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Abstract 

Recent advancements in digitalization have transformed the logistics sector by introducing innovative 

solutions that enhance efficiency, sustainability, and decision-making. In intermodal freight transport, 

the adoption of digital technologies offers significant potential to optimize operations, reduce costs, and 

improve environmental performance. However, prioritizing these technologies is crucial for ensuring 

strategic investments and maximizing their impact. This study proposes a hybrid multi-criteria decision-

making (MCDM) framework that integrates Criteria Importance Through Intercriteria Correlation 

(CRITIC) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) within a 

Picture Fuzzy environment to evaluate and rank digital technology applications in intermodal freight 

transport. The findings indicate that “Artificial Intelligence (AI) for Optimization” is the most critical 

digital technology, followed by “Cloud Computing and Big Data Analytics” and “Internet of Things 

(IoT) for Asset Tracking”. Additionally, Operational Efficiency and Economic Efficiency emerged as 

the most influential evaluation criteria for digital adoption. To validate the reliability and consistency of 

the proposed methodology, a sensitivity analysis was conducted by modifying the weight values of the 

criteria, with robustness tested across 15 different scenarios. The results provide logistics managers with 

a structured approach for selecting and implementing the most impactful digital technologies to improve 

efficiency, cost-effectiveness, and supply chain resilience. Furthermore, the study offers insights for the 

automotive industry to integrate smart vehicle technologies and AI-driven solutions, increasing connec-

tivity, automation, and sustainability in intermodal logistics. Future research can extend this framework 

by incorporating additional MCDM methods and real-world case studies to further refine digital trans-

formation strategies in freight transport.
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1. Introduction 

Intermodal freight transport refers to the movement of goods 

using multiple modes of transportation—such as railroad, road, 

sea, and air- without the need to handle the cargo itself when the 

modes change [1]. By shifting long-haul freight from road to rail, 

this approach significantly lowers carbon emissions and allevi-

ates congestion, contributing to improved environmental sus-

tainability [2]. Additionally, intermodal transport is prioritized 

in national and international policies as a means to mitigate neg-

ative externalities such as traffic accidents and infrastructure 

strain, reinforcing its role in the transition towards more sustain-

able freight systems [3]. 

Intermodal freight transport enhances efficiency by combin-

ing the flexibility of road transport with the cost-effectiveness 

of rail and maritime transport, allowing for optimized logistics 

operations and reduced overall costs [4]. According to Cryns et 

al. [5], maritime transport accounted for 67.8% of freight 

transport in the EU in 2022, followed by road transport at 24.9%, 

collectively representing 92.7% of total freight movement. Rail 

transport comprised 5.5%, inland waterways 1.6%, and air 

freight 0.2%. Figure 1 shows the Modal distribution of EU 

freight transportation between 2018 and 2022. Maritime 

transport remained the dominant mode, though its share gradu-

ally declined from 69.6% in 2018 to 67.8% in 2022, while road 

transport increased steadily from 22.8% to 24.9%, highlighting 

its growing role in freight movement. Rail transport fluctuated 

slightly but remained relatively stable at around 5.5%, whereas 

inland waterways slightly declined from 1.7% to 1.6%. Air 

transport consistently accounted for only 0.2%, reflecting its 

minimal contribution to overall freight transport. 

http://www.ijastech.org/
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Figure 1. Modal distribution of EU freight transportation between 
2018 and 2022. 

Despite its advantages, intermodal freight transport faces sev-

eral challenges that hinder its full adoption. These include high 

transshipment costs, complex coordination among multiple 

stakeholders, inefficiencies in terminal operations, and the lack 

of real-time visibility across transport networks [4]. Addition-

ally, the reliance on different transport infrastructures, each gov-

erned by its own set of regulations and operational standards, 

can lead to bottlenecks and delay. To overcome these challenges, 

digitalization has emerged as a key enabler in transforming in-

termodal freight transport by improving connectivity, automa-

tion, and data-driven decision-making. The integration of ad-

vanced digital technologies—such as the blockchain, artificial 

intelligence (AI), Internet of Things (IoT), and cloud compu-

ting—has revolutionized intermodal logistics by enabling real-

time cargo tracking, dynamic route optimization, and enhanced 

coordination among supply chain actors [6]. For instance, IoT-

based sensors, GPS tracking, and blockchain technology en-

hance real-time cargo visibility, security, and transparency, re-

ducing uncertainties, paperwork, and delays while improving 

trust in logistics. 

Prioritizing digital technology applications in intermodal 

freight transport is essential for enhancing efficiency, sustaina-

bility, and competitiveness, as different solutions offer distinct 

benefits. Given their interdependencies and varying impacts on 

cost, operations, and the environment, a structured decision-

making approach is crucial for effective implementation. Vari-

ous studies have demonstrated the effectiveness of multi-criteria 

decision-making (MCDM) methods in optimizing intermodal 

transport systems. Zecevic et al. [7] applied a fuzzy Delphi-

based Analytic Network Process (ANP) and fuzzy Delphi Vlse 

Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 

to select intermodal transport terminal locations. Uyanık et al. 

[8] integrated the Decision-Making Trial and Evaluation Labor-

atory (DEMATEL) with the Intuitionistic Fuzzy Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS) to 

determine logistics center locations in Istanbul. Gandhi et al. 

(2024) employed an integrated approach using spherical fuzzy 

sets to prioritize solutions for mitigating risks associated with 

intermodal railroad freight transportation in alignment with sus-

tainable development goals. Similarly, Krstic et al. [9] utilized 

combined fuzzy MCDM methods for selecting intermodal ter-

minal subsystem technologies.  

The comprehensive literature review identifies a critical gap 

in establishing a complete list of digital technology applications 

in intermodal freight transport and the evaluation criteria for as-

sessing alternatives. While existing research has primarily ap-

plied MCDM methods to transportation-related problems, such 

as intermodal terminal location and subsystem technology se-

lection, this study addresses a key gap by focusing on digitalized 

intermodal freight transport. Additionally, no prior studies have 

explored the integration of the CRITIC and TOPSIS methods 

within the transportation sector. The novelty of this research lies 

in the application of Picture Fuzzy Sets with these methods, 

providing a more effective approach to handling the ambiguity 

inherent in real-world decision-making.  

This study aims to address the identified knowledge gap by 

defining key evaluation criteria and providing a systematic de-

cision-making framework for intermodal freight transport. To 

achieve this, the research integrates the Criteria Importance 

Through Intercriteria Correlation (CRITIC) and Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) 

methods within a Picture Fuzzy environment to prioritize digital 

technology applications in intermodal freight transport. The key 

contributions of this study are as follows: 

• Identifying digital technology applications in intermodal 

freight transport through an extensive survey, incorporating in-

sights from a comprehensive literature review and expert con-

sultations. 

• Developing an integrated CRITIC-TOPSIS model under a 

Picture Fuzzy framework to evaluate and prioritize digital tools 

for intermodal freight transport. 

• Utilizing the CRITIC method to determine the relative im-

portance of evaluation criteria for assessing smart applications 

in intermodal freight logistics. 

• Applying the TOPSIS method to rank technological appli-

cations based on their suitability and effectiveness in intermodal 

freight transport. 

• Conducting a sensitivity analysis by varying the weight of 

each criterion to assess their influence on the final prioritization 

and validate the robustness of the proposed methodology. 

This research offers decision-makers a systematic framework 

to evaluate and prioritize digital technologies, enabling data-

driven choices that enhance efficiency and sustainability in in-

termodal freight transport. For policymakers, the findings pro-

vide valuable insights to support the development of regulations 
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and investment strategies that facilitate digital transformation in 

the sector.  

2. Methodology 

The evaluation and prioritization of digital technology appli-

cations in intermodal freight transport involve multiple, often 

conflicting criteria, requiring a systematic decision-making ap-

proach. Traditional assessment methods may struggle to handle 

the inherent uncertainty and subjectivity in expert opinions. 

Therefore, this study employs a multi-criteria decision-making 

(MCDM) framework, integrating CRITIC and TOPSIS methods 

within a Picture Fuzzy environment to ensure a more robust and 

reliable evaluation process. The CRITIC method is utilized to 

determine the objective weights of evaluation criteria by consid-

ering both the contrast intensity and correlation among them, 

eliminating potential bias in expert judgments. TOPSIS, on the 

other hand, ranks digital technology applications based on their 

closeness to the ideal solution, effectively distinguishing the 

most suitable alternatives. The integration of Picture Fuzzy Sets 

enhances this framework by incorporating positive, negative, 

neutral, and refusal degrees, allowing for a more comprehensive 

representation of expert uncertainty. This combined approach 

provides greater accuracy and consistency in prioritizing digital 

transformation strategies in intermodal freight transport, ensur-

ing informed decision-making for both industry stakeholders 

and policymakers. 

The methodology employed in this study consists of three 

stages. In the first stage, potential criteria and alternatives are 

identified, and a hierarchical structure is developed to systemat-

ically organize the decision framework. The second stage in-

volves the integration of two multi-criteria decision-making 

(MCDM) approaches. The CRITIC method is applied to deter-

mine the objective weights of the evaluation criteria, which are 

then used to assess the alternatives. Subsequently, single-valued 

Picture Fuzzy TOPSIS is implemented using the weights de-

rived from the CRITIC method, generating a ranking of digital 

technology applications for intermodal freight transport. In the 

third stage, validation tests are conducted to ensure the robust-

ness and reliability of the proposed model. A sensitivity analysis 

is performed by altering the weight values of criteria obtained 

from the CRITIC method and recalculating the revised closeness 

values using the Picture Fuzzy TOPSIS approach. The detailed 

integration and flow of the suggested methodology are depicted 

in the schematic design in Figure 2.  

2.1. Picture Fuzzy Sets 

In the evaluation of digital technologies in intermodal freight 

transport, decision-making often relies on the personal experi-

ences and intuition of experts. However, such subjective ap-

proaches may be limited due to uncertainties and incomplete in-

formation. This necessitates the use of fuzzy logic and its de-

rived methods to ensure a more consistent and reliable assess-

ment of digital technologies. 

 

Figure 2. Flowchart of methodology 

Zadeh [10] introduced the concept of fuzzy sets to handle un-

certainties in real-world applications, where each element is as-

signed a membership value between 0 and 1, representing its de-

gree of belonging to a set. Over time, various extensions of fuzzy 

sets have emerged to address different decision-making scenar-

ios. Atanassov [11] proposed intuitionistic fuzzy sets, which in-

corporate both membership and non-membership values, with 

the constraint that their sum must not exceed one. However, in-

tuitionistic fuzzy sets may be insufficient in situations requiring 

more nuanced assessments, such as cases involving acceptance, 

rejection, neutrality, and hesitation. 

To address these limitations, Cuong and Kreinovich [12] de-

veloped the Picture Fuzzy Set (PFS) theory, which defines each 

element with four parameters: positive membership, negative 

membership, neutrality, and rejection. The sum of these four 

values must not exceed one. Picture fuzzy sets provide a more 

comprehensive modeling framework for decision-makers by 

capturing uncertainty and reflecting human reasoning more ef-

fectively. This extension is particularly useful in preventing in-

formation loss and analyzing complex decision-making envi-

ronments. 

Given the inherent uncertainties in evaluating digital technol-

ogies for intermodal freight transport, this study employs Picture 

Fuzzy Sets to model expert preferences more effectively. The 

fundamental definitions of Picture Fuzzy Sets are presented in 

the following section: 

Definition 1: Let x be an element of the universal set X and 

belong to a Picture Fuzzy Set denoted by �̃�. The Picture Fuzzy 

Set �̃� within the set X is defined as given in Equation 1 [12]: 

�̃� = {〈𝑥,𝜇𝑃(𝑥), 𝜂𝑃(𝑥), 𝑣𝑃(𝑥)〉|𝑥 ∈ 𝑋} (1) 

Here, 𝜇𝑃(𝑥) ϵ [0,1] represents the positive membership de-

gree, 𝑣𝑃(𝑥) ϵ [0,1] denotes the negative membership degree, 

and 𝜂𝑃(𝑥) ϵ [0,1] corresponds to the neutral membership de-

gree. These membership degrees satisfy the condition specified 

in Equation 2.  
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0 ≤ 𝜇𝑃(𝑥) + 𝜂𝑃(𝑥) + 𝑣𝑃(𝑥) ≤ 1    ∀ 𝑥 ∈ 𝑋      (2)                                      

In picture fuzzy sets, the decision-makers whose opinions are 

consulted are classified into four groups: those who vote "yes" 

𝜇𝑃, those who vote "no" 𝑣𝑃, those who abstain 𝜂𝑃, and those 

who vote "reject" 𝜋𝑃. Here, 𝜋𝑃 represents the membership de-

gree of rejection, which is calculated using Equation 3: 

𝜋𝑃(𝑥) = 1 − (𝜇𝑃(𝑥) + 𝜂𝑃(𝑥) + 𝑣𝑃(𝑥)  ∀ 𝑥 ∈ 𝑋     (3)                                                                     

Definition 2: Let �̃�1  =  (𝜇𝑃1
, 𝜂𝑃1

 𝑣𝑃1
)  and �̃�2  =  

(𝜇𝑃2
, 𝜂𝑃2

 𝑣𝑃2
) be two picture fuzzy numbers, and λ be a posi-

tive number. The fundamental mathematical operations on pic-

ture fuzzy sets are expressed as follows [12]:   

�̃�1 ⊕ �̃�2 ={𝜇𝑃1
+ 𝜇𝑃2

− 𝜇𝑃1
𝜇𝑃2

, 𝜂𝑃1
𝜂𝑃2

, 𝑣𝑃1
𝑣𝑃2

} (4)                                                                     

�̃�1 ⊗ �̃�2 = {𝜇𝑃1
𝜇𝑃2

, 𝜂𝑃1
+ 𝜂𝑃2

− 𝜂𝑃1
𝜂𝑃2

, 𝑣𝑃1
+ 𝑣𝑃2

− 𝑣𝑃1
𝑣𝑃2

} (5)      

𝜆�̃�1 = {(1 − (1 − 𝜇𝑃1
)

𝜆
, 𝜂𝑃1

𝜆, 𝑣𝑃1

𝜆)} , 𝜆 > 0,            (6)                                                             

(�̃�1)
𝜆
={𝜇𝑃1

𝜆, (1 − (1 − 𝜂𝑃1
)

𝜆
) , (1 − (1 − 𝑣𝑃1

)
𝜆

)},  𝜆 > 0.  (7)   

Definition 3: �̃�𝑖 =𝑃(𝜇𝑖 , 𝜂𝑖 , 𝑣𝑖), 𝑖 =  (1,2, … , 𝑛), is defined 

as a group of picture fuzzy sets. The aggregation of this set is 

performed using the picture fuzzy weighted average (PFWA) 

formula, as expressed in Equation 8. 

PFWA (�̃�1, �̃�2, … . �̃�𝑛) = ((1 − ∏ (1 −𝑛
𝑖=1

𝜇𝑖)𝑤𝑖), (∏ (𝜂𝑖)𝑤𝑖𝑛
𝑖=1 ), (∏ (𝑣𝑖)𝑤𝑖𝑛

𝑖=1 ))           (8) 

Here, 𝑤𝑖 = (w1, w2, …,wn), represents the weight vector, and 

these vectors are defined as 𝑤𝑖  ϵ [0, 1]. Additionally, the con-

dition ∑ 𝑤𝑖
𝑛
𝑖=1  = 1 is satisfied. 

 

Definition 4: �̃�1  =  (𝜇𝑃1
, 𝜂𝑃1

 𝑣𝑃1
)  ve �̃�2  =  

(𝜇𝑃2
, 𝜂𝑃2

 𝑣𝑃2
) be two picture fuzzy numbers. Score functions 

are utilized to rank and compare these two image fuzzy numbers. 

The mathematical expression of this function is given in Equa-

tion 9 [13]: 

𝑆(�̃�1) = 𝜇𝑃1
− 𝜂𝑃1

− 𝑣𝑃1
     𝑆(�̃�2) = 𝜇𝑃2

− 𝜂𝑃2
− 𝑣𝑃2

 (9) 

Here, the S (P) function takes values in the range of [-1, 1]. 

2.2. CRITIC Method 

The CRITIC method, short for "CRiteria Importance Through 

Intercriteria Correlation," is a robust decision-making technique 

designed for multi-criteria analysis. Introduced by Diakoulaki et 

al. in 1995, this approach aims to objectively determine the rel-

ative importance of criteria in decision-making processes. It 

evaluates the significance of each criterion by considering the 

contrast intensity, represented through the standard deviation, 

and the interrelations among criteria, expressed as the correla-

tion coefficient. By integrating these two factors, the CRITIC 

method calculates weights that reflect both the variability and 

the level of interdependence among criteria. This methodology 

is widely used in Multiple Attribute Group Decision Making 

(MAGDM) scenarios, offering a systematic way to assess and 

prioritize criteria based on their contribution to the overall deci-

sion-making framework. The procedural steps of CRITIC 

method are given as follows: 

Step 1: Establish decision matrix 𝐷 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

using Eq. 

(10), where 𝐶𝑗(𝑗 = 1,2, … , 𝑛)  and 𝑥𝑖(𝑖 = 1,2, … , 𝑚)  be the 

criteria and alternatives respectively.  

      𝐶1   ⋯     𝐶𝑛 

 𝐷 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

=

𝑥1

⋮
𝑥𝑚

[
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑚1 ⋯ 𝑃𝑚𝑛

]    (10) 

Step 2: Normalize the decision matrix N = (𝑛𝑖𝑗)
𝑚×𝑛

; where N is 

structured using Eq. (11) where 𝑋𝑖𝑗
+ = max

𝑖
𝑋𝑖𝑗 , 𝑋𝑖𝑗

− = min
𝑖

𝑋𝑖𝑗. 

𝑛𝑖𝑗 = {

𝑋𝑖𝑗−𝑋𝑖𝑗
−

𝑋𝑖𝑗
+−𝑋𝑖𝑗

−         𝑖𝑓 𝑗 ∈ 𝐶𝑏 ,

𝑋𝑖𝑗
+−𝑋𝑖𝑗

𝑋𝑖𝑗
+−𝑋𝑖𝑗

−           𝑖𝑓𝑗 ∈ 𝐶𝑐

        (11) 

here Cb and Cc show the benefit criteria and cost criteria, re-

spectively. 

Step 3: Compute the correlation coefficients between criteria 

pairs. Correlation coefficient (𝑟𝑗𝑡) between the pair of criteria j 

and t is calculated using Eq. (12): 

𝑟𝑗𝑡 =
∑ (𝑛𝑖𝑗−𝑛𝑗̅̅ ̅)(𝑛𝑖𝑗−𝑛𝑡̅̅ ̅)𝑚

𝑖=1

√∑ (𝑛𝑖𝑗−𝑛𝑗̅̅ ̅)
2

(𝑛𝑖𝑗−𝑛𝑡̅̅ ̅)
2𝑚

𝑖=1

  (12) 

Step 4: Estimate the amount of information (𝑐𝑗) for each cri-

terion is calculated using Eq. (13): 

𝑐𝑗 = 𝜑𝑗 ∑ (1 − 𝑟𝑗𝑡)𝑛
𝑡=1      (13) 

Step 5: Find the criteria weights (𝑤𝑗) using Eq. (14): 

𝑤𝑗 =
𝑐𝑗

∑ 𝑐𝑗
𝑛
𝑗=1

     (14) 

2.3. Picture Fuzzy TOPSIS 

The Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS), introduced by Hwang and Yoon (1981), is 

a widely used approach for solving multi-criteria decision-mak-

ing (MCDM) problems. It identifies the best alternative by cal-

culating the geometric distances of each option from two bench-

mark solutions: the positive ideal solution (PIS) and the negative 

ideal solution (NIS). The optimal alternative is the one closest 

to the PIS and farthest from the NIS. To enhance its ability to 

manage uncertainty and vagueness, the TOPSIS method has 

been extended to incorporate Picture Fuzzy Sets, resulting in the 

Picture Fuzzy TOPSIS (PF-TOPSIS) approach. This extension 
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integrates Picture Fuzzy Sets to effectively handle imprecise in-

formation, enabling the PF-TOPSIS method to prioritize alter-

natives in complex decision-making scenarios with greater reli-

ability. The steps of PF-TOPSIS are as follows:  

Step 1: Construct Picture fuzzy decision matrix 𝐷 =

(𝐶𝑗(𝑥𝑖))
𝑚×𝑛

using Eq. (15), where 𝐶𝑗(𝑗 = 1,2, … , 𝑛)  and 

𝑥𝑖(𝑖 = 1,2, … , 𝑚) be the criteria and alternatives respectively.  

         

                𝐶1         ⋯          𝐶𝑛 

𝐷 = (𝐶𝑗(𝑥𝑖))
𝑚×𝑛

=

𝑥1

⋮
𝑥𝑚

[

𝑃(𝜇𝑃11
, 𝜂𝑃11

 𝑣𝑃11
) ⋯ 𝑃(𝜇𝑃1𝑛

, 𝜂𝑃1𝑛
 𝑣𝑃1𝑛

)

⋮ ⋱ ⋮
𝑃(𝜇𝑃𝑚1

, 𝜂𝑃𝑚1
 𝑣𝑃𝑚1

) ⋯ 𝑃(𝜇𝑃𝑚𝑛
, 𝜂𝑃𝑚𝑛

 𝑣𝑃𝑚𝑛
)

] (15)                      

Step 2:  Aggregate the picture fuzzy decision matrix utiliz-

ing picture fuzzy weighted average (PFWA) which was given in 

Eq. (8).   

Step 3: Utilizing Equations (16) and (17), compute the Pic-

ture fuzzy positive ideal solution (PIS) and negative ideal solu-

tion (NIS): 

𝑥+ = {max
𝑖

〈𝑠((𝑥𝑖))〉|𝑗 = 1,2, ⋯ , 𝑛} =

{〈𝑃(𝜇𝑃1

+, 𝜂𝑃1

+, 𝑣𝑃1

+)〉, ⋯ , 〈𝑃(𝜇𝑃𝑛

+, 𝜂𝑃𝑛

+, 𝑣𝑃𝑛

+)〉}             (16) 

𝑥− = {min
𝑖

〈𝑠((𝑥𝑖))〉|𝑗 = 1,2, ⋯ , 𝑛} =

{〈𝑃(𝜇𝑃1

−, 𝜂𝑃1

−, 𝑣𝑃1

−)〉, ⋯ , 〈𝑃(𝜇𝑃𝑛

−, 𝜂𝑃𝑛

−, 𝑣𝑃𝑛

−)〉}             (17) 

Step 4: Compute distances from Picture fuzzy PIS and NIS 

with normalized Euclidean distance using Eqs. (18) and (19): 

𝐷(𝑥𝑖 , 𝑥+) = ∑ 𝑤𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥+))𝑛
𝑗=1 =

√
1

𝑛
∑ 𝑤𝑗 (|(𝜇𝑖𝑗)

2
− (𝜇𝑗

+)
2

| + |(𝜂𝑖𝑗)
2

− (𝜂𝑗
+)

2
| + |(𝑣𝑖𝑗)

2
− (𝑣𝑗

+)
2

|)𝑛
𝑗=1 ,

2
 

𝑖 = 1,2, ⋯ , 𝑚,      (18) 

𝐷(𝑥𝑖 , 𝑥−) = ∑ 𝑤𝑗𝑑 (𝐶𝑗(𝑥𝑖), 𝐶𝑗(𝑥−))𝑛
𝑗=1 =

√
1

𝑛
∑ 𝑤𝑗 (|(𝜇𝑖𝑗)

2
− (𝜇𝑗

−)
2

| + |(𝜂𝑖𝑗)
2

− (𝜂𝑗
−)

2
| + |(𝑣𝑖𝑗)

2
− (𝑣𝑗

−)
2

|)𝑛
𝑗=1

2

, 𝑖 = 1,2, ⋯ , 𝑚.                   (19) 

Step 5: Determine the revised closeness ξ(𝑥𝑖)  of the alter-

native 𝑥𝑖 using Eq. (20): 

ξ(𝑥𝑖) =
𝐷(𝑥𝑖,𝑥−)

𝐷𝑚𝑎𝑥(𝑥𝑖,𝑥−)
−

𝐷(𝑥𝑖,𝑥+)

𝐷𝑚𝑖𝑛(𝑥𝑖,𝑥+)
                    (20)                                                                           

Step 6: Identify the optimal ranking of alternatives, where the 

best option is the one with the highest adjusted closeness value 

ξ(𝑥𝑖).   

3. Results and Discussion 

Digital technologies such as blockchain, AI, IoT, and big data 

analytics have the potential to transform intermodal freight 

transport by enhancing efficiency, transparency, and operational 

coordination. However, the complex nature of intermodal sys-

tems requires a thorough evaluation of these technologies to 

guide their effective implementation and address challenges like 

inefficiencies, environmental concerns, and high costs. 

This study aims to evaluate and prioritize digital technology 

applications in intermodal freight transport using multi-criteria 

decision-making approaches. By assessing their economic, en-

vironmental, and operational impacts, the research provides a 

framework to help stakeholders identify and implement the most 

impactful solutions, ensuring a sustainable and efficient freight 

system. The primary digital technology applications in inter-

modal freight transport are identified through a literature review 

and consultations with experts as follows:  

Blockchain for Logistics Management (A1): Blockchain tech-

nology creates a secure, decentralized ledger for storing and 

sharing information among multiple stakeholders in the logistics 

chain. This ensures transparency, immutability, and traceability 

of transactions and documents [14]. By replacing traditional, of-

ten error-prone methods, blockchain streamlines operations 

such as order tracking, payment processing, and compliance 

with international trade regulations.  

Artificial Intelligence (AI) for Optimization (A2): Artificial 

Intelligence (AI)-powered systems and automation technologies 

significantly enhance operational efficiency in ports and ware-

houses by automating complex tasks such as container manage-

ment, scheduling, and predictive maintenance. Additionally, AI 

plays a pivotal role in demand forecasting, fraud detection, and 

dynamic pricing, thereby optimizing decision-making processes 

and resource allocation [15]. These capabilities collectively con-

tribute to a more resilient and adaptive logistics ecosystem, en-

suring competitiveness in dynamic market conditions. 

Internet of Things (IoT) for Asset Tracking (A3): It involves 

using interconnected sensors and devices to monitor the location, 

status, and condition of goods and equipment in real-time 

throughout the supply chain. IoT devices, such as GPS trackers 

and environmental sensors, collect and transmit data on key met-

rics like location, temperature, humidity, and vibration. This 

data enables stakeholders to ensure the safety and quality of 

goods, proactively address potential issues, and streamline op-

erations. IoT-based tracking improves supply chain transpar-

ency, reduces losses and delays, and facilitates efficient deci-

sion-making by providing actionable insights across every stage 

of intermodal freight transport [16]. 

Cloud Computing and Big Data Analytics (A4): Cloud com-

puting and big data analytics are transformative technologies 

that enable the storage, processing, and analysis of vast amounts 
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of logistics and transportation data in real time. Cloud platforms 

offer scalable infrastructure for storing and sharing data across 

stakeholders in the supply chain, ensuring seamless collabora-

tion and accessibility. Big data analytics processes this data to 

extract actionable insights, such as demand patterns, fleet per-

formance, and risk forecasts, supporting informed decision-

making [15]. Together, these technologies optimize resource al-

location, enhance operational efficiency, and improve the resil-

ience and adaptability of intermodal freight transport systems in 

dynamic market conditions. 

Geographic Information Systems (GIS) for Strategic Plan-

ning (A5): GIS uses spatial data and advanced mapping tools to 

optimize the logistics network, determining efficient intermodal 

connections, and minimizing environmental impact. By inte-

grating geographic and economic data, GIS aids in strategic de-

cision-making, improves infrastructure utilization, and ensures 

sustainable transport solutions across the supply chain [17]. 

Table 1. Detailed overview of criteria. 

Criteria # Description 
Criteria 

Type 

Economic 

Aspect 
C1 

Economic Aspect evaluates the financial 

implications associated with the imple-

mentation, maintenance, and operational 

costs of a solution. It reflects how cost-

effective a particular application is in 

terms of resource allocation and long-

term affordability. 

Cost 

Technologi-

cal Feasibi-

lity 

C2 

Integration challenges, compatibility 

with existing systems, and scalability are 

considered when assessing the practica-

lity of adopting a technology. This crite-

rion evaluates the readiness of an appli-

cation to handle technical demands and 

support operational goals. 

Benefit 

Environmen-

tal Sustaina-

bility 

C3 

The potential to reduce emissions, con-

serve energy, and minimize waste plays 

a critical role in evaluating applications. 

This highlights each technology's contri-

bution to sustainable logistics practices 

and its alignment with environmental ob-

jectives. 

Benefit 

Operational 

Efficiency 
C4 

Improvements in processes, reliability, 

and response times are key metrics for 

assessing performance. This criterion 

measures an application's ability to stre-

amline operations and ensure a more pro-

ductive intermodal freight system. 

Benefit 

Security and 

Data Protec-

tion 

C5 

Security and data protection examine the 

technology’s effectiveness in safeguar-

ding data and systems against cyber thre-

ats, breaches, and operational disrupti-

ons. Each application is evaluated based 

on its ability to ensure confidentiality, in-

tegrity, and availability of critical logis-

tics information. 

Benefit 

Scalability 

and Adapta-

bility 

C6 

Scalability and adaptability focus on 

how easily the technology can be exten-

ded to larger operations or adapted to fu-

ture demands and challenges. This crite-

rion evaluates whether the application 

Benefit 

can handle growth in logistics require-

ments and maintain efficiency in dyna-

mic environments. 

In this study, digital technology applications in intermodal 

freight transport are prioritized as the primary focus. To evaluate 

these applications effectively, six distinct criteria have been de-

fined, derived from a comprehensive literature review and ex-

pert consultations. These criteria aim to encompass various fac-

tors influencing the effectiveness and implementation of digital 

technologies within the context of intermodal freight transport. 

Table 1 presents a detailed overview of these criteria, listing 

their corresponding numbers, descriptions, and relevant refer-

ences.  

The hierarchy tree is used in this study to visually represent 

the decision structure for evaluating digital technology applica-

tions in intermodal freight transport. At the top level of the tree, 

the main objective, which is the evaluation of digital technology 

applications in this field, is placed. The second level contains 

the defined criteria that will be used to assess these applications, 

and at the final level, the various digital applications for inter-

modal freight transport are listed, forming a clear structure for 

evaluation. Figure 3 indicates the hierarchy tree of this study.  

 

Figure 3. Hierarchy tree of this study. 

3.1. Application 

 This study employs an integrated CRITIC-TOPSIS meth-

odology within a picture fuzzy environment to assess digital 

technology applications in intermodal freight transport. In the 

first phase, a decision matrix must be constructed to implement 

the proposed approach. To achieve this, linguistic variables rep-

resented by picture fuzzy numbers, as presented in Table 2, were 

utilized. 

  Table 2. Picture Fuzzy Number Linguistic Variables. 

Linguistic terms 
Picture fuzzy 

numbers 

Very good (VG)  (0.9, 0.0, 0.05)  

Good (G)  (0.75, 0.05, 0.1)  

Moderate good (MG) (0.6, 0.0, 0.3)  

Fair (F)  (0.5, 0.1, 0.4)  
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Moderate poor (MP)  (0.3, 0.0, 0.6)  

Poor (P)  (0.25, 0.05, 0.6)  

Very Poor (VP)  (0.1, 0.0, 0.85)  

Decision-makers and experts from the Turkish State Railways 

and academia used linguistic terms to construct the decision ma-

trix, which is provided in Table 3. The criteria for evaluating 

digital technology applications in intermodal freight transport 

were then weighted using the CRITIC approach. 

Table 3. Decision matrix. 

Alternati-

ves/Criteria 

Eco-

no-

mic 

Effi-

ci-

ency 

(C1) 

Tech-

nolo-

gical 

Feasi-

bility 

(C2) 

Envi-

ron-

mental 

Sustai-

nability 

(C3) 

Ope-

ratio-

nal 

Effi-

ci-

ency 

(C4) 

Secu-

rity 

and 

Data 

Protec-

tion 

(C5) 

Scala-

bility 

and 

Adap-

tability 

(C6) 

Blockchain for 

Logistics Ma-

nagement 

(A1):  

P G MG G VG G 

Artificial Intel-

ligence (AI) 

for Optimiza-

tion (A2):  

MP VG G VG G VG 

Internet of 

Things (IoT) 

for Asset Trac-

king (A3):  

P G MG VG MG G 

Cloud Compu-

ting and Big 

Data Analytics 

(A4):  

P VG G VG G G 

Geographic In-

formation Sys-

tems (GIS) for 

Strategic Plan-

ning (A5):  

MP G G G G G 

Following the construction of the decision matrix, normaliza-

tion was performed using Eq. (11). Subsequently, the correlation 

coefficient (𝑟𝑗𝑡) matrix between pairs of criteria was established 

using Eq. (12), as shown in Table 4. The amount of information 

(𝑐𝑗) was then estimated using Eq. (13). 

The final criterion weights are presented in Figure 4. "Opera-

tional Efficiency," with a weight of 0.274, was identified as the 

most important criterion for assessing digital solutions in inter-

modal freight transport. "Economic Efficiency" (0.170) ranked 

second, followed by "Technological Feasibility" (0.165). Mean-

while, "Security and Data Protection" (0.147), "Scalability and 

Adaptability" (0.135), and "Environmental Sustainability" 

(0.109) were identified as the least influential criteria. 

Table 4. Correlation coefficients matrix. 

Criteria 

Eco-

nomic 

Effici-

ency 

(C1) 

Tech-

nologi-

cal Fe-

asibi-

lity 

(C2) 

Environ-

mental 

Sustai-

nability 

(C3) 

Opera-

tional 

Effici-

ency 

(C4) 

Security 

and 

Data 

Protec-

tion 

(C5) 

Scalabi-

lity and 

Adapta-

bility 

(C6) 

Econo-

mic Ef-

ficiency 

(C1) 

1.000 0.389 0.345 -0.389 0.953 0.068 

Techno-

logical 

Feasibi-

lity (C2) 

0.389 1.000 0.763 0.667 0.408 0.612 

Envi-

ronmen-

tal Sus-

tainabi-

lity (C3) 

0.345 0.763 1.000 0.313 0.551 0.766 

Operati-

onal Ef-

ficiency 

(C4) 

-0.389 0.667 0.313 1.000 -0.408 0.408 

Security 

and 

Data 

Protec-

tion 

(C5) 

0.953 0.408 0.551 -0.408 1.000 0.250 

Scalabi-

lity and 

Adapta-

bility 

(C6) 

0.068 0.612 0.766 0.408 0.250 1.000 
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Figure 4. Final criterion weights. 

In the second phase, single-valued picture fuzzy TOPSIS 

method is applied with using the weight obtained from first 

phase. After constructing decision matrix, Picture fuzzy positive 

ideal solution (PIS) and negative ideal solution (NIS) were com-

puted using Eqs. (16) and (17). The results are shown as follows:  

 

𝑥+ = {P(0.50, 0.1, 0.40), P(0.90, 0, 0.05), P(0.90, 0, 0.05), 

P(0.90, 0, 0.05), P(0.75, 0.05, 0.10), P(0.90, 0, 0.05)}  

 

𝑥− = {P(0.25, 0.05, 0.60), P(0.75, 0.05, 0.10), P(0.60, 0, 0.30), 

P(0.75, 0.05, 0.10),  P(0.60, 0, 0.30), P(0.75, 0.05, 0.10)}. 

 

The distances from the Pythagorean fuzzy Positive Ideal So-

lution (PIS) and the Pythagorean fuzzy Negative Ideal Solution 

(NIS), along with the revised closeness ξ(𝑥𝑖), are calculated us-

ing Eqs. (18), (19), and (20), as presented in Table 5.  

Table 5. Distances from Picture fuzzy PIS and NIS, and revised  
closeness coefficients. 

Alternatives 

Picture 

fuzzy PIS, 

𝑫(𝒙𝒊, 𝒙+) 

Picture 

fuzzy NIS, 

𝑫(𝒙𝒊, 𝒙−)  

Revised 

closeness, 

𝛏(𝒙𝒊) 

Blockchain for Logistics 

Management (A1):  
0.087 0.034 -1.681 

Artificial Intelligence (AI) 

for Optimization (A2):  
0.042 0.084 0.000 

Internet of Things (IoT) for 

Asset Tracking (A3):  
0.070 0.062 -0.946 

Cloud Computing and Big 

Data Analytics (A4):  
0.060 0.072 -0.581 

Geographic Information 

Systems (GIS) for Strategic 

Planning (A5):  

0.081 0.047 -1.395 

Based on the revised closeness values, Artificial Intelligence 

(AI) for Optimization (A2) emerges as the most favorable digital 

technology application in intermodal freight transport, with a re-

vised closeness value of 0.000. This is followed by Cloud Com-

puting and Big Data Analytics (A4) (-0.581), indicating its rela-

tive importance. The Internet of Things (IoT) for Asset Tracking 

(A3) ranks third with a revised closeness value of -0.946, fol-

lowed by Geographic Information Systems (GIS) for Strategic 

Planning (A5) (-1.395). Blockchain for Logistics Management 

(A1) ranks the lowest, with a revised closeness value of -1.681, 

suggesting it is the least preferable among the evaluated alterna-

tives. Figure 5 demonstrates the ranking results of proposed 

methodology.  

 

Figure 5. Ranking results of methodology. 

3.2. Sensitivity Analysis 

Sensitivity analysis is a technique used to assess the robust-

ness of a decision-making model by examining how variations 

in input parameters influence the final outcomes. It helps deter-

mine the extent to which changes in criteria weights affect the 

ranking of alternatives, ensuring the reliability and stability of 

the proposed methodology. The result is deemed sensitive when 

a change in a criterion's weight causes a change in the ranking 

order, showing that the weights assigned have a substantial in-

fluence on the decision-making process. Conversely, if the rank-

ing remains unchanged despite modifications in weight values, 

the result is deemed robust, signifying that the priority of alter-

natives is stable regardless of precise weight assignments. Sen-

sitivity analysis is used to make sure the decision model is con-

sistent across all weighting scenarios by identifying how 

changes in the weight of each criterion impact the ranking of 

digital technology applications in intermodal freight transport.  

In this study, sensitivity analysis is conducted by altering the 

weight values of criteria derived from the CRITIC methodology 

and recalculating the revised closeness values using the Picture 

fuzzy TOPSIS approach. A total of 15 scenarios are considered, 

each involving the exchange of weight values between two cri-

teria. The notation ξ1-2 represents a scenario where the weight 

of Criterion 1 is changed with Criterion 2. Figure 6 presents the 

heatmap of revised closeness (ξ) values across 15 scenarios. 
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These scenarios introduce various criterion importance configu-

rations, allowing decision-makers to observe the impact of 

weight changes on the ranking of digital technology applications. 

This analysis provides valuable insights for policymakers and 

automotive industry stakeholders by ensuring that the selection 

of digital solutions is based on a stable and well-founded deci-

sion-making framework.  

Figure 7 shows the ranking results across 15 scenarios. The 

ranking results for the digital technology applications in inter-

modal freight transport show the following trends. Artificial In-

telligence (AI) for Optimization (A2) consistently ranks first 

across all scenarios, highlighting its strong perceived im-

portance in the digitalization of intermodal freight transport. 

Cloud Computing and Big Data Analytics (A4) holds the second 

position in every scenario, supporting its significant role in the 

process. Internet of Things (IoT) for Asset Tracking (A3) is pre-

dominantly ranked third, although there is a slight variation in 

Scenario 3-4, where it drops to fourth place. Geographic Infor-

mation Systems (GIS) for Strategic Planning (A5) holds the 

fourth position in most scenarios, but it rises to third in Scenarios 

3-4 and 4-6, indicating some shifting perspectives on its im-

portance. Finally, Blockchain for Logistics Management (A1) is 

ranked fifth in all scenarios, positioning it as the least important 

application for digitalizing intermodal freight transport. Overall, 

while most rankings remain stable, the minor shifts in the posi-

tions of IoT and GIS highlight variations in their perceived sig-

nificance across different scenarios. The sensitivity analysis re-

sults show that, despite changes in the weight of criteria across 

15 scenarios, the ranking results remained largely consistent. 

This demonstrates that the methodology provides reliable out-

comes, validating the stability of the priority of digital technol-

ogy applications for intermodal transport.  

 

Figure 6. Heatmap of revised closeness values across 15 scenarios. 

 

Figure 7. Ranking results across 15 scenarios. 

3.3. Discussion 

This study is crucial for advancing digital transformation in 

intermodal freight transport by providing a structured frame-

work to enhance efficiency, reduce costs, and improve sustain-

ability. By integrating CRITIC and TOPSIS within a Picture 

Fuzzy environment, it offers a novel approach to handling un-

certainty in technology evaluation. The findings aid decision-

makers in selecting optimal digital solutions and guide policy-

makers in shaping strategic investments and regulations, ensur-

ing a more resilient and adaptive freight transport system. 

As a result of the computations, "Artificial Intelligence (AI) 

for Optimization" emerges as the top-ranked digital technology 

application in intermodal freight transport due to its ability to 

enhance operational efficiency, optimize resource allocation, 

and improve decision-making. AI-driven systems enable predic-

tive analytics, real-time data processing, and automated decision 

support, which are critical for managing complex intermodal lo-

gistics networks. Kine et al. [15] highlighted that AI, combined 

with big data, plays a crucial role in processing vast amounts of 

collected and stored data to support planning and decision-mak-

ing in intermodal transport. To implement this technology effec-

tively, logistics managers should invest in AI-powered plat-

forms for demand forecasting, route optimization, and auto-

mated scheduling while ensuring staff training for seamless in-

tegration. Policymakers must support AI adoption by develop-

ing regulatory frameworks that promote data standardization, 

cybersecurity, and collaboration among stakeholders. Addition-

ally, incentives for AI-driven innovation and infrastructure mod-

ernization will be crucial in accelerating the digital transfor-

mation of intermodal logistics.  

As a result of the computations, "Cloud Computing and Big 

Data Analytics" and "Internet of Things (IoT) for Asset Track-

ing" rank as the second and third most critical digital technology 

applications in intermodal freight transport. Cloud computing 

enables seamless data integration, real-time information sharing, 

and improved collaboration among stakeholders, making it es-

sential for optimizing logistics operations. Similarly, big data 

analytics enhances decision-making by analyzing vast amounts 

of transport data to predict demand, optimize routes, and reduce 
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delays. Medic et al. [18] highlighted that emerging technologies 

such as IoT, cloud computing, and big data play a vital role in 

transforming manufacturing and logistics environments by en-

hancing automation and connectivity. Meanwhile, IoT-based as-

set tracking improves cargo visibility, enhances security, and 

minimizes losses by providing real-time location and condition 

monitoring of freight. Kim et al. [19] reviewed the competitive-

ness of IoT in multimodal transport, emphasizing its potential to 

enhance decision-making systems and enable machine-to-ma-

chine interaction. To successfully implement these technologies, 

logistics managers should invest in cloud-based logistics plat-

forms, IoT-enabled tracking systems, and advanced data analyt-

ics tools while ensuring cybersecurity measures and workforce 

training. Policymakers must establish regulations for secure data 

sharing, incentivize digital infrastructure investments, and pro-

mote industry-wide adoption of standardized IoT and cloud so-

lutions to facilitate a smooth digital transition in intermodal lo-

gistics.  

In the prioritization of evaluation criteria for digital technol-

ogy applications in intermodal transport, Operational Efficiency 

ranks first, followed by Economic Efficiency as the second most 

critical criterion. Operational efficiency is essential as it directly 

impacts service reliability, cargo handling speed, and overall lo-

gistics performance by minimizing delays, optimizing routes, 

and ensuring seamless coordination across different transport 

modes. Digital technologies such as AI, cloud computing, and 

IoT enhance operational efficiency by enabling automation, 

real-time tracking, and predictive analytics, ultimately improv-

ing supply chain resilience. Economic efficiency, ranked second, 

is crucial for cost reduction, resource optimization, and long-

term financial sustainability in intermodal logistics. By leverag-

ing digital solutions, companies can lower transportation costs, 

reduce empty trips, and maximize asset utilization, leading to 

improved profitability. To effectively apply these criteria, logis-

tics managers should integrate performance-based assessments 

when adopting digital tools, focusing on reducing lead times, in-

creasing cargo throughput, and optimizing costs. Policymakers 

should support this transformation by developing financial in-

centives for technology adoption, establishing performance 

benchmarks, and promoting industry-wide standards that ensure 

both operational and economic benefits in digitalizing inter-

modal freight transport.  

The findings of this study provide valuable insights for poli-

cymakers and the automotive industry in advancing digital 

transformation in intermodal freight transport. Policymakers 

should develop regulatory frameworks that promote the adop-

tion of digital technologies by ensuring data interoperability, cy-

bersecurity, and standardized communication protocols across 

transport networks. Additionally, financial incentives such as 

tax reductions, subsidies, and public-private partnerships can 

encourage investment in AI, IoT, and cloud-based logistics so-

lutions. The automotive industry, as a key stakeholder in inter-

modal transport, should focus on integrating smart vehicle tech-

nologies, such as connected and autonomous trucks, with inter-

modal systems to enhance operational efficiency and reduce 

emissions. 

4. Conclusion 

This study is crucial as it addresses the growing need for dig-

ital transformation in intermodal freight transport by providing 

a structured approach to prioritizing digital technology applica-

tions. With increasing complexity in logistics networks, inte-

grating advanced technologies such as AI, IoT, and cloud com-

puting is essential for enhancing efficiency, reducing costs, and 

improving sustainability. While previous research has explored 

various multi-criteria decision-making (MCDM) methods in 

transportation, a comprehensive evaluation framework for pri-

oritizing digital solutions in intermodal logistics has been lack-

ing.  

This study fills this gap by integrating CRITIC and TOPSIS 

within a Picture Fuzzy environment, offering a novel methodol-

ogy to assess digital applications objectively. The results of the 

CRITIC method revealed that Operational Efficiency is the most 

critical evaluation criterion for assessing digital technology ap-

plications in intermodal freight transport, followed by Economic 

Efficiency. These findings are essential for decision-makers, as 

they provide a data-driven basis for selecting technologies that 

enhance logistics performance and cost-effectiveness. For the 

automotive and logistics industry, the emphasis on operational 

and economic efficiency highlights the need for investments in 

smart vehicle technologies, connected systems, and automation 

to improve integration with intermodal transport networks. By 

prioritizing these criteria, both sectors can make informed deci-

sions that drive digital transformation and improve the overall 

sustainability and competitiveness of freight transport.  

The outcome of the Picture Fuzzy TOPSIS approach identi-

fied "Artificial Intelligence (AI) for Optimization" as the top-

ranked digital technology application in intermodal freight 

transport, followed by "Cloud Computing and Big Data Analyt-

ics" and "Internet of Things (IoT) for Asset Tracking" as the 

second and third most critical applications. These results pro-

vide valuable insights for decision-makers, guiding them in pri-

oritizing investments in technologies that enhance operational 

efficiency, data-driven decision-making, and real-time cargo 

tracking. By focusing on these high-impact solutions, policy-

makers and industry leaders can accelerate the digital transfor-

mation of intermodal freight transport, improve supply chain re-

silience, and drive sustainability in logistics operations [20]. 

Sensitivity analysis was also performed by modifying the 

weight values of criteria obtained through the CRITIC method 

and recalculating the closeness values using the Picture Fuzzy 

TOPSIS approach. A total of 15 scenarios were analyzed, each 

involving an exchange of weight values between two criteria. 

The results indicate that, despite these variations, the ranking of 

digital technology applications remained largely stable, con-

firming the robustness and reliability of the proposed methodol-
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ogy. This validation ensures that the prioritization of digital so-

lutions for intermodal freight transport remains consistent, in-

creasing confidence in the decision-making framework. 

Future research can expand this study by incorporating addi-

tional criteria and stakeholder perspectives to refine the prioriti-

zation of various decision-making problems, such as selecting 

optimal practices for reverse logistics and sea freight logistics. 

Enhancing the methodology with alternative MCDM techniques, 

such as Best-Worst Method (BWM) or Decision-Making Trial 

and Evaluation Laboratory (DEMATEL), could offer deeper in-

sights into the interrelationships between evaluation criteria. 

Additionally, exploring different fuzzy set extensions, such as 

q-rung orthopair sets and spherical fuzzy sets, may further en-

hance the robustness and flexibility of the decision-making 

framework in future studies.  
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