

J. Innovative Eng. Nat. Sci., vol. 5, no. 2, pp. 704-719, 2025.

http://doi.org/10.61112/jiens.1639780

*Corresponding author. Tel.: +90-222-239-3750 / 6936; e-mail: hakan.eren@ogu.edu.tr
704

PWFS: A scalable parallel Python module for wrapper feature selection

 Hakan Alp Erena,*, Savaş Okyayb and Nihat Adarb
aEskişehir Osmangazi University, Faculty of Engineering and Architecture, Department of Software Engineering, 26040, Eskişehir, Türkiye.
bEskişehir Osmangazi University, Faculty of Engineering and Architecture, Department of Computer Engineering, 26040, Eskişehir, Türkiye.

I. INTRODUCTION

Despite advancements in hardware and software technologies that have greatly improved the processing speed of

general-purpose computers, there remain certain computational tasks where performance is lacking. This is

particularly accurate for areas such as medical applications, artificial intelligence, scientific simulations, and brute

force algorithms. Moreover, the size of the data affects the total runtime in addition to the complexity of the

problem. High-performance computing (HPC) is operated to complete such time-consuming problems by

parallelizing the tasks. Supercomputers with many computational nodes can achieve HPC; nevertheless, this

choice is not always efficient due to cost and accessibility. Alternatively, it is possible to compute in parallel by

dividing the task into subtasks and distributing the workload among multiple processors [1].

Machine learning techniques require extensive mathematical operations and a large amount of data. A model

utilizing lots of data is more effective in making predictions more accurate; building a model concurrently working

on all available processors determines the achievable highest performance. Employing all features when training

a model may not always be efficient in any research, especially when working with a considerable number of

features. The size of the dataset can be reduced by evaluating which features should be used to achieve the highest

gain.

A R T I C L E I N F O

A B S T R A C T

Article history:
Received 14 February 2025
Received in revised form 6 April 2025
Accepted 27 April 2025

Available online

 In the field of machine learning, the feature selection process is a crucial step, and it can significantly impact
the performance of predictive models. Despite the existence of various time-efficient algorithms, the only
method that guarantees problem optimization is exhaustive search, but it requires an enormous computational
load. Although the exhaustive search ensures the best feature selection, a lifetime would not be enough after
certain large feature counts. This study proposes a generic, scalable open-source parallel Python module to
find the best wrapper feature subset in a fully optimized execution time, especially for reasonable feature
counts. This parallel wrapper feature selection module, PWFS, is independent of machine learning algorithms
and can function with user-defined methods. The framework promises maximum benefit on the machine
learning side by empowering parallel performance and efficiency. The system design is built on the most
efficient message-passing communication, where the framework distributes the computational load equally
among the parallel agents via feature masking. The module is validated on two workstations, one of which is
hyper-threading capable. An overall performance gain of 19.77% is achieved with hyper-threading. Various
scenarios and experiments yield different speedups and efficiencies up to 96.74%, validating the flexible
design of the proposed parallel framework. The source code of the module is available at
https://github.com/haeren/parallel-feature-selector and https://pypi.org/project/parallel-feature-selector/.

Keywords:
Parallel programming
Open-source software
Feature selection
Exhaustive search
Message passing
Python
Machine learning

mailto:hakan.eren@ogu.edu.tr
https://orcid.org/0000-0001-6105-158X
https://orcid.org/0000-0003-3955-6324
https://orcid.org/0000-0002-0555-0701
https://github.com/haeren/parallel-feature-selector
https://pypi.org/project/parallel-feature-selector/

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

705

Machine learning is utilized in many fields of data science effectively, especially for detecting the most efficient

characteristics of data, i.e., feature subsets. There are various feature selection algorithms, such as forward

selection, backward elimination, and exhaustive search [2]. Even though the former two are time-efficient, there

is no guarantee of acquiring the best result. Besides, testing different combinations of features is a wise strategy

when it comes to determining the contribution of each individual feature to general success. The exhaustive search

[3] considers all possible feature combinations to achieve the best result. But the operation is costly and time-

consuming since the number of subsets increases exponentially for each additional feature. A dataset with f features

has 2f-1 feature subsets in total. The brute force search for large f values can only be completed in a reasonable

time with a parallel approach.

In filter feature selection approaches, such as regression, etc., the techniques are independent of classifiers and run

more quickly. On the other hand, the wrapper approaches are integrated with learning algorithms for the most

optimized classification performance [4].

In this study, we offer a PWFS (Parallel Wrapper Feature Selection) framework that applies brute force methods

for selected NP-complete problems. The user can determine the NP-complete problem by providing appropriate

algorithms and datasets. While brute force is typically inefficient for large problem sizes, it provides a baseline for

evaluating performance and can serve as a fallback when more efficient algorithms are not available. Thus, PWFS

can extend the capabilities of brute force methods for NP-complete problems by leveraging the technological limits

of current state-of-the-art parallel architectures. By distributing the workload and exploring solution space in

parallel, parallel computing offers the potential to tackle larger instances and achieve performance improvements,

albeit within the inherent complexity limitations of NP-complete problems. This parallel exploration of different

solution paths can potentially lead to the discovery of solutions or acceptable approximations in a reasonable time

frame.

The source code of the PWFS module is available at https://github.com/haeren/parallel-feature-selector and

https://pypi.org/project/parallel-feature-selector/. The proposed parallel wrapper framework aims that users can

operate parallel feature selection on tabular datasets using any machine learning algorithm. The main operation is

independent of such parameters and distributes the computational load among the processes. A simple algorithmic

flow of the generic framework is illustrated in Figure 1. Each bullet in the figure matches one step in the overall

flow. The first step is to choose the dataset that will be used to train the machine learning algorithm. In this parallel

machine learning process, the masked features are distributed across multiple machines or cores. The next step is

to choose the machine learning algorithm that will be used to learn from data. Different machine learning

algorithms may be affected by the parallel process in dissimilar ways. The third step involves configuring the

parameters of the machine learning algorithm and the parallel run. This may include setting the number of

machines or cores to use, specifying how data should be distributed, and tuning other parameters that affect the

performance of the parallel run. The penultimate step involves implementing the proposed algorithm using the

chosen machine learning algorithm and parallel run configuration. The final step is to analyze the results of the

parallel workflow.

https://github.com/haeren/parallel-feature-selector
https://pypi.org/project/parallel-feature-selector/

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

706

Figure 1. Simple flow of the PWFS framework

The processes operate on their separate data while running the same program. This approach is categorized as a

single program multiple data (SPMD) and supports both distributed and shared memory architectures. Machine

learning models are trained with different subsets in parallel, and the most successful results are reported together

with the corresponding subsets. The developed module has been tested on two workstations, one of which is hyper-

threading capable. The parallel algorithm was analyzed with various classifiers on datasets with different feature

counts. The high-efficiency values observed in the results validate the effectiveness of the algorithm design. A

graphical abstract indicating the paper structure and containing a detailed flowchart is in Figure 2.

Figure 2. Paper structure and detailed flowchart

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

707

There are many studies on feature processing in the field of machine learning. The correct use of features is one

of the essential topics, undoubtedly. Acquiring high performance and eliminating the curse of dimensionality

issues might be the most noteworthy. For this purpose, some researchers have developed feature selection libraries

and tools. Some other researchers have parallelized the feature subset search with various methods to achieve high

performance in a shorter time.

Nersisyan et al. [3] proposed ExhauFS, a command-line implementation of the exhaustive search approach for

classification and survival regression, supporting Python multiprocessing module parallel execution, in which each

process performs a search on its own set of k-element feature combinations; however, the focus was not

parallelization and the hardware performance analysis. Bolón-Canedo, Sánchez-Marono, and Cervino-Rabunal [5]

proposed a general framework for feature selection by partitioning the data vertically and parallelizing the process.

In this approach, the data is partitioned by features, and stable feature sets are obtained with filters. The features

obtained from partitions were combined into a subset. Improvement in runtime is observed in the experiments

using three different datasets. Roffo [6] developed a feature selection library named FSLib, available for MATLAB.

Yu, Ding, and Wu [7] presented an online streaming feature selection library for MATLAB and Octave. Horn, Pack,

and Rieger [8] proposed the autofeat Python library for automated feature engineering and selection. The scikit-

learn style linear regression and classification models are available in the library. Masoudi-Sobhanzadeh,

Motieghader, and Masoudi-Nejad [9] developed a software named FeatureSelect for feature selection. The

software is compatible with. mat, .xls, .txt input file extensions. Data normalization and fuzzification can be applied

to the data. Available learning algorithms consist of support vector machines, decision trees, and artificial neural

networks. Users can select a filter or wrapper method. The software generates a detailed report about performance

metrics. Pilnenskiy and Smetannikov [10] emphasized that the Python programming language was becoming

increasingly popular in the field of machine learning, and there was a need for tools. They presented an open-

source feature selection library named ITMO FS, compatible with scikit-learn.

Zhao et al. [11] used variance analysis for large-scale feature selection and implemented two parallel modes named

symmetric multiprocessing and massive parallel processing. The algorithm has support for supervised and

unsupervised feature selection. Stojanovski [12] analyzed the performance of the parallel approach for exhaustive

search. The importance of mutual assistance between parallel agents and dynamic load balancing was emphasized.

Sun and Li [13] proposed a data-intensive parallel feature selection method based on the MapReduce model. Zhou

et al. [14] introduced a parallel feature selection method inspired by group testing. The method easily scales to

millions of features and instances by taking advantage of parallelism. El-Alfy and Alshammari [15] used a parallel

genetic algorithm in MapReduce for feature subset selection. The dataset was divided into smaller parts to

distribute the workload among the nodes. Gieseke et al. [16] implemented parallel subset selection for linear

regression and a brute-force method to select an optimal feature subset with few features. The implementation was

analyzed on different processor types. Li et al. [17] proposed a parallel feature selection method based on

MapReduce for text classification. The method was used to reduce the computational cost of mutual information

to find the correlations between variables. The results showed that it could be applied to large-scale problems in

many fields. González-Domínguez et al. [18] introduced a parallelized minimum redundancy maximum relevance

(mRMR) implementation called fast-mRMR-MPI. Distributed memory clusters were used with the message

passing interface (MPI) and OpenMP. The parallel implementation allowed feature analysis that takes hours using

mRMR to be completed in seconds with the same result. Nguyen et al. [19] used the trace criterion in linear

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

708

discriminant analysis to parallelize the feature selection process. Vivek, Ravi, and Krishna [20] proposed a scalable

feature selection method for big data using parallel hybrid wrappers based on evolutionary algorithms.

This study presents an exhaustive wrapper feature selection method that exploits parallel processing as a fully

optimized Python module. It aims to compare the performances of all feature subsets in a reasonable time with

high efficiency. The module is designed to be compatible with scikit-learn and user-defined machine learning

algorithms. Comprehensive design is not limited to a specific problem and can be used for general purposes. The

design spends minimum time on interprocessor communication and achieves the best use of parallelism by

distributing the computational load equally to the workers.

II. EXPERIMENTAL METHOD

The proposed PWFS framework is discussed in two subsections: design and implementation. The first subsection

focuses on the parallel structure of the algorithm, and the second explains the implementation parameters.

2.1 Design

The problem is optimized in parallel through the functions provided by the MPI communication standard. There

are various commands for this purpose, such as send, receive, scatter, and gather. These commands are utilized to

provide communication between processes, especially between the main process (master) and the remaining

processes (slaves). Point-to-point (P2P) communication is performed with the send and receive commands. The

scatter and gather commands allow collective communication between all processes. In the proposed method, the

feature subset indices assigned to each process are distributed with the scatter operation. The results of each

process are collected by the master process with the gather operation. The method is designed to have the least

number of communications between processes by using the most appropriate parallel operations. Hence, the effect

of communication on the runtime is minimal compared to the computation and can be ignored. The relationship

between processes, i.e., communication scheme, is listed step by step in Table 1. The visualized version can be

followed in Figure 3 in the same order.

Table 1. Communication and computation tasks
 MASTER SLAVEs
 MPI Initialize

1. Calculate the feature subset interval for each process
Each process will have ∼(2f-1)/p subsets to analyze

2. Scatter p intervals Scatter p intervals
3. Compute cvAccuracy and find top n subsets Compute cvAccuracy and find top n subsets
4. Gather p × n cvAccuracy and subsets Gather p × n cvAccuracy and subsets
5. Sort the p × n cvAccuracy to find top n subsets
6. Find the accuracies for top n subsets
7. Gather p execution times Gather p execution times
8. Write the results into file
 MPI Finalize

The PWFS framework is specifically designed to avoid redundant evaluations of feature subsets. Each possible

subset is uniquely represented by a binary index corresponding to its feature mask, and the total search space is

partitioned into non-overlapping intervals that are distributed across processes using MPI scatter operations. This

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

709

exhaustive yet coordinated division ensures that each subset is evaluated exactly once during execution,

eliminating redundancy and enabling efficient use of computational resources throughout the parallel process.

The number of computations increases exponentially with the number of features. Each feature subset has a unique

index between 1 and 2f-1, where f is the number of features. The master process adjusts feature subset intervals for

each subtask. Thus, feature subsets are distributed evenly among the p processes. Chunk size is (2f-1)/p and equal

for all processes when 2f-1 is divisible by p. If not, an arrangement is made for the smallest multiple of p greater

than 2f-1.

Figure 3. Visualized algorithm steps

The binary form of an index value is used to detect favorable features to include. Each binary digit represents a

feature. The features included in a subset can be expressed with 1, similar to bit masking. Each process converts

the indices to binary form to fetch feature masks. Table 2 shows a case of five processes using feature masks to

find which feature(s) to include among four features. In this example, the number of feature subsets is perfectly

divisible by the number of processors. In other cases, the balanced distribution settings are adjusted.

Table 2. Example of 4-feature masking for five processes
Process Interval Index Mask f4 f3 f2 f1

1 [1, 3]
1 0001 
2 0010 
3 0011  

2 [4, 6]
4 0100 
5 0101  
6 0110  

3 [7, 9]
7 0111   
8 1000 
9 1001  

4 [10, 12]
10 1010  
11 1011   
12 1100  

5 [13, 15]
13 1101   
14 1110   
15 1111    

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

710

A machine learning model is trained with each feature subset to get accuracy scores. The models’ performances

are calculated using k-fold cross-validation (CV) for each subset. The algorithm checks whether a subset has fewer

features besides the validation score during the search. The processes find the candidate solutions which are the

most successful subsets in the given local index interval. The master process collects, sorts, and analyzes the

candidate solutions during the test phase to get the results. The pseudocode of the module is given in Algorithm 1.

Algorithm 1. Pseudocode of the algorithm
Input : p = size
 f = number of features
 n = output size
Output : bestScores = list of zeros with the length of n initially

if Master then
 length = 2f−1
 Divide the subset index interval [1, length] into equal p
end
scatter(p intervals)
for i = intervalStart to intervalEnd do
 subset = Fetch feature mask (binarized i)
 cvAccuracy = Train a model with the masked features
 if cvAccuracy > min(bestScores) then
 Replace subset with the minimum scored subset
 (removing subsets having more features is prioritized)
 else if cvAccuracy = min(bestScores) then
 if subset has fewer features then
 Replace subset with a subset having min(bestScores)
 end
 end
end
gather(p × n subsets)
if Master then
 Take top n subsets based on cvAccuracy
 Compute test accuracies for n subsets
end
gather(p elapsed times)
if Master then
 Write test results and performance statistics to output files
end

2.2 Implementation

As previously mentioned, the framework is implemented as an open-source Python module. The module has

several dependencies, such as MPI for Python (mpi4py), scikit-learn, and pandas. mpi4py package allows Python

programs to exploit multiple processors [21]. scikit-learn provides functions for machine learning algorithms [22],

and tabular data can be easily manipulated with pandas [23]. The feature selection function in the module has nine

parameters in total, as shown in Table 3.

The PWFS framework is designed to be model-agnostic and dataset-independent for structured tabular data. It

supports any dataset that can be represented as a pandas DataFrame, and any estimator that implements the

standard scikit-learn interface—i.e., with fit() and predict() methods. This includes both built-in scikit-learn

models and custom user-defined estimators. By decoupling the feature selection mechanism from the internal

structure of the estimator, PWFS ensures broad flexibility and applicability across various use cases, provided that

the estimator adheres to the required interface.

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

711

Table 3. The list of parameters in the feature selection function
Parameter Description
data Dataset as pandas.DataFrame
estimator scikit-learn estimator object
testSize Test size between 0 and 1 for train/test split
randomState Random state for train/test split
cv Number of folds for cross-validation
topScoreNo Number of the output feature subsets
shuffle To shuffle the dataset before train/test split
timeResultFile Output file path for elapsed time per process
scoreResultFile Output file path for scores and feature subsets

The first parameter data is a pandas data frame containing the dataset. The second parameter estimator is a scikit-

learn estimator object. User-defined learning algorithms can be used as an estimator. The first two parameters

have no default value. The third parameter testSize is used to split the dataset into train and test sets with the given

ratio. The ratio must be between 0 and 1. The fourth parameter randomState controls the random number generator

while shuffling the dataset before train/test split. Integer values can be used to get reproducible output. The fifth

parameter cv is the number of folds for cross-validation. The function applies 5-fold cross-validation by default.

The sixth parameter topScoreNo specifies the number of feature subsets in the output. The seventh parameter

shuffle is a boolean variable that controls shuffling before data split. By default, the dataset is shuffled. The last

two parameters define the paths of the output files. The function saves the best feature subsets and the execution

times of the processes in two separates .csv files.

III. RESULTS AND DISCUSSIONS

The proposed framework was tested on two workstations with the highest number of available cores. To conduct,

analyze, and report the experiments within a reasonable time frame, datasets with an appropriate number of

features were selected, as shown in Table 4. Although the framework is fully capable of operating on datasets with

significantly higher dimensionality, the experiments focused on these selected datasets to ensure the timely and

reproducible completion of all scenarios. The inherent scalability of the framework allows it to be extended to

high-dimensional data using more powerful computing infrastructures, such as HPC clusters.

Table 4. Dataset characteristics used in the experiments

Dataset
Name

Number of Features
Used

Number of Samples
Used

Presence of Missing
Values

Number of
Classes

Indian Liver Patient 10 570 N/A 2
Electrical Grid Stability Simulated 13 1500 N/A 2
Student Academic Performance 15 480 N/A 3

Datasets with different numbers of features and similar numbers of samples were collected from the UCI Machine

Learning Repository to analyze the effect of the number of active processes and different numbers of features on

the performance. The first dataset Indian Liver Patient (ILP) has 10 features, and the second dataset Electrical

Grid Stability Simulated (EGSS) consists of 13 features. The last dataset Students’ Academic Performance (SAP),

in which categorical attributes were encoded, has 15 features. Since the main motivation is to analyze the effect of

the number of active processes and there is more or less the same number of instances for the aforementioned

datasets, the minor effect in the sample count variations affecting the completion time and the negligible parallel

performance loss resulting from the instance counts were ignored. To interpret the effect over the runtime of

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

712

different kinds of learning approaches, various learning algorithms were selected in the experiments, namely,

probabilistic classifier Naïve Bayes (NB), linear classifier logistic regression (LR), and tree-based classifier

decision tree (DT). Nevertheless, the comprehensive design is not limited to a specific selection and can work with

similar learning algorithms. A custom machine learning algorithm can also be integrated into the module, and the

PWFS framework guarantees to find the best feature subset for given machine learning parameters. To test this,

experiments were repeated multiple times with each learning algorithm and dataset combination. All individual

test cases with the same machine learning parameters in the parallel workload have identical classification results,

which validates the machine learning side. In detail, all random seeds were set to the same value for reproducibility.

Accordingly, the effect of tested machine learning algorithms on the runtime shows similar characteristics in both

systems. The shortest runtime is generally observed with the Naïve Bayes due to its computation complexity. Since

the maximum benefit is achieved within the scope of machine learning, to reveal parallel performance and

efficiency, cost analysis within the scope of parallel computing is structured based on the parallel environment and

hardware parameters selected during runtime.

The number of cores in the system is an important parameter that affects the parallel runtime in addition to the

dataset and the machine learning algorithm. A physical processor can be used as two logical processors with hyper-

threading [24]. In this way, the performance of some MPI applications can be improved. The performance gain

varies depending on the nature of the application. Since computational-intensive applications are likely to utilize

CPU resources highly, the chance for performance improvement with hyper-threading is lower [25]. It is possible

to increase performance by up to 30% with Intel® hyper-threading technology [24]. For this purpose, two

workstations, specifically one of which is hyper-threading capable, were selected to perform the experiments. The

first system has dual Intel Xeon E5-2620 v4 @ 2.10 GHz processors with eight cores and sixteen threads (a total

of sixteen cores and thirty-two threads), 16 GB 2133 MHz DDR4 RAM. The second system has Intel Xeon Bronze

3104 1.7 GHz processor with twelve cores and twelve threads (ten cores participated in the experiments), 32 GB

2666 MHz DDR4 RAM.

Regarding reliability, the procedure was repeated multiple times to mitigate the randomness effect and provide

stable analyses. In each independent analysis, the folds were shuffled, and the experiments were repeated five

times in total on both workstations. The results obtained were evaluated together, and the average of all individual

test results was reported finally.

Figure 4. Elapsed time for the (a) 10-core and (b) 16-core systems

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

713

The execution times obtained with different numbers of processes are shown in Figure 4 (see the tables in

Appendix A for detailed information about the values). In all plot-related visuals, the (a) parts symbolize the 10-

core workstation while (b) is for the hyper-threading capable 16-core workstation. Tests performed on the 10-core

system show improvement in runtime up to ten processes. The same outcome applies to the 16-core system up to

the full load. The notable effect of hyper-threading is evident between 17 and 32 processes. The minimum runtime

is achieved when all processes are loaded with hyper-threading.

(a)

(b)

Figure 5. Speedup for the (a) 10-core and (b) 16-core systems

(a)

(b)

Figure 6. Efficiency for the (a) 10-core and (b) 16-core systems

𝑆𝑆(𝑝𝑝) =
𝑇𝑇𝑠𝑠
𝑇𝑇𝑝𝑝

 (1)

𝐸𝐸(𝑝𝑝) =
𝑆𝑆(𝑝𝑝)
𝑝𝑝

 (2)

Two important performance metrics are frequently discussed in literature to measure the effect of a parallel design.

In Eq. (1), speedup gives the ratio of the computation time for the sequential algorithm utilizing one processor to

the time for the parallel algorithm utilizing p processors. If the speedup factor is p, then it is called to have a p-fold

speedup (i.e., the highest performance is achieved) [26]. In Eq. (2), efficiency indicates how efficiently p

processors are utilized [26].

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

714

The speedup values for both systems are shown in Figure 5. In theory, a linear increase is expected till reaching

the full load. However, the behavior of the linear increase changes in the orange line with circles on the 10-core

system (with a lower RAM capacity) due to the computation complexity and memory usage of decision tree

algorithm and increased number of features. Besides, there is a linear increase for all lines on the 16-core system.

There is still an increase in the speedup after the full-core-load processes with hyper-threading; this is a solid

indicator to interpret the contribution of hyper-threading. In the experiment with the highest speedup value, a

16.29% performance gain is achieved with hyper-threading. In general, there is a performance increase of up to

19.77%.

Efficiency graphs obtained from the speedup values are given in Figure 6. The efficiency is around 95% for the

full load on the 10-core system. On the 16-core system, the efficiency is over 90% without hyper-threading.

Although there is a sudden decrease in efficiency at 17 processes, the hyper-threading impact is reflected in the

performance afterward. Notably, higher efficiency is achieved for a higher number of features.

IV. CONCLUSIONS

In order to construct better machine learning models, it is necessary to identify the features that will provide the

highest success. Although there are time-efficient algorithms for this process, exhaustive search is the only method

that guarantees finding the best results. In this study, a novel parallel framework, PWFS, is developed as a Python

module to find the best feature subset(s) of a dataset in a reasonable time. The framework promises the maximum

benefit on the machine learning side by underlining parallel performance and efficiency. PWFS has a considerable

number of programmatic features. While developing the parallel algorithm, a limited set of MPI instructions

ensuring efficient communication were used so that the proposed algorithm can easily be adapted to Hadoop

clusters on cloud systems. The proposed method aims to reduce the overall runtime in exhaustive feature search

to an acceptable level proportional to the number of cores with a scalable SPMD design. For performance analysis,

different scenarios are realized on two different workstations, one of which is hyper-threading capable. An overall

performance gain of 19.77% is achieved with hyper-threading. Various experiments yield vivid speedups and

efficiencies up to 96.74%. The high-efficiency values obtained in the experimental results confirm that this method

is suitable for runtime-optimized feature selection. In addition, a custom machine learning algorithm might also

be executed in the flexible module. Since the generic open-source module is independent of the dataset and any

machine learning algorithm, researchers working on different subjects can benefit. New program features,

considering more effective hardware utilization and more efficient dynamic load balancing, while incorporating

advanced feature engineering techniques along with new performance evaluations, are planned for future releases.

While GPU-based solutions are known to accelerate massively parallel numerical computations, the PWFS

framework was deliberately implemented using CPU-based parallelism due to practical, architectural, and

compatibility considerations. The primary target of the framework is traditional machine learning algorithms—

such as decision trees, logistic regression, and Naïve Bayes—which typically do not benefit significantly from

GPU acceleration, as they rely more on conditional logic and branching structures than on large-scale matrix

operations. Additionally, PWFS is built upon the scikit-learn ecosystem, which is inherently optimized for CPU

usage and lacks native support for GPU execution. Ensuring compatibility with scikit-learn was a key design goal,

as it allows seamless integration with a wide range of existing models and promotes broad accessibility. Future

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

715

work may consider GPU-supported extensions, especially for use cases that involve deep learning or large-scale

numerical operations.

Compared to existing feature selection approaches, PWFS offers several notable advantages. Filter-based methods

are typically faster but ignore the interaction between features and classifiers. Wrapper methods, while more

accurate, are computationally expensive. PWFS bridges this gap by offering an exhaustive wrapper method

enhanced with parallel processing. Unlike most existing tools, it is fully compatible with scikit-learn and supports

any model implementing standard fit() and predict() methods. Its open-source implementation, ease of integration,

and model-agnostic design make it highly adaptable for various real-world use cases. While this study focuses on

implementation and performance within parallel environments, future work may include direct benchmarking with

other popular feature selection tools to further validate these advantages.

REFERENCES

1. Okyay S, Adar N (2018) Parallel 3D brain modeling & feature extraction: ADNI dataset case study. 14th
International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer
Engineering (TCSET), Lviv-Slavske, Ukraine, Feb. 20-24. https://doi.org/10.1109/TCSET.2018.8336172

2. Jovi A, Brki K, Bogunovi N (2015) A review of feature selection methods with applications. 38th
International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, May 25-29. https://doi.org/10.1109/MIPRO.2015.7160458

3. Nersisyan S, Novosad V, Galatenko A, Sokolov A, Bokov G, Konovalov A et al (2022) ExhauFS: exhaustive
search-based feature selection for classification and survival regression. PeerJ 10:e13200.
https://doi.org/10.7717/peerj.13200

4. Okyay S, Adar N (2021) Filter Feature Selection Analysis to Determine the Characteristics of Dementia.
Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University 29(1):20–7.
https://doi.org/10.31796/ogummf.768872

5. Bolón-Canedo V, Sánchez-Marono N, Cervino-Rabunal J (2014) Toward parallel feature selection from
vertically partitioned data. ESANN 2014 proceedings, European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, Belgium, Apr. 23-25.

6. Roffo G (2016) Feature selection library (MATLAB toolbox). arXiv preprint arXiv:160701327.
7. Yu K, Ding W, Wu X (2016) LOFS: A library of online streaming feature selection. Knowledge-Based

Systems 113:1–3. https://doi.org/10.1016/j.knosys.2016.08.026
8. Horn F, Pack R, Rieger M (2019) The autofeat python library for automated feature engineering and

selection. Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML
PKDD 2019, Würzburg, Germany, Sep. 16-20.

9. Masoudi-Sobhanzadeh Y, Motieghader H, Masoudi-Nejad A (2019) FeatureSelect: a software for feature
selection based on machine learning approaches. BMC Bioinformatics 20:1–17.
https://doi.org/10.1186/s12859-019-2754-0

10. Pilnenskiy N, Smetannikov I (2020) Feature selection algorithms as one of the python data analytical tools.
Future Internet 12(3):54. https://doi.org/10.3390/fi12030054

11. Zhao Z, Zhang R, Cox J, Duling D, Sarle W (2013) Massively parallel feature selection: an approach based
on variance preservation. Mach Learning 92:195–220. https://doi.org/10.1007/s10994-013-5373-4

12. Stojanovski TD (2014) Performance of exhaustive search with parallel agents. Turkish Journal of Electrical
Engineering and Computer Sciences 22(5):1382–94. https://doi.org/10.3906/elk-1210-105

13. Sun Z, Li Z (2014) Data intensive parallel feature selection method study. International Joint Conference on
Neural Networks (IJCNN), Beijing, China, Jul. 6-11. https://doi.org/10.1109/IJCNN.2014.6889409

14. Zhou Y, Porwal U, Zhang C, Ngo HQ, Nguyen X, Ré C et al (2014) Parallel feature selection inspired by
group testing. Advances in Neural Information Processing Systems 27.

15. El-Alfy ESM, Alshammari MA (2016) Towards scalable rough set based attribute subset selection for
intrusion detection using parallel genetic algorithm in MapReduce. Simulation Modelling Practice and
Theory 64:18–29. https://doi.org/10.1016/j.simpat.2016.01.010

16. Gieseke F, Polsterer KL, Mahabal A, Igel C, Heskes T (2017) Massively-parallel best subset selection for
ordinary least-squares regression. IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu,
HI, USA, Nov. 27 – Dec. 1. https://doi.org/10.1109/SSCI.2017.8285225

https://doi.org/10.1109/TCSET.2018.8336172
https://doi.org/10.1109/MIPRO.2015.7160458
https://doi.org/10.7717/peerj.13200
https://doi.org/10.31796/ogummf.768872
https://doi.org/10.1016/j.knosys.2016.08.026
https://doi.org/10.1186/s12859-019-2754-0
https://doi.org/10.3390/fi12030054
https://doi.org/10.1007/s10994-013-5373-4
https://doi.org/10.3906/elk-1210-105
https://doi.org/10.1109/IJCNN.2014.6889409
https://doi.org/10.1016/j.simpat.2016.01.010
https://doi.org/10.1109/SSCI.2017.8285225

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

716

17. Li Z, Lu W, Sun Z, Xing W (2017) A parallel feature selection method study for text classification. Neural
Computing and Applications 28:513–24. https://doi.org/10.1007/s00521-016-2351-3

18. González-Domínguez J, Bolón-Canedo V, Freire B, Touriño J (2019) Parallel feature selection for
distributed-memory clusters. Information Sciences 496:399–409. https://doi.org/10.1016/j.ins.2019.01.050

19. Nguyen T, Phan N, Nguyen N, Nguyen BT, Halvorsen P, Riegler MA (2022) Parallel feature selection based
on the trace ratio criterion. International Joint Conference on Neural Networks (IJCNN), Padua, Italy, Jul.
18-23. https://doi.org/10.1109/IJCNN55064.2022.9892181

20. Vivek Y, Ravi V, Krishna PR (2023) Scalable feature subset selection for big data using parallel hybrid
evolutionary algorithm based wrapper under apache spark environment. Cluster Computing 26(3):1949–83.
https://doi.org/10.1007/s10586-022-03725-w

21. Dalcin LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using Python. Advances in
Water Resources 34(9):1124–39. https://doi.org/10.1016/j.advwatres.2011.04.013

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12(85):2825–30.

23. McKinney W (2010) Data structures for statistical computing in Python. SciPy 445(1):51–6.
https://doi.org/10.25080/Majora-92bf1922-00a

24. Marr DT, Binns F, Hill DL, Hinton G, Koufaty DA, Miller JA et al (2002) Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology Journal 6(1).

25. Tau Leng RA, Hsieh J, Mashayekhi V, Rooholamini R (2002) An empirical study of hyper-threading in high
performance computing clusters. Linux HPC Revolution 45.

26. Eager DL, Zahorjan J, Lazowska ED (1989) Speedup versus efficiency in parallel systems. IEEE
Transactions on Computers 38(3):408–23. https://doi.org/10.1109/12.21127

https://doi.org/10.1007/s00521-016-2351-3
https://doi.org/10.1016/j.ins.2019.01.050
https://doi.org/10.1109/IJCNN55064.2022.9892181
https://doi.org/10.1007/s10586-022-03725-w
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/12.21127

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

717

APPENDICES

APPENDIX A

Table A1. Elapsed time, speedup, and efficiency on the 10-core system using the 10-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 60.99 1.00 1.00 76.94 1.00 1.00 82.97 1.00 1.00
2 30.72 1.99 0.99 38.27 2.01 1.01 42.37 1.96 0.98
3 20.35 3.00 1.00 26.07 2.95 0.98 28.68 2.89 0.96
4 16.00 3.81 0.95 19.52 3.94 0.99 21.58 3.84 0.96
5 12.65 4.82 0.96 15.87 4.85 0.97 17.27 4.81 0.96
6 10.73 5.68 0.95 13.30 5.79 0.96 14.42 5.75 0.96
7 9.26 6.59 0.94 11.22 6.85 0.98 12.47 6.65 0.95
8 8.17 7.46 0.93 10.09 7.62 0.95 11.23 7.39 0.92
9 7.37 8.28 0.92 9.11 8.44 0.94 9.92 8.36 0.93

10 6.68 9.13 0.91 8.30 9.27 0.93 9.07 9.14 0.91
11 6.84 8.91 0.81 8.69 8.86 0.81 9.72 8.53 0.78
12 7.31 8.35 0.70 9.10 8.45 0.70 9.96 8.33 0.69
13 7.67 7.95 0.61 9.59 8.03 0.62 10.52 7.89 0.61
14 7.66 7.96 0.57 9.15 8.41 0.60 10.41 7.97 0.57
15 7.67 7.95 0.53 9.48 8.12 0.54 10.45 7.94 0.53
16 7.84 7.78 0.49 9.55 8.05 0.50 10.28 8.07 0.50

Table A2. Elapsed time, speedup, and efficiency on the 16-core system using the 10-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 55.84 1.00 1.00 66.59 1.00 1.00 74.31 1.00 1.00
2 28.62 1.95 0.98 33.95 1.96 0.98 37.76 1.97 0.98
3 19.37 2.88 0.96 23.10 2.88 0.96 25.61 2.90 0.97
4 14.54 3.84 0.96 17.57 3.79 0.95 19.22 3.87 0.97
5 11.74 4.76 0.95 14.01 4.75 0.95 15.48 4.80 0.96
6 9.71 5.75 0.96 11.92 5.58 0.93 12.90 5.76 0.96
7 8.42 6.63 0.95 10.00 6.66 0.95 11.15 6.66 0.95
8 7.41 7.54 0.94 9.00 7.40 0.93 9.83 7.56 0.95
9 6.57 8.50 0.94 7.95 8.38 0.93 8.74 8.51 0.95

10 5.93 9.42 0.94 7.10 9.38 0.94 7.87 9.44 0.94
11 5.46 10.23 0.93 6.77 9.84 0.89 7.24 10.26 0.93
12 4.99 11.20 0.93 6.07 10.97 0.91 6.66 11.16 0.93
13 4.64 12.03 0.93 5.63 11.83 0.91 6.12 12.14 0.93
14 4.32 12.92 0.92 5.26 12.65 0.90 5.77 12.89 0.92
15 4.11 13.59 0.91 4.94 13.48 0.90 5.45 13.63 0.91
16 3.82 14.62 0.91 4.66 14.28 0.89 5.06 14.69 0.92
17 4.80 11.64 0.68 5.76 11.57 0.68 6.38 11.65 0.69
18 4.66 11.98 0.67 5.55 11.99 0.67 6.21 11.96 0.66
19 4.51 12.37 0.65 5.33 12.48 0.66 5.97 12.44 0.65
20 4.33 12.91 0.65 5.14 12.95 0.65 5.73 12.98 0.65
21 4.14 13.47 0.64 4.92 13.52 0.64 5.49 13.53 0.64
22 4.10 13.63 0.62 4.87 13.67 0.62 5.36 13.86 0.63
23 4.09 13.66 0.59 4.83 13.78 0.60 5.34 13.91 0.60
24 4.05 13.78 0.57 4.79 13.89 0.58 5.27 14.09 0.59
25 3.96 14.12 0.56 4.75 14.01 0.56 5.22 14.24 0.57
26 3.89 14.35 0.55 4.67 14.26 0.55 5.13 14.47 0.56
27 3.79 14.74 0.55 4.50 14.79 0.55 4.95 15.01 0.56
28 3.74 14.93 0.53 4.45 14.95 0.53 4.92 15.10 0.54
29 3.73 14.99 0.52 4.38 15.19 0.52 4.83 15.40 0.53
30 3.64 15.32 0.51 4.32 15.42 0.51 4.73 15.72 0.52
31 3.54 15.77 0.51 4.20 15.84 0.51 4.59 16.20 0.52
32 3.48 16.04 0.50 4.16 16.00 0.50 4.52 16.42 0.51
33 3.65 15.28 0.46 4.22 15.77 0.48 4.59 16.17 0.49
34 3.67 15.22 0.45 4.28 15.56 0.46 4.77 15.57 0.46
35 3.84 14.56 0.42 4.36 15.26 0.44 5.00 14.87 0.42
36 3.89 14.34 0.40 4.33 15.37 0.43 4.86 15.28 0.42
37 3.90 14.32 0.39 4.44 14.99 0.41 4.95 15.02 0.41
38 3.77 14.83 0.39 4.49 14.82 0.39 4.93 15.07 0.40
39 3.92 14.24 0.37 4.57 14.57 0.37 4.84 15.35 0.39
40 3.91 14.29 0.36 4.54 14.66 0.37 5.01 14.82 0.37

 J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025. Parallel feature selection

718

Table A3. Elapsed time, speedup, and efficiency on the 10-core system using the 13-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 468.85 1.00 1.00 706.02 1.00 1.00 864.57 1.00 1.00
2 235.97 1.99 0.99 360.22 1.96 0.98 446.59 1.94 0.97
3 158.15 2.96 0.99 245.11 2.88 0.96 301.05 2.87 0.96
4 123.85 3.79 0.95 183.64 3.84 0.96 226.00 3.83 0.96
5 96.49 4.86 0.97 149.30 4.73 0.95 182.76 4.73 0.95
6 82.97 5.65 0.94 125.63 5.62 0.94 153.35 5.64 0.94
7 70.27 6.67 0.95 109.39 6.45 0.92 132.35 6.53 0.93
8 62.04 7.56 0.94 94.48 7.47 0.93 115.93 7.46 0.93
9 57.46 8.16 0.91 84.30 8.37 0.93 103.62 8.34 0.93

10 50.63 9.26 0.93 76.89 9.18 0.92 94.04 9.19 0.92
11 51.11 9.17 0.83 76.57 9.22 0.84 94.62 9.14 0.83
12 54.26 8.64 0.72 77.22 9.14 0.76 95.47 9.06 0.75
13 53.72 8.73 0.67 79.92 8.83 0.68 96.99 8.91 0.69
14 55.80 8.40 0.60 78.79 8.96 0.64 97.29 8.89 0.63
15 55.26 8.49 0.57 82.30 8.58 0.57 99.24 8.71 0.58
16 54.79 8.56 0.53 81.89 8.62 0.54 99.02 8.73 0.55

Table A4. Elapsed time, speedup, and efficiency on the 16-core system using the 13-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 429.53 1.00 1.00 616.98 1.00 1.00 745.55 1.00 1.00
2 215.20 2.00 1.00 315.54 1.96 0.98 378.44 1.97 0.99
3 147.72 2.91 0.97 215.89 2.86 0.95 256.45 2.91 0.97
4 110.49 3.89 0.97 163.34 3.78 0.94 195.15 3.82 0.96
5 88.60 4.85 0.97 131.02 4.71 0.94 156.31 4.77 0.95
6 74.17 5.79 0.97 109.94 5.61 0.94 131.78 5.66 0.94
7 63.42 6.77 0.97 93.25 6.62 0.95 112.14 6.65 0.95
8 54.97 7.81 0.98 82.23 7.50 0.94 98.74 7.55 0.94
9 49.16 8.74 0.97 73.36 8.41 0.93 87.36 8.53 0.95

10 44.10 9.74 0.97 66.98 9.21 0.92 79.38 9.39 0.94
11 40.54 10.59 0.96 60.52 10.20 0.93 72.35 10.31 0.94
12 37.04 11.60 0.97 55.66 11.08 0.92 67.00 11.13 0.93
13 34.14 12.58 0.97 50.74 12.16 0.94 60.84 12.25 0.94
14 31.97 13.43 0.96 47.26 13.06 0.93 56.24 13.26 0.95
15 29.75 14.44 0.96 44.14 13.98 0.93 52.47 14.21 0.95
16 27.97 15.35 0.96 42.38 14.56 0.91 50.25 14.84 0.93
17 35.17 12.21 0.72 50.82 12.14 0.71 59.23 12.59 0.74
18 33.53 12.81 0.71 48.56 12.70 0.71 58.11 12.83 0.71
19 32.28 13.30 0.70 47.02 13.12 0.69 55.87 13.34 0.70
20 30.48 13.93 0.70 44.98 13.72 0.69 52.90 14.09 0.70
21 29.96 14.34 0.68 43.10 14.32 0.68 51.10 14.59 0.69
22 28.96 14.83 0.67 41.95 14.71 0.67 50.60 14.74 0.67
23 29.25 14.68 0.64 41.94 14.71 0.64 49.90 14.94 0.65
24 28.64 15.00 0.62 41.15 14.99 0.62 48.32 15.43 0.64
25 27.81 15.44 0.62 39.77 15.52 0.62 47.56 15.67 0.63
26 27.29 15.74 0.61 39.48 15.63 0.60 46.72 15.96 0.61
27 26.40 16.27 0.60 38.80 15.90 0.59 45.22 16.49 0.61
28 25.74 16.68 0.60 37.61 16.41 0.59 44.09 16.91 0.60
29 25.22 17.03 0.59 36.24 17.03 0.59 42.78 17.43 0.60
30 24.49 17.54 0.58 36.34 16.98 0.57 42.00 17.75 0.59
31 23.92 17.96 0.58 35.21 17.53 0.57 40.95 18.21 0.59
32 23.69 18.13 0.57 35.00 17.63 0.55 40.60 18.36 0.57
33 24.01 17.89 0.54 35.25 17.50 0.53 40.66 18.34 0.56
34 24.12 17.81 0.52 35.31 17.47 0.51 41.11 18.13 0.53
35 24.39 17.61 0.50 34.79 17.74 0.51 40.65 18.34 0.52
36 24.43 17.58 0.49 34.91 17.67 0.49 40.50 18.41 0.51
37 25.03 17.16 0.46 34.71 17.78 0.48 41.22 18.09 0.49
38 24.84 17.29 0.45 35.24 17.51 0.46 41.08 18.15 0.48
39 24.84 17.29 0.44 36.26 17.02 0.44 41.48 17.97 0.46
40 24.90 17.25 0.43 36.08 17.10 0.43 41.11 18.13 0.45

Parallel feature selection J. Innovative Eng. Nat. Sci. vol. 5, no.2, pp. 704-719, 2025.

719

Table A5. Elapsed time, speedup, and efficiency on the 10-core system using the 15-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 1860.31 1.00 1.00 2618.79 1.00 1.00 2368.78 1.00 1.00
2 951.50 1.96 0.98 1359.31 1.93 0.96 1185.19 2.00 1.00
3 650.94 2.86 0.95 905.17 2.89 0.96 800.31 2.96 0.99
4 485.09 3.83 0.96 676.45 3.87 0.97 599.86 3.95 0.99
5 387.57 4.80 0.96 549.24 4.77 0.95 490.72 4.83 0.97
6 326.42 5.70 0.95 462.69 5.66 0.94 407.17 5.82 0.97
7 277.84 6.70 0.96 401.10 6.53 0.93 351.56 6.74 0.96
8 244.92 7.60 0.95 349.65 7.49 0.94 310.42 7.63 0.95
9 219.81 8.46 0.94 315.90 8.29 0.92 307.62 7.70 0.86

10 196.06 9.49 0.95 286.10 9.15 0.92 300.58 7.88 0.79
11 196.08 9.49 0.86 285.59 9.17 0.83 321.26 7.37 0.67
12 200.25 9.29 0.77 287.32 9.11 0.76 328.57 7.21 0.60
13 205.56 9.05 0.70 295.80 8.85 0.68 321.35 7.37 0.57
14 205.32 9.06 0.65 289.79 9.04 0.65 321.40 7.37 0.53
15 205.79 9.04 0.60 297.59 8.80 0.59 322.57 7.34 0.49
16 208.41 8.93 0.56 295.83 8.85 0.55 321.43 7.37 0.46

Table A6. Elapsed time, speedup, and efficiency on the 16-core system using the 15-feature dataset
 Naïve Bayes Logistic Regression Decision Tree

Total
Process

Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency Elapsed
Time

(s)

Speedup Efficiency

1 1691.89 1.00 1.00 2418.56 1.00 1.00 2127.95 1.00 1.00
2 855.21 1.98 0.99 1230.21 1.97 0.98 1080.38 1.97 0.98
3 583.84 2.90 0.97 834.93 2.90 0.97 726.27 2.93 0.98
4 436.66 3.87 0.97 631.12 3.83 0.96 550.11 3.87 0.97
5 348.40 4.86 0.97 505.65 4.78 0.96 438.75 4.85 0.97
6 295.40 5.73 0.95 425.31 5.69 0.95 366.18 5.81 0.97
7 252.58 6.70 0.96 366.98 6.59 0.94 312.17 6.82 0.97
8 218.24 7.75 0.97 322.76 7.49 0.94 277.06 7.68 0.96
9 196.42 8.61 0.96 285.90 8.46 0.94 243.65 8.73 0.97

10 175.60 9.64 0.96 259.94 9.30 0.93 219.33 9.70 0.97
11 159.54 10.60 0.96 235.40 10.27 0.93 199.41 10.67 0.97
12 146.30 11.56 0.96 219.89 11.00 0.92 182.97 11.63 0.97
13 134.28 12.60 0.97 200.53 12.06 0.93 169.73 12.54 0.96
14 126.20 13.41 0.96 187.88 12.87 0.92 158.16 13.45 0.96
15 116.85 14.48 0.97 174.61 13.85 0.92 146.72 14.50 0.97
16 110.30 15.34 0.96 163.48 14.79 0.92 137.47 15.48 0.97
17 139.12 12.16 0.72 197.26 12.26 0.72 175.63 12.12 0.71
18 133.26 12.70 0.71 187.65 12.89 0.72 167.38 12.71 0.71
19 127.77 13.24 0.70 182.32 13.27 0.70 158.96 13.39 0.70
20 121.16 13.96 0.70 174.31 13.87 0.69 152.33 13.97 0.70
21 116.23 14.56 0.69 165.11 14.65 0.70 145.35 14.64 0.70
22 112.51 15.04 0.68 163.79 14.77 0.67 138.92 15.32 0.70
23 115.36 14.67 0.64 162.19 14.91 0.65 144.17 14.76 0.64
24 111.15 15.22 0.63 160.37 15.08 0.63 139.79 15.22 0.63
25 107.42 15.75 0.63 153.21 15.79 0.63 137.86 15.44 0.62
26 104.90 16.13 0.62 153.23 15.78 0.61 134.11 15.87 0.61
27 103.00 16.43 0.61 149.28 16.20 0.60 129.83 16.39 0.61
28 101.24 16.71 0.60 143.01 16.91 0.60 127.94 16.63 0.59
29 98.46 17.18 0.59 140.31 17.24 0.59 123.50 17.23 0.59
30 96.37 17.56 0.59 136.67 17.70 0.59 120.84 17.61 0.59
31 93.45 18.10 0.58 133.63 18.10 0.58 117.62 18.09 0.58
32 91.94 18.40 0.58 131.16 18.44 0.58 115.07 18.49 0.58
33 93.13 18.17 0.55 134.91 17.93 0.54 117.19 18.16 0.55
34 94.33 17.94 0.53 133.61 18.10 0.53 118.13 18.01 0.53
35 94.21 17.96 0.51 133.55 18.11 0.52 117.47 18.11 0.52
36 95.43 17.73 0.49 135.43 17.86 0.50 121.35 17.54 0.49
37 95.65 17.69 0.48 133.31 18.14 0.49 119.08 17.87 0.48
38 94.59 17.89 0.47 134.45 17.99 0.47 119.64 17.79 0.47
39 95.77 17.67 0.45 133.32 18.14 0.47 119.86 17.75 0.46
40 96.55 17.52 0.44 133.17 18.16 0.45 120.42 17.67 0.44

