developed for the approximate identification |4]. Moreover, the
stability of these finite different schemes is provided. Furthermore, compare to explicit finite-difference
schemes, the implicit difference schemes spend most of the CPU time. In recent years, time fractional
differential problems including nonlocal boundary conditions have been under consideration to establish
approximate or analytical solutions by utilizing various developed methods such as implicit finite differ-
ence schemes, semigroup method [5H8}/14,/19,21,[22]. In real life, periodic boundary conditions have been
encountered in numerous processes such as diffusion problem and heat transfer, etc., [1,9L{11L[12]. In this
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research, Fourier method is employed for the identification of time dependent unknown function in one-
dimensional fractional diffusion problem involving periodic boundary conditions, by means of nonlocal
overdetermined condition. The existence, uniqueness, and continuous dependence of the solution on the
data for the inverse problem is provided by imposing regularity and consistency conditions. The follow-
ing time fractional diffusion problem is taken into consideration to identify the unknown time dependent
function r(¢) and establish the solution u(x, 1) of the problem on Q := {(x,¢): 0 < x <7, 0< ¢ < T}
for a fixed number T > 0.

6 DG (u(x: 1) = uxy 068) +7 (W) F(¥), x>0, 0<a<1, ¢>0
w(0,v) = u(m ),

Uy (0,9) = uy (),

u(x,0) = ¢(x),

E<w>=/0”xu<x,w>dx.
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where the functions ¢ (x) on [0, 7] and f (x,v) on Q are fixed.

In the process of diffusion of material, the nonlocal condition Eq. represents the law of variation E (i)
of the total amount of diffusion in [10]. It is given in integral form. We focus on the inverse problem
- of the determining the pair of functions {r (¢) ,u (x, %)} on the class C [0, T] x C*! (Q)NC10 (Q2).

Notation:

© (x) is the initial temperature,

g (V) Uem (V) , Usm (V) are the Fourier coefficients,

M is an arbitrary constant,

My, My, M3, My, My, Mg are dimensionless constants,

F () is a continuous function,

K (x,7) is a kernel function,

Q:={(x,v):0< x <m,0<v <T} is the domain of x, 1.

The rest of the paper is designed as follows: fundamental definitions and conceptions are provided in
section [2| The existence and uniqueness of the solution for the inverse problem are given in section 3} In
section [4] the stability of the solution is presented. Finally, an example is demonstrated to exhibit the
effectiveness and accuracy of the method.

2. PRELIMINARY RESULTS

This section is devoted to basic definitions and concepts utilized in this study [13}16].

Definition 1. Let v ((,0) be a real valued function. Its Riemann-Liouville time fractional integral of
order a > 0 is denoted by Ijv (C,0) and is defined as:

N I S A (ST
I@”(Caa)_ F(Q)A (g_s)lfads‘

Definition 2. The Caputo time fractional derivative of v ((,0) is defined as:

6 o™
1 / 5 ? (€ 9) ds,n—1<a<n,
) Jo (

_ 1+a—m
Dy (¢, =4 L= Jo (6-5)
%v((,@),a:n.
Definition 3. The Mittag-Leffler function of two parameters Eq g (C) is defined as
Eop(Q)=) ————%
1= 2 T+ 9)

where Re () > 0,(, 0 € C.
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3. EXISTENCE AND UNIQUENESS FOR THE SOLUTION OF INVERSE PROBLEM

The solution of the problem f will be constructed in the following form:

() = 2o £ ST e (1) €08 (2mx) + ey tham (1) sin (2m).
Utilization of the Fourier method leads us to determine the Fourier coefficients as follows:

up ( / / 7) dédr,

e () = @ () B (— )+ 2 [ [ ) B (- @m? - 1) 1 6 cos
o ) = e ) B (= @m0) + 2 [ [0 B (@m0 70%) 1 6.7 sn omacr,
where

Po = i/oﬂsa(x)dx,

Pem = % /O ' ¢ (x) cos (2mx)dx,

Pam = % /O W @ (x) sin (2mx)dx,

Under the assumption of fixed r (¢) € C'[0,T], the solution of the problem (I))—(4) is established in
the following form:

u(xv) = ( e dfd7> + 3 (oo (= 20

m=1

+% /Ow AW 7 (7) Ea 1 (- (2m)? (v — T)a> fem (T) dfdr) cos (2myx) + i (%mEa’I (_ (2m)? 1/)a) n

m=1

% /Ow /OTr r(7) Ea (* (2m)? (¢ — T)a) fsm (T) dédT) sin (2my) (©)

where

2 ™

fom () = 2 [ 1 () cos (2m)a

o0 =2 [ 1 () s )

Theorem 1. The problem 7(@ has a unique solution under the following conditions:
(SVE (¥) € CH [0, 17,

(52)¢ (x) € C*([0,7]), ©(0) =@ (m), @ (0) =l (m) ,and/oﬂ x¢ (x)dx = E(0),
(S3)f (x,¥) € C*°(Q), £ (0,¢) = f (m, %), (0,4) = f' (m,¢) ,and /Oﬁ xf (x, %) dx # 0.

Proof. The consistency conditions are obtained as

e (0) =@ (m),f(0,¢) = f(m 1) _

which are necessary for the solution u (y, ) to be in C*! (Q) N C1° ( ) Moreover, series @ and its
partial derivative with respect to x are uniformly convergent in Q under the smoothness conditions:

¢ (x) € C2([0,]) and f (x,9) € C*°(Q)

which is the implication of absolute convergence of 1- partial derivative series with the conditions ¢’ (0) =
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¢ (7)), f(0,9) = f'(m,¢) in Q.
We differentiate equation under the condition (S1) to obtain

S DY (B (b)) = / " 28 D3 (u (x, ¥)) d. (7)

The following Volterra integral equation of the second kind
) =F @)+ [ K@) 0.1
0

is obtained from the Egs. @— under the consistency condition

/OWX@(X)dX—E(O)-

Moreover, the assumption (S1)—(S3) imply the continuity of functions F (¢) on [0,7] and K (¢, 7) on
[0,T] x [0,T] which are determined as
oo 2 (03
D3 (B ) + 3 Cey Z2 0 Fan (- 2m) o)
F (/IZ)) = - Jo%) (2m)2 ? (8)
fO (w) + 2 Zmzl Tfsm (1/’)

5 Yoo B fon (¥) B (= (2m)* (6 —1)°)
fo @) + 5 Sy G fam () |

As a result, the unknown function 7 (¢) on [0, T] is uniquely determined and continuous. r () together

with the solution w (x, ) establish by Fourier series form the unique solution of the inverse problem
(1)-(5) which proves the desired result. O

K¢, 7)= 9)

4. STABILITY OF THE SOLUTION {r (¢),u (x,%)}

The continuous dependence of solution {r (1) ,u (x, %)} of the inverse problem f on the data is
provided by the following theorem:

Theorem 2. The solution of the problem - constantly depend on the functions f,p and E under
the assumptions (S1)-(53)

Proof. Let

F={(g,E,f):peC?([0,7]),E(¢) € C*[0,T] and absolutely continuous, f (x,v) € C*° ()}
and its closure

F={(®E.f) :peC?(0,7]),E (¥) € C'[0,T] and absolutely continuous, f (x,¥) € C*°(Q)}
be two sets of the data such that

1fller ) < M, [[Fllr oy < M
lelloziox < M2, @l c2p0,0 < M2

1Bl crpo,m) < Ms, EHCl{o,T} < Ms
0<M;< min_|f(x,¥)],0 <My < min_|f(x,v)]
(X, ) e (x,)eQ

where M; > 0,7 =1,2,3,4 are constants.
|| = (||90||C2[0,7r} + 1Bl g0y + ||f\|cz,0(§) . Let (u,r)and (u,T) be solutions of the problems —
corresponding to the data (¢, E, f) and (3, E, f).

1

u( %) = T %) = 5 (¢ — Go) + S cos (2hx) [ (Dt — T2) B (- 20070

+ i sin (2kx) [(’98’“ ~Vsk) Ba (_ (2)° Wéﬂ

k=1

+ i cos (2kx) /w (T(T) — W) fer(T)Ea 1 (_ (2k)2 (¢ — T)a) dr
k=1 0
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+ i cos (2kx) / ' (fer(7) = Tet(7)) 1P B (= @R)? (0 = 7)) ir
k=1 0

3 sin k) [ (r7) =) k() B (2R (7))
k=1 0

+ i sin (2kx) /w (fsk(T) - fST(T)) TT)EQJ (— (2k)2 (v — T)O‘) dr.
k=1 0

Applying Cauchy, Bessel inequality and taking maksimum of u — @ lead to the following inequality for
all « € (0,1]

407

1 T — T% 1
—al < = 10— Toll + S |0k — Torl| + 195 — Ton]| + M |r — 7|+
b1 90~ T+ 3 T o~ Tl + 3 + g ) =1
T2 1
Ty MIf—f
( r($) 4f> 7=l
Similarly, for all a € (0, 1], the following inequalities for ® — &, K — K,
follows:

and r — 7 are established as

ZHM -

T
& - < 12

lr =7 < |F = F| +[|K = K||IIF]| + Ir = 7| | K-
Finally, we have the following

— 1 [ Tz 1
—al| < ||[v -9 — —
w7l < | ||+M<F(g)+m>
N
%

which implies that v — @ as ¥ —

503 (B(v) ﬁm,f — 7.

(]
5. DEMONSTRATIVE EXAMPLE
Example 1.
(?Dz (u(Xaw)) :uXX (Xﬂﬁ) +T(¢)f(x:¢)7x > OaO <« S 17¢ > 07
u(0,9) = u(m ),
Ux (07 "/}) = Uy (777 ¢) »
u (X’ 0) =¥ (X) =1+ cos (QX)’
T ’/T2 2
E () / xu(x ) dx = e
0
where f(x,¥) = 2 (1+4cos(2x)) + 4cos(2x). The pair of functions for o = 1 is determined as
u(x, 1) = (14 cos (2x)) e, r (1) = ew Based on the proposed method, the approzimation of unknown
function r (1) computed as r; () = )+ Jo K (,7)r (1) dr,¢ € [0,T] where
§D3 (B () + 5 Xy Z2 0, Ban (- 2m)*4°)
F; (v) =

fo()+ % zm:1 @m? g (1) ’
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5 et B fan () al( <2m>2<w—f>“)

Kj ('(/)7 T)
( ) + an 1 m (,l/})

which leads to r (¢) as j — oo:
r () = Eqn (1/)2) Moreover, the solution u (x, ) is approximately computed as

¢ (x) =1+ cos (2x),

o — (i) /Oﬂ (1+cos (2x)) dx = 2,
o= (2) [ v eos@oreosmon={ ) |

()

FO6) =2 (14 cos(2x)) +4cos (2x),

s

(14 cos (2x)) sin (2kx)dx = 0,

S~

o) = (2) [ 20 (14 cos 20) + 4eos (20) dx =
Fe0) = (2) [ 20 (14 cos(20) + 4cos (20)) cos 2hn)ax =22+ 0),
£o) = (2) [ @0 (14 cos(20) + dcos (210)sn (k) =
o

wiw) =e+ (2) | /o%’" (7) fo (€. 7) dear )
=2+2¢° Z +2]c()1/}221—|—2ka)+1/} Z FETS E 2+)(1+2k)a)’
e, () = p, (k) e~ ( ) / / ) cos (2Kk€)e™ P47 dedr ~ cos (2) (1%
T T o mﬁﬁlﬁw g
144)% (320 + 409 + 12¢% + 5¢°) 8y (56 — 5¢°) 169>

T(1+ 2a) +r(1+a)r(1+2a))+r(1+2a)>+“"
ug () = @, (k) "0 ( ) / ' / ) sin (2k€)e™ @ (U= dgdr = sin (2x) B, (—49).

Finally, the solution u (x,1) can be established in Fourier series form as follows:

_ 2 49 1 28¢)3 (10 + 3¢)  105¢ (=16 + ¥°)
U (Xa U/) - (COS(2X)) (1 - m + 21071[} (210 (4 + 11[}) (F (1 + a))Q T (1 + a)
+8¢6 (16 +50) , 144)% (320 + 40¢) + 12¢° + 5¢°) 8y (56 — 5%) N 169>
(T (1 + 20))? I'(1+2q) Fl+ao)I'(1+2«a) I'(1+2q)
o 28¢° (10+3¢) | 105¢ (=16 + %)
+ cos(2x)cos(4x) (1 Ti+a) + mw <210 (4+7v)— T+ e T(1+a)
+81/)6 (16 + 51) N 149% (320 + 409 + 124* + 5¢°) 8y (56 — 5%) N 161)°
(T (1 +2a))? F(1+2a) Fl+a)l'(1+2«) I'(1+2q)
+ cos(2x)sin(2x) go T + i) —|— cos(4x)sin(2x) ZO F421(_+1/;)a)
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L S )™
+§ <2+2¢ kZ:0(1+2k)F(1+2ka) +v ;(1+k)r(1+(1+2k)0¢) e

u[0.y]

— a=0.5
—— a=0.65
— a=0.75
— a=0.90

FIGURE 1. The graphs of the solution u (y, ) for various values of a.

()

— a=0.5
—— a=0.65
—— a=0.75
— a=0.90

FIGURE 2. The graphs of the unknown function r (¢)) for various values of a.

In Figure the graphs of the truncated solution u (x,v) are presented for different values of . More-
over, the graphs of the unknown function r (¢) are illustrated for distinct values of « in Figure @
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6. CONCLUSION AND FUTURE WORKS

The primary objective of this research is to determine the time dependent unknown function in a
time fractional diffusion problem with periodic boundary conditions through generalized Fourier method.
Overdetermined condition is utilized in the identification of time dependent function. Moreover, the solu-
tion of the time fractional diffusion problem is established in the series form. Furthermore, the existence,
uniqueness and continuous dependence of data are achieved under certain regularity and consistency
conditions. The obtained results are confirmed by an illustrative example.

In future studies, the suggested method will be utilized to construct the unknown function and solution
for various fractional problems.
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