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I. INTRODUCTION 

Despite advancements in hardware and software technologies that have greatly improved the processing speed of 

general-purpose computers, there remain certain computational tasks where performance is lacking. This is 

particularly accurate for areas such as medical applications, artificial intelligence, scientific simulations, and brute 

force algorithms. Moreover, the size of the data affects the total runtime in addition to the complexity of the 

problem. High-performance computing (HPC) is operated to complete such time-consuming problems by 

parallelizing the tasks. Supercomputers with many computational nodes can achieve HPC; nevertheless, this 

choice is not always efficient due to cost and accessibility. Alternatively, it is possible to compute in parallel by 

dividing the task into subtasks and distributing the workload among multiple processors [1]. 

Machine learning techniques require extensive mathematical operations and a large amount of data. A model 

utilizing lots of data is more effective in making predictions more accurate; building a model concurrently working 

on all available processors determines the achievable highest performance. Employing all features when training 

a model may not always be efficient in any research, especially when working with a considerable number of 

features. The size of the dataset can be reduced by evaluating which features should be used to achieve the highest 

gain. 
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 In the field of machine learning, the feature selection process is a crucial step, and it can significantly impact 
the performance of predictive models. Despite the existence of various time-efficient algorithms, the only 
method that guarantees problem optimization is exhaustive search, but it requires an enormous computational 
load. Although the exhaustive search ensures the best feature selection, a lifetime would not be enough after 
certain large feature counts. This study proposes a generic, scalable open-source parallel Python module to 
find the best wrapper feature subset in a fully optimized execution time, especially for reasonable feature 
counts. This parallel wrapper feature selection module, PWFS, is independent of machine learning algorithms 
and can function with user-defined methods. The framework promises maximum benefit on the machine 
learning side by empowering parallel performance and efficiency. The system design is built on the most 
efficient message-passing communication, where the framework distributes the computational load equally 
among the parallel agents via feature masking. The module is validated on two workstations, one of which is 
hyper-threading capable. An overall performance gain of 19.77% is achieved with hyper-threading. Various 
scenarios and experiments yield different speedups and efficiencies up to 96.74%, validating the flexible 
design of the proposed parallel framework. The source code of the module is available at 
https://github.com/haeren/parallel-feature-selector and https://pypi.org/project/parallel-feature-selector/. 
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Machine learning is utilized in many fields of data science effectively, especially for detecting the most efficient 

characteristics of data, i.e., feature subsets. There are various feature selection algorithms, such as forward 

selection, backward elimination, and exhaustive search [2]. Even though the former two are time-efficient, there 

is no guarantee of acquiring the best result. Besides, testing different combinations of features is a wise strategy 

when it comes to determining the contribution of each individual feature to general success. The exhaustive search 

[3] considers all possible feature combinations to achieve the best result. But the operation is costly and time-

consuming since the number of subsets increases exponentially for each additional feature. A dataset with f features 

has 2f-1 feature subsets in total. The brute force search for large f values can only be completed in a reasonable 

time with a parallel approach. 

In filter feature selection approaches, such as regression, etc., the techniques are independent of classifiers and run 

more quickly. On the other hand, the wrapper approaches are integrated with learning algorithms for the most 

optimized classification performance [4]. 

In this study, we offer a PWFS (Parallel Wrapper Feature Selection) framework that applies brute force methods 

for selected NP-complete problems. The user can determine the NP-complete problem by providing appropriate 

algorithms and datasets. While brute force is typically inefficient for large problem sizes, it provides a baseline for 

evaluating performance and can serve as a fallback when more efficient algorithms are not available. Thus, PWFS 

can extend the capabilities of brute force methods for NP-complete problems by leveraging the technological limits 

of current state-of-the-art parallel architectures. By distributing the workload and exploring solution space in 

parallel, parallel computing offers the potential to tackle larger instances and achieve performance improvements, 

albeit within the inherent complexity limitations of NP-complete problems. This parallel exploration of different 

solution paths can potentially lead to the discovery of solutions or acceptable approximations in a reasonable time 

frame. 

The source code of the PWFS module is available at https://github.com/haeren/parallel-feature-selector and 

https://pypi.org/project/parallel-feature-selector/. The proposed parallel wrapper framework aims that users can 

operate parallel feature selection on tabular datasets using any machine learning algorithm. The main operation is 

independent of such parameters and distributes the computational load among the processes. A simple algorithmic 

flow of the generic framework is illustrated in Figure 1. Each bullet in the figure matches one step in the overall 

flow. The first step is to choose the dataset that will be used to train the machine learning algorithm. In this parallel 

machine learning process, the masked features are distributed across multiple machines or cores. The next step is 

to choose the machine learning algorithm that will be used to learn from data. Different machine learning 

algorithms may be affected by the parallel process in dissimilar ways. The third step involves configuring the 

parameters of the machine learning algorithm and the parallel run. This may include setting the number of 

machines or cores to use, specifying how data should be distributed, and tuning other parameters that affect the 

performance of the parallel run. The penultimate step involves implementing the proposed algorithm using the 

chosen machine learning algorithm and parallel run configuration. The final step is to analyze the results of the 

parallel workflow. 

https://github.com/haeren/parallel-feature-selector
https://pypi.org/project/parallel-feature-selector/
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Figure 1. Simple flow of the PWFS framework 

 

The processes operate on their separate data while running the same program. This approach is categorized as a 

single program multiple data (SPMD) and supports both distributed and shared memory architectures. Machine 

learning models are trained with different subsets in parallel, and the most successful results are reported together 

with the corresponding subsets. The developed module has been tested on two workstations, one of which is hyper-

threading capable. The parallel algorithm was analyzed with various classifiers on datasets with different feature 

counts. The high-efficiency values observed in the results validate the effectiveness of the algorithm design. A 

graphical abstract indicating the paper structure and containing a detailed flowchart is in Figure 2. 

 

 

Figure 2. Paper structure and detailed flowchart 
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There are many studies on feature processing in the field of machine learning. The correct use of features is one 

of the essential topics, undoubtedly. Acquiring high performance and eliminating the curse of dimensionality 

issues might be the most noteworthy. For this purpose, some researchers have developed feature selection libraries 

and tools. Some other researchers have parallelized the feature subset search with various methods to achieve high 

performance in a shorter time. 

Nersisyan et al. [3] proposed ExhauFS, a command-line implementation of the exhaustive search approach for 

classification and survival regression, supporting Python multiprocessing module parallel execution, in which each 

process performs a search on its own set of k-element feature combinations; however, the focus was not 

parallelization and the hardware performance analysis. Bolón-Canedo, Sánchez-Marono, and Cervino-Rabunal [5] 

proposed a general framework for feature selection by partitioning the data vertically and parallelizing the process. 

In this approach, the data is partitioned by features, and stable feature sets are obtained with filters. The features 

obtained from partitions were combined into a subset. Improvement in runtime is observed in the experiments 

using three different datasets. Roffo [6] developed a feature selection library named FSLib, available for MATLAB. 

Yu, Ding, and Wu [7] presented an online streaming feature selection library for MATLAB and Octave. Horn, Pack, 

and Rieger [8] proposed the autofeat Python library for automated feature engineering and selection. The scikit-

learn style linear regression and classification models are available in the library. Masoudi-Sobhanzadeh, 

Motieghader, and Masoudi-Nejad [9] developed a software named FeatureSelect for feature selection. The 

software is compatible with. mat, .xls, .txt input file extensions. Data normalization and fuzzification can be applied 

to the data. Available learning algorithms consist of support vector machines, decision trees, and artificial neural 

networks. Users can select a filter or wrapper method. The software generates a detailed report about performance 

metrics. Pilnenskiy and Smetannikov [10] emphasized that the Python programming language was becoming 

increasingly popular in the field of machine learning, and there was a need for tools. They presented an open-

source feature selection library named ITMO FS, compatible with scikit-learn. 

Zhao et al. [11] used variance analysis for large-scale feature selection and implemented two parallel modes named 

symmetric multiprocessing and massive parallel processing. The algorithm has support for supervised and 

unsupervised feature selection. Stojanovski [12] analyzed the performance of the parallel approach for exhaustive 

search. The importance of mutual assistance between parallel agents and dynamic load balancing was emphasized. 

Sun and Li [13] proposed a data-intensive parallel feature selection method based on the MapReduce model. Zhou 

et al. [14] introduced a parallel feature selection method inspired by group testing. The method easily scales to 

millions of features and instances by taking advantage of parallelism. El-Alfy and Alshammari [15] used a parallel 

genetic algorithm in MapReduce for feature subset selection. The dataset was divided into smaller parts to 

distribute the workload among the nodes. Gieseke et al. [16] implemented parallel subset selection for linear 

regression and a brute-force method to select an optimal feature subset with few features. The implementation was 

analyzed on different processor types. Li et al. [17] proposed a parallel feature selection method based on 

MapReduce for text classification. The method was used to reduce the computational cost of mutual information 

to find the correlations between variables. The results showed that it could be applied to large-scale problems in 

many fields. González-Domínguez et al. [18] introduced a parallelized minimum redundancy maximum relevance 

(mRMR) implementation called fast-mRMR-MPI. Distributed memory clusters were used with the message 

passing interface (MPI) and OpenMP. The parallel implementation allowed feature analysis that takes hours using 

mRMR to be completed in seconds with the same result. Nguyen et al. [19] used the trace criterion in linear 
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discriminant analysis to parallelize the feature selection process. Vivek, Ravi, and Krishna [20] proposed a scalable 

feature selection method for big data using parallel hybrid wrappers based on evolutionary algorithms. 

This study presents an exhaustive wrapper feature selection method that exploits parallel processing as a fully 

optimized Python module. It aims to compare the performances of all feature subsets in a reasonable time with 

high efficiency. The module is designed to be compatible with scikit-learn and user-defined machine learning 

algorithms. Comprehensive design is not limited to a specific problem and can be used for general purposes. The 

design spends minimum time on interprocessor communication and achieves the best use of parallelism by 

distributing the computational load equally to the workers. 

 

II. EXPERIMENTAL METHOD 

The proposed PWFS framework is discussed in two subsections: design and implementation. The first subsection 

focuses on the parallel structure of the algorithm, and the second explains the implementation parameters. 

 

2.1 Design 

The problem is optimized in parallel through the functions provided by the MPI communication standard. There 

are various commands for this purpose, such as send, receive, scatter, and gather. These commands are utilized to 

provide communication between processes, especially between the main process (master) and the remaining 

processes (slaves). Point-to-point (P2P) communication is performed with the send and receive commands. The 

scatter and gather commands allow collective communication between all processes. In the proposed method, the 

feature subset indices assigned to each process are distributed with the scatter operation. The results of each 

process are collected by the master process with the gather operation. The method is designed to have the least 

number of communications between processes by using the most appropriate parallel operations. Hence, the effect 

of communication on the runtime is minimal compared to the computation and can be ignored. The relationship 

between processes, i.e., communication scheme, is listed step by step in Table 1. The visualized version can be 

followed in Figure 3 in the same order. 

 

Table 1. Communication and computation tasks 
 MASTER SLAVEs 
 MPI Initialize 

1. Calculate the feature subset interval for each process 
Each process will have ∼(2f-1)/p subsets to analyze 

 

2. Scatter p intervals Scatter p intervals 
3. Compute cvAccuracy and find top n subsets Compute cvAccuracy and find top n subsets 
4. Gather p × n cvAccuracy and subsets Gather p × n cvAccuracy and subsets 
5. Sort the p × n cvAccuracy to find top n subsets  
6. Find the accuracies for top n subsets  
7. Gather p execution times Gather p execution times 
8. Write the results into file  
 MPI Finalize 

 

The PWFS framework is specifically designed to avoid redundant evaluations of feature subsets. Each possible 

subset is uniquely represented by a binary index corresponding to its feature mask, and the total search space is 

partitioned into non-overlapping intervals that are distributed across processes using MPI scatter operations. This 
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exhaustive yet coordinated division ensures that each subset is evaluated exactly once during execution, 

eliminating redundancy and enabling efficient use of computational resources throughout the parallel process. 

The number of computations increases exponentially with the number of features. Each feature subset has a unique 

index between 1 and 2f-1, where f is the number of features. The master process adjusts feature subset intervals for 

each subtask. Thus, feature subsets are distributed evenly among the p processes. Chunk size is (2f-1)/p and equal 

for all processes when 2f-1 is divisible by p. If not, an arrangement is made for the smallest multiple of p greater 

than 2f-1. 

 

 

Figure 3. Visualized algorithm steps 

 

The binary form of an index value is used to detect favorable features to include. Each binary digit represents a 

feature. The features included in a subset can be expressed with 1, similar to bit masking. Each process converts 

the indices to binary form to fetch feature masks. Table 2 shows a case of five processes using feature masks to 

find which feature(s) to include among four features. In this example, the number of feature subsets is perfectly 

divisible by the number of processors. In other cases, the balanced distribution settings are adjusted. 

 

Table 2. Example of 4-feature masking for five processes 
Process Interval Index Mask f4 f3 f2 f1 

1 [1, 3] 
1 0001     
2 0010     
3 0011     

2 [4, 6] 
4 0100     
5 0101     
6 0110     

3 [7, 9] 
7 0111     
8 1000     
9 1001     

4 [10, 12] 
10 1010     
11 1011     
12 1100     

5 [13, 15] 
13 1101     
14 1110     
15 1111     
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A machine learning model is trained with each feature subset to get accuracy scores. The models’ performances 

are calculated using k-fold cross-validation (CV) for each subset. The algorithm checks whether a subset has fewer 

features besides the validation score during the search. The processes find the candidate solutions which are the 

most successful subsets in the given local index interval. The master process collects, sorts, and analyzes the 

candidate solutions during the test phase to get the results. The pseudocode of the module is given in Algorithm 1. 

 

Algorithm 1. Pseudocode of the algorithm 
Input :  p = size 
 f  = number of features 
 n = output size 
Output : bestScores = list of zeros with the length of n initially 
 
if Master then 
    length = 2f−1 
    Divide the subset index interval [1, length] into equal p 
end 
scatter(p intervals) 
for i = intervalStart to intervalEnd do 
    subset = Fetch feature mask (binarized i) 
    cvAccuracy = Train a model with the masked features 
    if cvAccuracy > min(bestScores) then 
        Replace subset with the minimum scored subset 
        (removing subsets having more features is prioritized) 
    else if cvAccuracy = min(bestScores) then 
        if subset has fewer features then 
            Replace subset with a subset having min(bestScores) 
        end 
    end 
end 
gather(p × n subsets) 
if Master then 
    Take top n subsets based on cvAccuracy 
    Compute test accuracies for n subsets 
end 
gather(p elapsed times) 
if Master then 
    Write test results and performance statistics to output files 
end 

 

2.2 Implementation 

As previously mentioned, the framework is implemented as an open-source Python module. The module has 

several dependencies, such as MPI for Python (mpi4py), scikit-learn, and pandas. mpi4py package allows Python 

programs to exploit multiple processors [21]. scikit-learn provides functions for machine learning algorithms [22], 

and tabular data can be easily manipulated with pandas [23]. The feature selection function in the module has nine 

parameters in total, as shown in Table 3. 

The PWFS framework is designed to be model-agnostic and dataset-independent for structured tabular data. It 

supports any dataset that can be represented as a pandas DataFrame, and any estimator that implements the 

standard scikit-learn interface—i.e., with fit() and predict() methods. This includes both built-in scikit-learn 

models and custom user-defined estimators. By decoupling the feature selection mechanism from the internal 

structure of the estimator, PWFS ensures broad flexibility and applicability across various use cases, provided that 

the estimator adheres to the required interface. 
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Table 3. The list of parameters in the feature selection function 
Parameter Description 
data Dataset as pandas.DataFrame 
estimator scikit-learn estimator object 
testSize Test size between 0 and 1 for train/test split 
randomState Random state for train/test split 
cv Number of folds for cross-validation 
topScoreNo Number of the output feature subsets 
shuffle To shuffle the dataset before train/test split 
timeResultFile Output file path for elapsed time per process 
scoreResultFile Output file path for scores and feature subsets 

 

The first parameter data is a pandas data frame containing the dataset. The second parameter estimator is a scikit-

learn estimator object. User-defined learning algorithms can be used as an estimator. The first two parameters 

have no default value. The third parameter testSize is used to split the dataset into train and test sets with the given 

ratio. The ratio must be between 0 and 1. The fourth parameter randomState controls the random number generator 

while shuffling the dataset before train/test split. Integer values can be used to get reproducible output. The fifth 

parameter cv is the number of folds for cross-validation. The function applies 5-fold cross-validation by default. 

The sixth parameter topScoreNo specifies the number of feature subsets in the output. The seventh parameter 

shuffle is a boolean variable that controls shuffling before data split. By default, the dataset is shuffled. The last 

two parameters define the paths of the output files. The function saves the best feature subsets and the execution 

times of the processes in two separates .csv files. 

 

III. RESULTS AND DISCUSSIONS 

The proposed framework was tested on two workstations with the highest number of available cores. To conduct, 

analyze, and report the experiments within a reasonable time frame, datasets with an appropriate number of 

features were selected, as shown in Table 4. Although the framework is fully capable of operating on datasets with 

significantly higher dimensionality, the experiments focused on these selected datasets to ensure the timely and 

reproducible completion of all scenarios. The inherent scalability of the framework allows it to be extended to 

high-dimensional data using more powerful computing infrastructures, such as HPC clusters. 

 
Table 4. Dataset characteristics used in the experiments 

Dataset 
Name 

Number of Features 
Used 

Number of Samples 
Used 

Presence of Missing 
Values 

Number of 
Classes 

Indian Liver Patient 10 570 N/A 2 
Electrical Grid Stability Simulated 13 1500 N/A 2 
Student Academic Performance 15 480 N/A 3 

 

Datasets with different numbers of features and similar numbers of samples were collected from the UCI Machine 

Learning Repository to analyze the effect of the number of active processes and different numbers of features on 

the performance. The first dataset Indian Liver Patient (ILP) has 10 features, and the second dataset Electrical 

Grid Stability Simulated (EGSS) consists of 13 features. The last dataset Students’ Academic Performance (SAP), 

in which categorical attributes were encoded, has 15 features. Since the main motivation is to analyze the effect of 

the number of active processes and there is more or less the same number of instances for the aforementioned 

datasets, the minor effect in the sample count variations affecting the completion time and the negligible parallel 

performance loss resulting from the instance counts were ignored. To interpret the effect over the runtime of 
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different kinds of learning approaches, various learning algorithms were selected in the experiments, namely, 

probabilistic classifier Naïve Bayes (NB), linear classifier logistic regression (LR), and tree-based classifier 

decision tree (DT). Nevertheless, the comprehensive design is not limited to a specific selection and can work with 

similar learning algorithms. A custom machine learning algorithm can also be integrated into the module, and the 

PWFS framework guarantees to find the best feature subset for given machine learning parameters. To test this, 

experiments were repeated multiple times with each learning algorithm and dataset combination. All individual 

test cases with the same machine learning parameters in the parallel workload have identical classification results, 

which validates the machine learning side. In detail, all random seeds were set to the same value for reproducibility. 

Accordingly, the effect of tested machine learning algorithms on the runtime shows similar characteristics in both 

systems. The shortest runtime is generally observed with the Naïve Bayes due to its computation complexity. Since 

the maximum benefit is achieved within the scope of machine learning, to reveal parallel performance and 

efficiency, cost analysis within the scope of parallel computing is structured based on the parallel environment and 

hardware parameters selected during runtime. 

The number of cores in the system is an important parameter that affects the parallel runtime in addition to the 

dataset and the machine learning algorithm. A physical processor can be used as two logical processors with hyper-

threading [24]. In this way, the performance of some MPI applications can be improved. The performance gain 

varies depending on the nature of the application. Since computational-intensive applications are likely to utilize 

CPU resources highly, the chance for performance improvement with hyper-threading is lower [25]. It is possible 

to increase performance by up to 30% with Intel® hyper-threading technology [24]. For this purpose, two 

workstations, specifically one of which is hyper-threading capable, were selected to perform the experiments. The 

first system has dual Intel Xeon E5-2620 v4 @ 2.10 GHz processors with eight cores and sixteen threads (a total 

of sixteen cores and thirty-two threads), 16 GB 2133 MHz DDR4 RAM. The second system has Intel Xeon Bronze 

3104 1.7 GHz processor with twelve cores and twelve threads (ten cores participated in the experiments), 32 GB 

2666 MHz DDR4 RAM. 

Regarding reliability, the procedure was repeated multiple times to mitigate the randomness effect and provide 

stable analyses. In each independent analysis, the folds were shuffled, and the experiments were repeated five 

times in total on both workstations. The results obtained were evaluated together, and the average of all individual 

test results was reported finally. 

 

 

Figure 4. Elapsed time for the (a) 10-core and (b) 16-core systems 
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The execution times obtained with different numbers of processes are shown in Figure 4 (see the tables in 

Appendix A for detailed information about the values). In all plot-related visuals, the (a) parts symbolize the 10-

core workstation while (b) is for the hyper-threading capable 16-core workstation. Tests performed on the 10-core 

system show improvement in runtime up to ten processes. The same outcome applies to the 16-core system up to 

the full load. The notable effect of hyper-threading is evident between 17 and 32 processes. The minimum runtime 

is achieved when all processes are loaded with hyper-threading. 

 

 
(a) 

 
(b) 

Figure 5. Speedup for the (a) 10-core and (b) 16-core systems 

 

 
(a) 

 
(b) 

Figure 6. Efficiency for the (a) 10-core and (b) 16-core systems 

 

𝑆𝑆(𝑝𝑝) =
𝑇𝑇𝑠𝑠
𝑇𝑇𝑝𝑝

 (1) 

 

𝐸𝐸(𝑝𝑝) =
𝑆𝑆(𝑝𝑝)
𝑝𝑝

 (2) 

 

Two important performance metrics are frequently discussed in literature to measure the effect of a parallel design. 

In Eq. (1), speedup gives the ratio of the computation time for the sequential algorithm utilizing one processor to 

the time for the parallel algorithm utilizing p processors. If the speedup factor is p, then it is called to have a p-fold 

speedup (i.e., the highest performance is achieved) [26]. In Eq. (2), efficiency indicates how efficiently p 

processors are utilized [26]. 
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The speedup values for both systems are shown in Figure 5. In theory, a linear increase is expected till reaching 

the full load. However, the behavior of the linear increase changes in the orange line with circles on the 10-core 

system (with a lower RAM capacity) due to the computation complexity and memory usage of decision tree 

algorithm and increased number of features. Besides, there is a linear increase for all lines on the 16-core system. 

There is still an increase in the speedup after the full-core-load processes with hyper-threading; this is a solid 

indicator to interpret the contribution of hyper-threading. In the experiment with the highest speedup value, a 

16.29% performance gain is achieved with hyper-threading. In general, there is a performance increase of up to 

19.77%. 

Efficiency graphs obtained from the speedup values are given in Figure 6. The efficiency is around 95% for the 

full load on the 10-core system. On the 16-core system, the efficiency is over 90% without hyper-threading. 

Although there is a sudden decrease in efficiency at 17 processes, the hyper-threading impact is reflected in the 

performance afterward. Notably, higher efficiency is achieved for a higher number of features. 

 

IV. CONCLUSIONS 

In order to construct better machine learning models, it is necessary to identify the features that will provide the 

highest success. Although there are time-efficient algorithms for this process, exhaustive search is the only method 

that guarantees finding the best results. In this study, a novel parallel framework, PWFS, is developed as a Python 

module to find the best feature subset(s) of a dataset in a reasonable time. The framework promises the maximum 

benefit on the machine learning side by underlining parallel performance and efficiency. PWFS has a considerable 

number of programmatic features. While developing the parallel algorithm, a limited set of MPI instructions 

ensuring efficient communication were used so that the proposed algorithm can easily be adapted to Hadoop 

clusters on cloud systems. The proposed method aims to reduce the overall runtime in exhaustive feature search 

to an acceptable level proportional to the number of cores with a scalable SPMD design. For performance analysis, 

different scenarios are realized on two different workstations, one of which is hyper-threading capable. An overall 

performance gain of 19.77% is achieved with hyper-threading. Various experiments yield vivid speedups and 

efficiencies up to 96.74%. The high-efficiency values obtained in the experimental results confirm that this method 

is suitable for runtime-optimized feature selection. In addition, a custom machine learning algorithm might also 

be executed in the flexible module. Since the generic open-source module is independent of the dataset and any 

machine learning algorithm, researchers working on different subjects can benefit. New program features, 

considering more effective hardware utilization and more efficient dynamic load balancing, while incorporating 

advanced feature engineering techniques along with new performance evaluations, are planned for future releases. 

While GPU-based solutions are known to accelerate massively parallel numerical computations, the PWFS 

framework was deliberately implemented using CPU-based parallelism due to practical, architectural, and 

compatibility considerations. The primary target of the framework is traditional machine learning algorithms—

such as decision trees, logistic regression, and Naïve Bayes—which typically do not benefit significantly from 

GPU acceleration, as they rely more on conditional logic and branching structures than on large-scale matrix 

operations. Additionally, PWFS is built upon the scikit-learn ecosystem, which is inherently optimized for CPU 

usage and lacks native support for GPU execution. Ensuring compatibility with scikit-learn was a key design goal, 

as it allows seamless integration with a wide range of existing models and promotes broad accessibility. Future 
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work may consider GPU-supported extensions, especially for use cases that involve deep learning or large-scale 

numerical operations. 

Compared to existing feature selection approaches, PWFS offers several notable advantages. Filter-based methods 

are typically faster but ignore the interaction between features and classifiers. Wrapper methods, while more 

accurate, are computationally expensive. PWFS bridges this gap by offering an exhaustive wrapper method 

enhanced with parallel processing. Unlike most existing tools, it is fully compatible with scikit-learn and supports 

any model implementing standard fit() and predict() methods. Its open-source implementation, ease of integration, 

and model-agnostic design make it highly adaptable for various real-world use cases. While this study focuses on 

implementation and performance within parallel environments, future work may include direct benchmarking with 

other popular feature selection tools to further validate these advantages. 

 

REFERENCES 

1. Okyay S, Adar N (2018) Parallel 3D brain modeling & feature extraction: ADNI dataset case study. 14th 
International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer 
Engineering (TCSET), Lviv-Slavske, Ukraine, Feb. 20-24. https://doi.org/10.1109/TCSET.2018.8336172  

2. Jovi A, Brki K, Bogunovi N (2015) A review of feature selection methods with applications. 38th 
International Convention on Information and Communication Technology, Electronics and Microelectronics 
(MIPRO), Opatija, Croatia, May 25-29. https://doi.org/10.1109/MIPRO.2015.7160458  

3. Nersisyan S, Novosad V, Galatenko A, Sokolov A, Bokov G, Konovalov A et al (2022) ExhauFS: exhaustive 
search-based feature selection for classification and survival regression. PeerJ 10:e13200. 
https://doi.org/10.7717/peerj.13200  

4. Okyay S, Adar N (2021) Filter Feature Selection Analysis to Determine the Characteristics of Dementia. 
Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University 29(1):20–7. 
https://doi.org/10.31796/ogummf.768872  

5. Bolón-Canedo V, Sánchez-Marono N, Cervino-Rabunal J (2014) Toward parallel feature selection from 
vertically partitioned data. ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, 
Computational Intelligence and Machine Learning, Bruges, Belgium, Apr. 23-25. 

6. Roffo G (2016) Feature selection library (MATLAB toolbox). arXiv preprint arXiv:160701327. 
7. Yu K, Ding W, Wu X (2016) LOFS: A library of online streaming feature selection. Knowledge-Based 

Systems 113:1–3. https://doi.org/10.1016/j.knosys.2016.08.026  
8. Horn F, Pack R, Rieger M (2019) The autofeat python library for automated feature engineering and 

selection. Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML 
PKDD 2019, Würzburg, Germany, Sep. 16-20. 

9. Masoudi-Sobhanzadeh Y, Motieghader H, Masoudi-Nejad A (2019) FeatureSelect: a software for feature 
selection based on machine learning approaches. BMC Bioinformatics 20:1–17. 
https://doi.org/10.1186/s12859-019-2754-0  

10. Pilnenskiy N, Smetannikov I (2020) Feature selection algorithms as one of the python data analytical tools. 
Future Internet 12(3):54. https://doi.org/10.3390/fi12030054  

11. Zhao Z, Zhang R, Cox J, Duling D, Sarle W (2013) Massively parallel feature selection: an approach based 
on variance preservation. Mach Learning 92:195–220. https://doi.org/10.1007/s10994-013-5373-4  

12. Stojanovski TD (2014) Performance of exhaustive search with parallel agents. Turkish Journal of Electrical 
Engineering and Computer Sciences 22(5):1382–94. https://doi.org/10.3906/elk-1210-105  

13. Sun Z, Li Z (2014) Data intensive parallel feature selection method study. International Joint Conference on 
Neural Networks (IJCNN), Beijing, China, Jul. 6-11.  https://doi.org/10.1109/IJCNN.2014.6889409  

14. Zhou Y, Porwal U, Zhang C, Ngo HQ, Nguyen X, Ré C et al (2014) Parallel feature selection inspired by 
group testing. Advances in Neural Information Processing Systems 27.  

15. El-Alfy ESM, Alshammari MA (2016) Towards scalable rough set based attribute subset selection for 
intrusion detection using parallel genetic algorithm in MapReduce. Simulation Modelling Practice and 
Theory 64:18–29. https://doi.org/10.1016/j.simpat.2016.01.010  

16. Gieseke F, Polsterer KL, Mahabal A, Igel C, Heskes T (2017) Massively-parallel best subset selection for 
ordinary least-squares regression. IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, 
HI, USA, Nov. 27 – Dec. 1. https://doi.org/10.1109/SSCI.2017.8285225  

https://doi.org/10.1109/TCSET.2018.8336172
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.7717/peerj.13200
https://doi.org/10.31796/ogummf.768872
https://doi.org/10.1016/j.knosys.2016.08.026
https://doi.org/10.1186/s12859-019-2754-0
https://doi.org/10.3390/fi12030054
https://doi.org/10.1007/s10994-013-5373-4
https://doi.org/10.3906/elk-1210-105
https://doi.org/10.1109/IJCNN.2014.6889409
https://doi.org/10.1016/j.simpat.2016.01.010
https://doi.org/10.1109/SSCI.2017.8285225


 
 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.                                                  Parallel feature selection                   

716 

17. Li Z, Lu W, Sun Z, Xing W (2017) A parallel feature selection method study for text classification. Neural 
Computing and Applications 28:513–24. https://doi.org/10.1007/s00521-016-2351-3  

18. González-Domínguez J, Bolón-Canedo V, Freire B, Touriño J (2019) Parallel feature selection for 
distributed-memory clusters. Information Sciences 496:399–409. https://doi.org/10.1016/j.ins.2019.01.050  

19. Nguyen T, Phan N, Nguyen N, Nguyen BT, Halvorsen P, Riegler MA (2022) Parallel feature selection based 
on the trace ratio criterion. International Joint Conference on Neural Networks (IJCNN), Padua, Italy, Jul. 
18-23. https://doi.org/10.1109/IJCNN55064.2022.9892181  

20. Vivek Y, Ravi V, Krishna PR (2023) Scalable feature subset selection for big data using parallel hybrid 
evolutionary algorithm based wrapper under apache spark environment. Cluster Computing 26(3):1949–83. 
https://doi.org/10.1007/s10586-022-03725-w  

21. Dalcin LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using Python. Advances in 
Water Resources 34(9):1124–39. https://doi.org/10.1016/j.advwatres.2011.04.013  

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: Machine 
learning in Python. Journal of Machine Learning Research 12(85):2825–30. 

23. McKinney W (2010) Data structures for statistical computing in Python. SciPy 445(1):51–6. 
https://doi.org/10.25080/Majora-92bf1922-00a  

24. Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA et al (2002) Hyper-Threading Technology 
Architecture and Microarchitecture. Intel Technology Journal 6(1). 

25. Tau Leng RA, Hsieh J, Mashayekhi V, Rooholamini R (2002) An empirical study of hyper-threading in high 
performance computing clusters. Linux HPC Revolution 45. 

26. Eager DL, Zahorjan J, Lazowska ED (1989) Speedup versus efficiency in parallel systems. IEEE 
Transactions on Computers 38(3):408–23. https://doi.org/10.1109/12.21127  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s00521-016-2351-3
https://doi.org/10.1016/j.ins.2019.01.050
https://doi.org/10.1109/IJCNN55064.2022.9892181
https://doi.org/10.1007/s10586-022-03725-w
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/12.21127


 
Parallel feature selection                                                J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. 
 

717 

APPENDICES 

APPENDIX A 

Table A1. Elapsed time, speedup, and efficiency on the 10-core system using the 10-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 60.99 1.00 1.00 76.94 1.00 1.00 82.97 1.00 1.00 
2 30.72 1.99 0.99 38.27 2.01 1.01 42.37 1.96 0.98 
3 20.35 3.00 1.00 26.07 2.95 0.98 28.68 2.89 0.96 
4 16.00 3.81 0.95 19.52 3.94 0.99 21.58 3.84 0.96 
5 12.65 4.82 0.96 15.87 4.85 0.97 17.27 4.81 0.96 
6 10.73 5.68 0.95 13.30 5.79 0.96 14.42 5.75 0.96 
7 9.26 6.59 0.94 11.22 6.85 0.98 12.47 6.65 0.95 
8 8.17 7.46 0.93 10.09 7.62 0.95 11.23 7.39 0.92 
9 7.37 8.28 0.92 9.11 8.44 0.94 9.92 8.36 0.93 

10 6.68 9.13 0.91 8.30 9.27 0.93 9.07 9.14 0.91 
11 6.84 8.91 0.81 8.69 8.86 0.81 9.72 8.53 0.78 
12 7.31 8.35 0.70 9.10 8.45 0.70 9.96 8.33 0.69 
13 7.67 7.95 0.61 9.59 8.03 0.62 10.52 7.89 0.61 
14 7.66 7.96 0.57 9.15 8.41 0.60 10.41 7.97 0.57 
15 7.67 7.95 0.53 9.48 8.12 0.54 10.45 7.94 0.53 
16 7.84 7.78 0.49 9.55 8.05 0.50 10.28 8.07 0.50 

 

Table A2. Elapsed time, speedup, and efficiency on the 16-core system using the 10-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 55.84 1.00 1.00 66.59 1.00 1.00 74.31 1.00 1.00 
2 28.62 1.95 0.98 33.95 1.96 0.98 37.76 1.97 0.98 
3 19.37 2.88 0.96 23.10 2.88 0.96 25.61 2.90 0.97 
4 14.54 3.84 0.96 17.57 3.79 0.95 19.22 3.87 0.97 
5 11.74 4.76 0.95 14.01 4.75 0.95 15.48 4.80 0.96 
6 9.71 5.75 0.96 11.92 5.58 0.93 12.90 5.76 0.96 
7 8.42 6.63 0.95 10.00 6.66 0.95 11.15 6.66 0.95 
8 7.41 7.54 0.94 9.00 7.40 0.93 9.83 7.56 0.95 
9 6.57 8.50 0.94 7.95 8.38 0.93 8.74 8.51 0.95 

10 5.93 9.42 0.94 7.10 9.38 0.94 7.87 9.44 0.94 
11 5.46 10.23 0.93 6.77 9.84 0.89 7.24 10.26 0.93 
12 4.99 11.20 0.93 6.07 10.97 0.91 6.66 11.16 0.93 
13 4.64 12.03 0.93 5.63 11.83 0.91 6.12 12.14 0.93 
14 4.32 12.92 0.92 5.26 12.65 0.90 5.77 12.89 0.92 
15 4.11 13.59 0.91 4.94 13.48 0.90 5.45 13.63 0.91 
16 3.82 14.62 0.91 4.66 14.28 0.89 5.06 14.69 0.92 
17 4.80 11.64 0.68 5.76 11.57 0.68 6.38 11.65 0.69 
18 4.66 11.98 0.67 5.55 11.99 0.67 6.21 11.96 0.66 
19 4.51 12.37 0.65 5.33 12.48 0.66 5.97 12.44 0.65 
20 4.33 12.91 0.65 5.14 12.95 0.65 5.73 12.98 0.65 
21 4.14 13.47 0.64 4.92 13.52 0.64 5.49 13.53 0.64 
22 4.10 13.63 0.62 4.87 13.67 0.62 5.36 13.86 0.63 
23 4.09 13.66 0.59 4.83 13.78 0.60 5.34 13.91 0.60 
24 4.05 13.78 0.57 4.79 13.89 0.58 5.27 14.09 0.59 
25 3.96 14.12 0.56 4.75 14.01 0.56 5.22 14.24 0.57 
26 3.89 14.35 0.55 4.67 14.26 0.55 5.13 14.47 0.56 
27 3.79 14.74 0.55 4.50 14.79 0.55 4.95 15.01 0.56 
28 3.74 14.93 0.53 4.45 14.95 0.53 4.92 15.10 0.54 
29 3.73 14.99 0.52 4.38 15.19 0.52 4.83 15.40 0.53 
30 3.64 15.32 0.51 4.32 15.42 0.51 4.73 15.72 0.52 
31 3.54 15.77 0.51 4.20 15.84 0.51 4.59 16.20 0.52 
32 3.48 16.04 0.50 4.16 16.00 0.50 4.52 16.42 0.51 
33 3.65 15.28 0.46 4.22 15.77 0.48 4.59 16.17 0.49 
34 3.67 15.22 0.45 4.28 15.56 0.46 4.77 15.57 0.46 
35 3.84 14.56 0.42 4.36 15.26 0.44 5.00 14.87 0.42 
36 3.89 14.34 0.40 4.33 15.37 0.43 4.86 15.28 0.42 
37 3.90 14.32 0.39 4.44 14.99 0.41 4.95 15.02 0.41 
38 3.77 14.83 0.39 4.49 14.82 0.39 4.93 15.07 0.40 
39 3.92 14.24 0.37 4.57 14.57 0.37 4.84 15.35 0.39 
40 3.91 14.29 0.36 4.54 14.66 0.37 5.01 14.82 0.37 
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Table A3. Elapsed time, speedup, and efficiency on the 10-core system using the 13-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 468.85 1.00 1.00 706.02 1.00 1.00 864.57 1.00 1.00 
2 235.97 1.99 0.99 360.22 1.96 0.98 446.59 1.94 0.97 
3 158.15 2.96 0.99 245.11 2.88 0.96 301.05 2.87 0.96 
4 123.85 3.79 0.95 183.64 3.84 0.96 226.00 3.83 0.96 
5 96.49 4.86 0.97 149.30 4.73 0.95 182.76 4.73 0.95 
6 82.97 5.65 0.94 125.63 5.62 0.94 153.35 5.64 0.94 
7 70.27 6.67 0.95 109.39 6.45 0.92 132.35 6.53 0.93 
8 62.04 7.56 0.94 94.48 7.47 0.93 115.93 7.46 0.93 
9 57.46 8.16 0.91 84.30 8.37 0.93 103.62 8.34 0.93 

10 50.63 9.26 0.93 76.89 9.18 0.92 94.04 9.19 0.92 
11 51.11 9.17 0.83 76.57 9.22 0.84 94.62 9.14 0.83 
12 54.26 8.64 0.72 77.22 9.14 0.76 95.47 9.06 0.75 
13 53.72 8.73 0.67 79.92 8.83 0.68 96.99 8.91 0.69 
14 55.80 8.40 0.60 78.79 8.96 0.64 97.29 8.89 0.63 
15 55.26 8.49 0.57 82.30 8.58 0.57 99.24 8.71 0.58 
16 54.79 8.56 0.53 81.89 8.62 0.54 99.02 8.73 0.55 

 

Table A4. Elapsed time, speedup, and efficiency on the 16-core system using the 13-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 429.53 1.00 1.00 616.98 1.00 1.00 745.55 1.00 1.00 
2 215.20 2.00 1.00 315.54 1.96 0.98 378.44 1.97 0.99 
3 147.72 2.91 0.97 215.89 2.86 0.95 256.45 2.91 0.97 
4 110.49 3.89 0.97 163.34 3.78 0.94 195.15 3.82 0.96 
5 88.60 4.85 0.97 131.02 4.71 0.94 156.31 4.77 0.95 
6 74.17 5.79 0.97 109.94 5.61 0.94 131.78 5.66 0.94 
7 63.42 6.77 0.97 93.25 6.62 0.95 112.14 6.65 0.95 
8 54.97 7.81 0.98 82.23 7.50 0.94 98.74 7.55 0.94 
9 49.16 8.74 0.97 73.36 8.41 0.93 87.36 8.53 0.95 

10 44.10 9.74 0.97 66.98 9.21 0.92 79.38 9.39 0.94 
11 40.54 10.59 0.96 60.52 10.20 0.93 72.35 10.31 0.94 
12 37.04 11.60 0.97 55.66 11.08 0.92 67.00 11.13 0.93 
13 34.14 12.58 0.97 50.74 12.16 0.94 60.84 12.25 0.94 
14 31.97 13.43 0.96 47.26 13.06 0.93 56.24 13.26 0.95 
15 29.75 14.44 0.96 44.14 13.98 0.93 52.47 14.21 0.95 
16 27.97 15.35 0.96 42.38 14.56 0.91 50.25 14.84 0.93 
17 35.17 12.21 0.72 50.82 12.14 0.71 59.23 12.59 0.74 
18 33.53 12.81 0.71 48.56 12.70 0.71 58.11 12.83 0.71 
19 32.28 13.30 0.70 47.02 13.12 0.69 55.87 13.34 0.70 
20 30.48 13.93 0.70 44.98 13.72 0.69 52.90 14.09 0.70 
21 29.96 14.34 0.68 43.10 14.32 0.68 51.10 14.59 0.69 
22 28.96 14.83 0.67 41.95 14.71 0.67 50.60 14.74 0.67 
23 29.25 14.68 0.64 41.94 14.71 0.64 49.90 14.94 0.65 
24 28.64 15.00 0.62 41.15 14.99 0.62 48.32 15.43 0.64 
25 27.81 15.44 0.62 39.77 15.52 0.62 47.56 15.67 0.63 
26 27.29 15.74 0.61 39.48 15.63 0.60 46.72 15.96 0.61 
27 26.40 16.27 0.60 38.80 15.90 0.59 45.22 16.49 0.61 
28 25.74 16.68 0.60 37.61 16.41 0.59 44.09 16.91 0.60 
29 25.22 17.03 0.59 36.24 17.03 0.59 42.78 17.43 0.60 
30 24.49 17.54 0.58 36.34 16.98 0.57 42.00 17.75 0.59 
31 23.92 17.96 0.58 35.21 17.53 0.57 40.95 18.21 0.59 
32 23.69 18.13 0.57 35.00 17.63 0.55 40.60 18.36 0.57 
33 24.01 17.89 0.54 35.25 17.50 0.53 40.66 18.34 0.56 
34 24.12 17.81 0.52 35.31 17.47 0.51 41.11 18.13 0.53 
35 24.39 17.61 0.50 34.79 17.74 0.51 40.65 18.34 0.52 
36 24.43 17.58 0.49 34.91 17.67 0.49 40.50 18.41 0.51 
37 25.03 17.16 0.46 34.71 17.78 0.48 41.22 18.09 0.49 
38 24.84 17.29 0.45 35.24 17.51 0.46 41.08 18.15 0.48 
39 24.84 17.29 0.44 36.26 17.02 0.44 41.48 17.97 0.46 
40 24.90 17.25 0.43 36.08 17.10 0.43 41.11 18.13 0.45 
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Table A5. Elapsed time, speedup, and efficiency on the 10-core system using the 15-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 1860.31 1.00 1.00 2618.79 1.00 1.00 2368.78 1.00 1.00 
2 951.50 1.96 0.98 1359.31 1.93 0.96 1185.19 2.00 1.00 
3 650.94 2.86 0.95 905.17 2.89 0.96 800.31 2.96 0.99 
4 485.09 3.83 0.96 676.45 3.87 0.97 599.86 3.95 0.99 
5 387.57 4.80 0.96 549.24 4.77 0.95 490.72 4.83 0.97 
6 326.42 5.70 0.95 462.69 5.66 0.94 407.17 5.82 0.97 
7 277.84 6.70 0.96 401.10 6.53 0.93 351.56 6.74 0.96 
8 244.92 7.60 0.95 349.65 7.49 0.94 310.42 7.63 0.95 
9 219.81 8.46 0.94 315.90 8.29 0.92 307.62 7.70 0.86 

10 196.06 9.49 0.95 286.10 9.15 0.92 300.58 7.88 0.79 
11 196.08 9.49 0.86 285.59 9.17 0.83 321.26 7.37 0.67 
12 200.25 9.29 0.77 287.32 9.11 0.76 328.57 7.21 0.60 
13 205.56 9.05 0.70 295.80 8.85 0.68 321.35 7.37 0.57 
14 205.32 9.06 0.65 289.79 9.04 0.65 321.40 7.37 0.53 
15 205.79 9.04 0.60 297.59 8.80 0.59 322.57 7.34 0.49 
16 208.41 8.93 0.56 295.83 8.85 0.55 321.43 7.37 0.46 

 

Table A6. Elapsed time, speedup, and efficiency on the 16-core system using the 15-feature dataset 
 Naïve Bayes Logistic Regression Decision Tree 

Total 
Process 

Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency Elapsed 
Time 

(s) 

Speedup Efficiency 

1 1691.89 1.00 1.00 2418.56 1.00 1.00 2127.95 1.00 1.00 
2 855.21 1.98 0.99 1230.21 1.97 0.98 1080.38 1.97 0.98 
3 583.84 2.90 0.97 834.93 2.90 0.97 726.27 2.93 0.98 
4 436.66 3.87 0.97 631.12 3.83 0.96 550.11 3.87 0.97 
5 348.40 4.86 0.97 505.65 4.78 0.96 438.75 4.85 0.97 
6 295.40 5.73 0.95 425.31 5.69 0.95 366.18 5.81 0.97 
7 252.58 6.70 0.96 366.98 6.59 0.94 312.17 6.82 0.97 
8 218.24 7.75 0.97 322.76 7.49 0.94 277.06 7.68 0.96 
9 196.42 8.61 0.96 285.90 8.46 0.94 243.65 8.73 0.97 

10 175.60 9.64 0.96 259.94 9.30 0.93 219.33 9.70 0.97 
11 159.54 10.60 0.96 235.40 10.27 0.93 199.41 10.67 0.97 
12 146.30 11.56 0.96 219.89 11.00 0.92 182.97 11.63 0.97 
13 134.28 12.60 0.97 200.53 12.06 0.93 169.73 12.54 0.96 
14 126.20 13.41 0.96 187.88 12.87 0.92 158.16 13.45 0.96 
15 116.85 14.48 0.97 174.61 13.85 0.92 146.72 14.50 0.97 
16 110.30 15.34 0.96 163.48 14.79 0.92 137.47 15.48 0.97 
17 139.12 12.16 0.72 197.26 12.26 0.72 175.63 12.12 0.71 
18 133.26 12.70 0.71 187.65 12.89 0.72 167.38 12.71 0.71 
19 127.77 13.24 0.70 182.32 13.27 0.70 158.96 13.39 0.70 
20 121.16 13.96 0.70 174.31 13.87 0.69 152.33 13.97 0.70 
21 116.23 14.56 0.69 165.11 14.65 0.70 145.35 14.64 0.70 
22 112.51 15.04 0.68 163.79 14.77 0.67 138.92 15.32 0.70 
23 115.36 14.67 0.64 162.19 14.91 0.65 144.17 14.76 0.64 
24 111.15 15.22 0.63 160.37 15.08 0.63 139.79 15.22 0.63 
25 107.42 15.75 0.63 153.21 15.79 0.63 137.86 15.44 0.62 
26 104.90 16.13 0.62 153.23 15.78 0.61 134.11 15.87 0.61 
27 103.00 16.43 0.61 149.28 16.20 0.60 129.83 16.39 0.61 
28 101.24 16.71 0.60 143.01 16.91 0.60 127.94 16.63 0.59 
29 98.46 17.18 0.59 140.31 17.24 0.59 123.50 17.23 0.59 
30 96.37 17.56 0.59 136.67 17.70 0.59 120.84 17.61 0.59 
31 93.45 18.10 0.58 133.63 18.10 0.58 117.62 18.09 0.58 
32 91.94 18.40 0.58 131.16 18.44 0.58 115.07 18.49 0.58 
33 93.13 18.17 0.55 134.91 17.93 0.54 117.19 18.16 0.55 
34 94.33 17.94 0.53 133.61 18.10 0.53 118.13 18.01 0.53 
35 94.21 17.96 0.51 133.55 18.11 0.52 117.47 18.11 0.52 
36 95.43 17.73 0.49 135.43 17.86 0.50 121.35 17.54 0.49 
37 95.65 17.69 0.48 133.31 18.14 0.49 119.08 17.87 0.48 
38 94.59 17.89 0.47 134.45 17.99 0.47 119.64 17.79 0.47 
39 95.77 17.67 0.45 133.32 18.14 0.47 119.86 17.75 0.46 
40 96.55 17.52 0.44 133.17 18.16 0.45 120.42 17.67 0.44 

 


