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Abstract: Alzheimer's disease is a long-term neurological disorder that affects memory and other cognitive abilities. Physostigmine is 

a drug still used in treating symptoms associated with this disease, with its primary mechanism of action being AChE inhibition. AChE 

plays a crucial role in cholinergic neurotransmission, and its inhibition has been linked to the improvement of symptoms in 

Alzheimer's disease. In this study, 34 phytochemicals detected through LC-MS/MS analysis of 13 plant species were investigated as 

potential alternative drug candidates to physostigmine. For this purpose, docking studies followed by molecular dynamics simulations 

and MM/GBSA energy calculations were performed. The results revealed that 24 out of 34 phytochemicals were either very close to 

physostigmine (MM/GBSA binding affinity: -26.102 kcal/mol) or better AChE inhibitors. Additionally, it was determined that 

physostigmine increased the flexibility of the molecule when bound to the AChE enzyme, a unique result compared to our drug 

candidates. Our research emphasizes the potential of plant-derived compounds as AChE inhibitors and presents promising candidates 

for future drug development studies. Furthermore, physostigmine's property of increasing enzyme flexibility offers a new perspective 

in drug design and indicates that the role of this feature in therapeutic efficacy needs to be examined in more detail. 
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1. Introduction 
Acetylcholinesterase (AChE) plays a pivotal role in the 

cholinergic system of the central nervous system by 

terminating acetylcholine-mediated neurotransmission. 

Inhibition of AChE has been a target in treating 

neurodegenerative diseases due to its involvement in the 

pathogenesis of conditions such as Alzheimer's disease 

(AD) (Dorronsoro et al., 2003). Zimmerman & Soreq, 

(2006). AChE inhibitors are used to increase the 

concentration of acetylcholine in the synaptic cleft, 

enhancing cholinergic transmission and mitigating 

symptoms of AD. Notably, research highlights the 

multifaceted nature of neurodegenerative diseases, 

emphasizing the necessity for drugs that target various 

aspects of these conditions simultaneously (Kabir et al., 

2019). Lustoza Rodrigues et al. (2023). The development 

of AChE inhibitors, including tacrine-based compounds, 

has shown promise in addressing the complex, 

multifactorial nature of AD, underscoring the ongoing 

need for innovative treatments that can slow disease 

progression and improve the quality of life for affected 

individuals (Bortolami et al., 2021).  

In addition to Alzheimer's disease, AChE inhibitors play a 

critical role in the treatment of various other medical 

conditions, highlighting their broad therapeutic potential. 

For instance, Myasthenia Gravis (MG), a chronic 

autoimmune neuromuscular disorder characterized by 

weakness and rapid fatigue of the voluntary muscles, 

benefits from AChE inhibitors. These inhibitors are used 

to increase neuromuscular transmission and improve 

muscle strength by preventing the breakdown of 

acetylcholine at the neuromuscular junction, offering 

symptomatic relief to patients with MG (Punga & 

Stålberg, 2009). Mantegazza et al. (2020). Beyond 

neurological disorders, the modulation of AChE activity 

by certain glucans suggests a therapeutic pathway for 

diseases where the cholinergic system plays a part in the 

pathophysiology (Reale & Costantini, 2021). Benfante et 

al, (2021). However, the application of AChE inhibitors 

extends beyond these specific conditions, as ongoing 

research continues to uncover their utility in treating a 

spectrum of diseases where cholinergic dysfunction is 

implicated. This expanding role of AChE inhibitors 

underscores the importance of these compounds in 
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modern pharmacotherapy, offering hope for more 

effective treatments for a range of disorders beyond their 

traditional applications (Mukherjee et al., 2007). 

Walczak-Nowicka & Herbet (2021). 

The search for new AChE inhibitors has led to a focus on 

plant-derived compounds, which offer a diverse range of 

potential therapeutic benefits (Howes et al., 2003). 

Huang et al. (2013). Murray et al. (2013). Ranjan & 

Kumari (2017). Alkaloids and certain meroterpenoids 

from fungi have shown strong AChE inhibitory activity, 

suggesting their potential in treating neurodegenerative 

disorders (Huang et al., 2013). Plant-derived compounds, 

including alkaloids, coumarins, flavonoids, and stilbenes, 

have also been identified as promising AChE inhibitors 

(Murray et al., 2013). These compounds have the 

potential to address the cholinergic deficit in Alzheimer's 

disease and other neurodegenerative disorders (Ranjan 

& Kumari, 2017). The exploration of these natural 

compounds not only contributes to our understanding of 

their biological activities but also supports the 

development of new therapeutic agents (Howes et al., 

2003). Mukherjee et al., (2007). 

Physostigmine is a drug used in the treatment of 

Alzheimer's disease and known as a cholinesterase 

inhibitor (Hampel et al., 2018). Although physostigmine 

does not permanently cure Alzheimer's disease, it is 

known to alleviate symptoms and slow the progression 

of the disease (Jenike et al., 1990). Coelho & Birks, 

(2001). There are studies on the positive effects of this 

drug on memory loss, which is one of the most important 

symptoms of the disease (Thal et al., 1983). Therefore, 

comparing a potential drug candidate with 

physostigmine will give an idea about the effectiveness of 

the drug. 

This study aimed to discover new AChE inhibitors that 

could be used in the treatment of Alzheimer's disease. 

For this purpose, docking studies supported by molecular 

dynamics simulation and MM/GBSA analyses were 

conducted to determine the AChE enzyme inhibition 

potential of molecules derived from selected plant 

extracts. It was shown that molecules such as 

Epigallocatechin, Hesperidin, and Rutin could effectively 

inhibit this enzyme by binding to AChE with high binding 

affinity, and the potential of drug candidates was 

compared with physostigmine, which is used as an 

Alzheimer's drug in the market. The results reveal that 

the candidate molecules are very strong cholinesterase 

inhibitors and also show that the drug called 

physostigmine, which exhibits weaker binding activity 

compared to our candidate molecules, contributes to the 

flexibility of the protein during molecular dynamics 

simulation. 

The results of this research represent an important step 

in the drug development process for the treatment of 

Alzheimer's disease. Detailed examination of the 

interactions between selected molecules and AChE will 

provide a better understanding of their potential effects 

on the disease mechanism. Moreover, our study is 

important in showing that plant-derived molecules can 

be considered as new drug candidates for the treatment 

of Alzheimer's disease. While all 34 different chemical 

compounds obtained from plant extracts had docking 

scores of -5.7 or lower, MM/GBSA calculations performed 

for 24 molecules showing better binding scores than -7.0 

kcal showed that all molecules are potential drug 

candidates. Therefore, the effectiveness of plant-based 

drugs in Alzheimer's treatment has been theoretically 

proven through this study. In light of these findings, it is 

of great importance to evaluate these molecules not only 

for Alzheimer's disease but also for myasthenia gravis or 

glucan-related disorders targeting AChE inhibition in 

future studies. Further investigation of these candidate 

molecules through preclinical and clinical studies may 

contribute to the development of new and effective 

approaches for the treatment of these diseases. 

 

2. Materials and Methods  
2.1. Material 

Between March and October 2023, parts of certain plants 

(leaves, flowers, seeds, and above-ground parts) were 

commercially purchased from various local markets, and 

their extracts were obtained. Their chemical 

compositions and contents were then analyzed using LC-

MS/MS (Table 1). 

2.2 Extraction process and determination of chemical 

compositions 

The 15-gram powdered plant samples were taken in a 

glass flask and extracted in a magnetic stirrer with 300 

ml of methanol at a constant stirring rate of 250 rpm. 

This process was repeated three times. 

The obtained extracts underwent the evaporation 

process after having undergone the filtrating (Watman 

No. 1 filter) process and the crude extracts were 

obtained. 1 mg/mL of crude extracts were dissolved in 

methanol for LC-MS/MS analysis. Before LC-ESI/MS 

analysis, the solution was transferred to a vial and 

filtered using a 0.22 mm filter. For chromatographic 

separation, a Poroshell 120 EC-C18 column (100 mm, 4.6 

mm I.D., 2.7 mm) was used. The filtered plant mixture 

was moved down the column by a carrier phase made of 

0.1% formic acid and a mobile phase made of 5 mM 

ammonium formate. Mobile phase B was also used, which 

was made up of 0.1% formic acid in methanol and 5 mM 

ammonium formate (Baran et al., 2023). 
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Table 1. Details of plant species used 

Species Used Parts Locality 

Mentha longifolia (L.) HUDSON Leaf Mardin/Local Market 

Celtis tournefortii LAM. Leaf Mardin/Local Market 

Elaeagnus angustifolia L. Flower and Leaf Mardin/Midyat Local Market 

Morus rubra L. Leaf Diyarbakir/Local Market 

Pistacia eurycarpa L. Leaf Mardin/Local Market 

Thymus fallax  Leaf Mardin/Local Market 

Gundelia tournefortii L.  Above ground parts Diyarbakir/Local Market 

Foeniculum vulgare MILLER Seed Diyarbakir/Local Market 

Cucurbita moschata L. Leaf Diyarbakir/Local Market 

 

2.3. Selecting potential Drug Candidate Molecules: 

Among potential treatment approaches for Alzheimer's 

disease, the inhibition of AChE enzyme emerges as a 

significant strategy. In this context, molecules derived 

from natural sources attract attention as innovative drug 

candidates. Our research aims to discover new AChE 

inhibitors that could be used in the treatment of 

Alzheimer's disease. To achieve this, we first 

concentrated on extracts from a variety of botanical 

sources, such as the following: Mentha longifolia, Celtis 

tournefortii, Elaeagnus angustifolia, Morus rubra, Pistacia 

eurycarpa, Thymus fallax, Gundelia tournefortii, 

Foeniculum vulgare and Cucurbita moschata. These 

plants may have AChE inhibitory action and are 

commonly used in folk medicine to treat a variety of 

illnesses. 

The first phase of our research involved a comprehensive 

biochemical analysis of the selected botanical extracts, 

utilizing Gas Chromatography-Mass Spectrometry (GC-

MS) technology. This analysis enabled the detailed 

identification of active compounds within the extracts. 

The results revealed that each botanical extract contains 

rich and diverse molecular structures. The data obtained 

have been summarized in Table 2, listing each botanical 

extract and the identified active molecules in detail. All 

molecules selected for further study are based on these 

lists and are compounds naturally found in plants. The 

selected molecules were then subjected to a two-stage 

testing process. The first stage involved molecular 

docking in a computational environment. This method 

was used to assess the potential interaction mechanisms 

and binding affinities of the molecules with the AChE 

enzyme. The docking results demonstrated the 

interaction potentials and inhibition strengths of the 

molecules with AChE. 

The second stage was molecular dynamics (MD) analysis, 

conducted to examine the stability and dynamic behavior 

of the molecule-enzyme complexes over time. Based on 

the docking results, the MD analysis allowed us to 

evaluate how effective and stable the selected molecules 

are in a biological environment. This two-pronged 

approach has guided us in identifying potential AChE 

inhibitors that could be used in the treatment of 

Alzheimer's disease. As a result of our research, a list of 

promising molecules derived from specific plant extracts 

and exhibiting potential for AChE inhibition has been 

compiled. These molecules stand out as strong 

candidates for future preclinical and clinical studies.  

2.4. Docking Analysis: 

Docking analysis was conducted to theoretically 

elucidate the biological activity. For this purpose, 

Autodock Vina (Eberhardt et al., 2021) along with MGL 

TOOLS 1.5.6 (Morris et al., 2009) were utilized. The 3D 

mol files of the ligands were downloaded from the 

ChemSpider (Pence and Williams, 2010) and The 

Cambridge Structural Database (Groom et al., 2016), 

followed by optimization. The AChE protein was sourced 

from the RCSB Protein Data Bank (rcsb.org) (Berman, 

2000) with PDB ID: 6O4W. Due to the size of the protein 

being larger than the maximum size of the Autodock 

Tools gridbox, the protein was divided into chains A and 

B using the Chimera (Pettersen et al., 2004) software, and 

the ligands and water molecules within each chain were 

removed. With Autodock Tools (Morris et al., 2009), 

polar hydrogens and Kollman charges were added 

separately to each chain of the protein, a grid box was 

generated, and the chains were saved as pdbqt files with 

charges. Subsequently, the ligands were converted to 

pdbqt files using the prepare_ligands4.py program and a 

written shell script, and Gasteiger charges were added. 

Docking procedures were then initiated with vina. exe. 

Each ligand underwent separate docking processes with 

both the A and B chains. Upon completion of the docking 

process, the lowest score from each docking event for 

both chains A and B was taken as the basis, and the 

receptor-ligand interaction was visualized and analyzed 

in the Discovery Studio Visualizer (BIOVIA, 2019) 

program. 
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Table 2. Chemical profile data of used plants and docking score capacities 

Mentha longifolia (Leaf) 

Detected Components Docking Score (kcal/mol) 

Protocatechuic acid -6.50 

Chlorogenic acid -10.0 

Hydroxybenzaldeyde -5.80 

Caffeic Acid -7.50 

p-coumaric acid -7.20 

Salicylic Acid -6.50 

Resveratrol -9.20 

Trans-ferulic acid -7.30 

Scutellarin -9.90 

Rutin -11.4 

Naringenin -8.40 

Celtis tournefortii (Leaf) 

Detected Components  

Caffeic Acid -7.50 

Vanillin -6.00 

p-coumaric acid -7.20 

Isoquercitrin -8.50 

Quercetin -9.50 

Elaeagnus angustifolia (Fruit) 

Detected Components  

Gallic acid -6.50 

Protocatechuic acid -6.50 

Hydroxybenzaldeyde -5.80 

p-coumaric acid -7.20 

Elaeagnus angustifolia (Flower) 

Detected Components  

p-coumaric acid -7.20 

Trans-ferulic acid -7.30 

Sinapic acid -7.10 

Isoquercitrin -8.50 

Kaempferol-3-glucoside -8.20 

Fisetin -8.90 

Trans-cinnamic acid -7.10 

Naringenin -8.40 

Elaeagnus angustifolia (Leaf) 

Detected Components  

Vanillin -6.00 

p-coumaric acid -7.20 

Trans-ferulic acid -7.30 

Rutin -11.4 

Kaempferol-3-glucoside -8.20 

Fisetin -8.90 

Morus rubra (Leaf) 

Detected Components  

Gallic acid -6.50 

Protocatechuic acid -6.50 

Chlorogenic acid -10.0 

Hydroxybenzaldeyde -5.80 

p-coumaric acid -7.20 

Hesperidin -10.8 

Isoquercitrin -8.50 
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Table 2. Chemical profile data of used plants and docking score capacities (continued) 

Pistacia eurycarpa (Leaf) 

Detected Components Docking Score (kcal/mol) 

Shikimic acid -6.10 

Gallic acid -6.50 

Protocatechuic acid -6.50 

Epigallocatechin -7.40 

Catechin -9.20 

Caffeic Acid -7.50 

Vanillin -6.00 

p-coumaric acid -7.20 

Salicylic Acid -6.50 

Protocatehuic ethyl ester -6.50 

Hesperidin -10.8 

Isoquercitrin -8.50 

Kaempferol-3-glucoside -8.20 

Trans-cinnamic acid -7.10 

Quercetin -9.50 

Naringenin -8.40 

Thymus fallax (Leaf) 

Detected Components  

Gallic acid -6.50 

Chlorogenic acid -10.0 

Hydroxybenzaldeyde -5.80 

Caffeic Acid -7.50 

Syringic acid -6.50 

Vanillin -6.00 

p-coumaric acid -7.20 

Taxifolin -8.80 

Trans-ferulic acid -7.30 

Scutellarin -9.90 

Trans-cinnamic acid -7.10 

Quercetin -9.50 

Naringenin -8.40 

Biochanin A -9.80 

Gundelia tournefortii (Leaf) 

Detected Components  

Protocatechuic acid -6.50 

p-coumaric acid -7.20 

Coumarin      -7.30 

Trans-cinnamic acid -7.10 

Foeniculum vulgare (Seed) 

Detected Components  

Protocatechuic acid -6.50 

Chlorogenic acid -10.0 

Hydroxybenzaldeyde -5.80 

Vanillic acid -6.40 

Caffeic Acid -7.50 

Vanillin -6.00 

p-coumaric acid -7.20 

Trans-ferulic acid -7.30 

Isoquercitrin -8.50 

Kaempferol-3-glucoside -8.20 

Cucurbita moschata (Leaf) 

Detected Components  

Protocatechuic acid -6.50 

Hydroxybenzaldeyde -5.80 

Caffeine -5.70 

p-coumaric acid -7.20 
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2.5. Molecular Dynamics Simulation and MM/GBSA 

Calculations: 

Following the completion of the docking process with 

Autodock, where 24 ligands exhibited binding energies 

superior to -7.0 kcal/mol, molecular dynamics 

simulations were initiated. The preparation of simulation 

files was conducted using the tleap program within the 

Amber22 suite, employing ff19SB force fields for the 

protein and gaff2 for the ligands. The simulation 

environment was constituted by an OPCBOX water box 

with a 10 Å edge length, incorporating OPC water 

molecules. The OpenMM 7 software (Eastman et al., 

2017) facilitated the execution of the molecular dynamics 

simulation process, utilizing Nvidia Tesla A100 80 GB 

GPUs leased from Google Cloud for computational 

resources. 

To expedite the simulation process, following the 

generation of topology and coordinate files, a "hydrogen 

mass repartitioning" procedure was implemented using 

the parmed program with the hmassrepartition 

command in parmed program (Hopkins et al., 2015). 

Case et al. (2023). Subsequently, a two-phase 

minimization protocol was initiated. In the initial phase, 

the complex was constrained with a force constant of 500 

kcal/mol·Å², while water molecules were minimized over 

1000 steps using the Particle Mesh Ewald (PME) method 

with a 10Å cutoff. The second phase involved removing 

the force constant from the complex and minimizing the 

entire system using the same method, but with an 

increased cutoff of 12Å. 

The heating process was then initiated employing the 

Langevin thermostat and the SHAKE algorithm, 

maintaining a 12Å cutoff. The temperature was gradually 

increased to 298K in 1-degree increments. Upon reaching 

298K, molecular dynamics simulation was conducted 

under 1 atm pressure, with a 4 ps relaxation time, 

utilizing the same thermostat and algorithm. 

For rapid calculation of MM/GBSA energies during the 

preliminary trial, a 2 ns test was performed. 

Subsequently, the simulation was extended to 20 ns for 

molecules Hesperidin, Rutin, Chlorogenic acid, and 

Epigallocatechin, which exhibited the highest binding 

energies to Chain A, along with the Physostigmine 

molecule. As elaborated below, upon confirming the 

stability of RMSD values, it was determined that the 

simulation duration was sufficient, and the process was 

terminated. 

This methodological approach ensures a comprehensive 

exploration of the system's conformational space while 

maintaining computational efficiency. The use of 

hydrogen mass repartitioning and the two-step 

minimization process allows for a more stable simulation 

environment. The gradual heating and equilibration 

phases, followed by the production run, provide a robust 

framework for analyzing the molecular interactions and 

dynamics of the studied compounds. The extension of the 

simulation to 20 ns for selected molecules offers valuable 

insights into their long-term behavior and binding 

characteristics, particularly in comparison to the known 

inhibitor, physostigmine. The stability of RMSD values 

serves as a critical indicator of simulation convergence, 

validating the adequacy of the chosen simulation 

duration for capturing relevant molecular events. 

Additionally, the simulation phases were documented by 

generating output files in NetCDF format and saving 

checkpoint files at specified intervals. Upon the 

conclusion of the simulations, the ante-MMPBSA method 

was employed to generate prmtop files for the complex, 

ligand, and receptor, facilitating the computation of the 

binding energies of ligands to the receptor through 

MM/GBSA calculations. This process enabled a 

comprehensive analysis of the results from the molecular 

dynamics simulations and provided an assessment of the 

thermodynamic stability of the structures obtained 

during the simulation. 

 

3. Result and Discussion 
3.1. Docking Scores: 

The results from the docking analysis are presented in 

Table 3. Among the evaluated molecules, Rutin, 

Hesperidin, Luteolin, and Chlorogenic acid exhibit the 

most pronounced binding energies. The docking scores 

for these compounds were determined to be -11.4, -10.0, 

-10.0, and -10.0 kcal/mol, respectively. These energy 

values indicate that these molecules bind to the receptor 

with a high affinity. Other compounds listed in the table 

generally possess binding energies of -6.0 or more 

negative scores (Kurt et al., 2020). Kurt (2022). Upon a 

detailed analysis, it was discerned that Rutin, which has 

the lowest (the best) docking score, establishes pi-donor 

hydrogen bonds with TYR:334 and PHE:335 on the A 

chain, engages in a pi alkyl interaction with LEU:73, and 

forms conventional hydrogen bonds with ARG:293, 

PHE:292, TYR:338,121,69 THR:72, and SER:290. This 

multitude of interactions signifies that the molecule 

binds to the chain with considerable stability (Figure 1). 

When the same analysis was conducted for hesperidin, it 

was observed that the molecule forms a hydrogen bond 

with PHE:292 and a carbon-hydrogen bond with SER:200 

on the A chain of the AChE protein. These interactions 

appear to be sufficient for the molecule to bind robustly 

to the protein (Figure 2). 

Another compound demonstrating the highest docking 

score, Luteolin, was found to bind to the protein through 

the A chain via hydrogen bonds from PHE:292, GLY:119, 

and SER:200, and through a Pi-Sigma bond from TYR:338 

(Figure 3). 
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Figure 1. Docking interaction of Rutin with AChE-A Chain in 3D (left) and 2D (right). 
 

 
 

Figure 2. Docking interaction of Hesperidin with AChE-A Chain in 3D (left) and 2D (right). 

 
 

Figure 3. Docking interaction of Luteolin with AChE-A Chain in 3D (left) and 2D (right). 
 
Figure 4 illustrates the docking interaction of 

Chlorogenic acid with the AChE-A Chain, presented in 

both 3D (left) and 2D (right) representations. The 3D 

model on the left offers a spatial view of how Chlorogenic 

acid fits into the binding pocket of the AChE-A Chain, 

while the 2D diagram on the right provides a simplified 

representation of the key interactions. In the 3D model, 

we can observe the complex structure of Chlorogenic 

acid (shown in black) situated within the protein binding 

site. The amino acid residues involved in the interaction 

are depicted as stick models, with different colors 

representing various elements. 

The 2D diagram elucidates the specific interactions 

between Chlorogenic acid and the protein residues: Pi-

Sigma interactions are observed with PHE335 and 

TYR334, indicated by pink dashed lines. These 

interactions contribute to the stability of the binding. A 

hydrogen bond is formed with TRP83, shown by a purple 

dashed line. This bond likely plays a crucial role in 

anchoring the compound within the binding site. Several 

other amino acid residues are highlighted in green (e.g., 

ASP71, TYR121, TYR338, PHE294, PHE292, VAL291), 

suggesting their proximity to the binding site and 

potential involvement in creating a favorable binding 

environment. ARG293 is specifically labeled, indicating 

its importance in the binding interaction. The "Carbon pi-
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H" notation suggests a possible pi-hydrogen interaction 

with this residue. The purple-colored residues (TRP83, 

HIS444) appear to be involved in key interactions, 

possibly through aromatic or electrostatic contributions. 

This detailed visualization of the docking interaction 

provides valuable insights into the molecular basis of 

Chlorogenic acid's binding to the AChE-A Chain, which 

could be crucial for understanding its potential 

pharmacological effects or for guiding future drug design 

efforts targeting this protein. 

The binding sites and interactions of the remaining 

ligands with the protein are presented in Table 3 and 

Figure 5. Based on the data in the table, it can be posited 

that all evaluated molecules have potential as effective 

inhibitors for AChE. The table also suggests that binding 

predominantly occurs through the A chain, highlighting 

its significance in drug targeting. 

Following the binding analyses in Table 3, attempts were 

made to statistically identify the most active regions in 

chains A and B. For this purpose, a Python program was 

prepared that counts each binding site in Table 3 

individually. The results from the program can be seen in 

Table 4. Accordingly, the protein regions that interacted 

most with the ligands were TRY A:121, PHE A:292, TYR 

A:334, SER A:290, and GLU A:299 in chain A. The active 

region in chain B is significantly smaller compared to 

chain A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Docking interaction of Chlorogenic acid with AChE-A Chain in 3D (left) and 2D (right). 
 

 
 

Figure 5. Docking Score and MM/GBSA energy of 24 selected molecules. 
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Table 3. Binding energies of the ligands to which the docking process was applied. Since the AChE molecule is two-

chained, the docking process was applied separately for each chain, and the one with the lower energy was considered 

as the primary 
 

Compund Chain-a Chain-b 
Docking 

Score 
Binding 

Chain 

MM/GBSA 
Energy 

(kcal/mol) 
Binding Sides 

Rutin -11.4 -10.7 -11.4 chain a -52.792 

pi-donor: TYR A: 334, PHE A: 335; 
hyrogen bond(s): ARG A: 293, PHE A: 

292, TYR A: 338,121,69 THR A: 72, 
and SER A: 290 

Physostigmine* -8.30 -7.30 -8.30 chain a -26.102* 

vdw:ASP A:71 TYR A:338 PHE A:294 
TRP A:283 GLY A:118 PHE A:292 VAL 
A:291 pi-sigma: TRP A:83 TYR A:334 

pi-alkyl: HIS A:444 PHE A:335 
carbon-hydrogen bond:ARG A:293 

Hesperidin -10.8 -9.3 -10.8 chain a -54.666 
hydrogen bond(s): PHE A: 292; 

carbon-hydrogen bond(s): SER A:200 

Luteolin -10 -10 -10 chain a -30.993 
hydrogen bond(s): PHE A :292, GLY 

A: 119, and SER A: 200; Pi-Sigma 
bond(s): TYR A: 338 

Chlorogenic acid -10 -6.8 -10 chain a -53.408 
pi-donor: SER A: 290, GLY A: 119,  

SER A: 200, TYR A: 121; Donor-donor: 
ARG A: 293; Pi donor: TYR A: 338 

Scutellarin -9.9 -9.2 -9.9 chain a -36.892 
hydrogen bond(s): TYR A:334, THR A: 

72,ASP A: 71 

Biochanin A -9.8 -9.5 -9.8 chain a -46.935 
hydrogen bond(s): TYR A: 121, PHE 

A: 292; Pi-Donor:  TYR A: 338;Pi-
Sigma: TYR A :338 

Hesperetin -9.8 -8.9 -9.8 chain a -38.127 

hydrogen bond(s): SER A: 122,TYR A: 
121, PHE A: 292, HIS A: 444; Carbon-
Hydrogen Bonds: TYR A: 334, PHE A: 
335; Pi-Sigma: TYR A: 83, TYR A: 338 

Orobol -9.1 -9.8 -9.8 cahin b -34.515 
hydrogen bond(s): HIS B: 824, GLN 

B:828 

Quercetin -9.5 -9.2 -9.5 chain a -49.188 
hydrogen bond(s): SER A: 290, ARG 

A:293, TYR A: 121 

Morin -9.2 -9.4 -9.4 cahin b -51.763 
hydrogen bond(s): SER B: 830, TYR B: 

661, ASP B: 611 

Catechin -9.2 -9.2 -9.2 chain a -47.607 
donor-donor: PHE A: 292; pi-donor: 

TRP A: 283 

Resveratrol -9.2 -6.8 -9.2 chain a -43.97 hydrogen bond(s): SER A: 290 

Fisetin -8.9 -6.9 -8.9 chain a -24.935 
hydrogen bond(s): SER A: 290, ARG 

A: 293, TYR A: 121, PHE A: 292 

Taxifolin -8.8 -8.7 -8.8 chain a -35.834 
hydrogen bond(s): SER A: 290, TYR 
A:121, PHE A: 292, GLN A: 288; Pi-

Donor: TRP A: 283 

Isoquercitrin -8.5 -8.2 -8.5 chain a -34.91 

hydrogen bond(s): SER A: 290, TYR A 
:121, TYR A :338, PHE A:292, GLN A: 

288; Pi-Donor: HIS A: 284, PHE A: 
292; Carbon-Hydrogen: VAL A: 291 

Naringenin -8.4 -8.3 -8.4 chain a -33.171 
hydrogen bond(s): THR A: 72,  TYR A: 

121,  PHE A:292 

Kaempferol-3-
glucoside 

-8.1 -8.2 -8.2 cahin b -45.531 
hydrogen bond(s): PRO B: 772, THR 

B: 775; Carbon-Hydrogen Bonds: PRO 
B: 947,HIS B: 942,GLY B: 771 

Caffeic Acid -7.5 -5.7 -7.5 chain a -41.171 

hydrogen bond(s): GLU A: 199, TYR 
A: 334, TYR A: 338, ASP A: 71; 

Carbon-hydrogen bonds: THR A: 80, 
TRP A: 83 

Epigallocatechin -7.4 -6.7 -7.4 chain a -58.583 
hydrogen bond(s): SER A: 290, TYR A: 

69 

Coumarin -7.3 -6.9 -7.3 chain a -28.767 
hydrogen bond(s): SER A: 200; 
Carbon-Hydrogen: HIS A:444 

Trans-ferulic acid -7.3 -7.3 -7.3 chain a -22.007 
hydrogen bond(s): ARG A: 293; Pi-

donör: PYR A: 334 

p-coumaric acid -7.2 -7 -7.2 chain a -26.51 
hydrogen bond(s): TYR A: 121; 

Donor-donor: PHE A: 292 
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Table 3. Binding energies of the ligands to which the docking process was applied. Since the AChE molecule is two-

chained, the docking process was applied separately for each chain, and the one with the lower energy was considered 

as the primary (contunied) 
 

Compund Chain-a Chain-b 
Docking 

Score 
Binding 

Chain 

MM/GBSA 
Energy 

(kcal/mol) 
Binding Sides 

Trans-cinnamic acid -7.1 -7 -7.1 chain a -21.109 
hydrogen bond(s): TYR A: 334, TYR 

A: 338, ASP A: 71; Carbon-Hydrogen: 
TRP A: 83 

Sinapinic Acid -7.1 -6.5 -7.1 chain a -36.974 

hydrogen bond(s): GLU A: 199; Pi-
Sigma: TYR A: 334; Carbon-hydrogen 
bonds: TYR A: 121, SER A: 122, TRP 

A: 83, GLY A: 445 

Ethyl 
protocatechuate 

-6.8 -6.8 -6.8 chain a  
hydrogen bond(s): TYR A: 334, GLU 

A: 199; Pi-Donor: TRP A: 83;Pi-Sigma: 
PHE A: 335 

Gallic acid -6.4 -6.5 -6.5 cahin b  
hydrogen bond(s): TYR B: 661, ASP B: 

611; Pi Donor: TRP B:623 

Protocatechuic acid -6.5 -6.3 -6.5 chain a  
hydrogen bond(s): TYR A: 130, GLU 

A: 199;Pi Donor: TRY A:334; Pi-
Sigma: TRP A:83 

Salicylic Acid -6.5 -6.2 -6.5 chain a  
hydrogen bond(s): TYR A: 121, ASP A: 

71, TYR A: 338, TYR A: 334 

Syringic acid -6.5 -5.1 -6.5 chain a  

hydrogen bond(s): SER A: 290, TYR A: 
121, TYR A: 338, PHE A:292; Carbon-
Hydrogen: VAL A: 291; Pi-Sigma: TRP 

A: 283 

Vanillic acid -6.4 -6 -6.4 chain a  
hydrogen bond(s): TYR A: 121, TYR 

A: 338, PHE A: 292; Carbon-
Hydrogen: VAL A: 291 

Shikimic acid -6.1 -5.6 -6.1 chain a  
hydrogen bond(s): TYR A: 334, TYR 
A: 121, TYR A: 130, GLU A: 199; Pi-

Donör: TRP A: 83 

Vanillin -6 -5.3 -6 chain a  
hydrogen bond(s): PHE A: 292, TYR 

A: 338, TYR A: 121; Carbon-
Hydrogen: VAL A: 291 

Hydroxybenzaldeyde -5.8 -5.7 -5.8 chain a  
hydrogen bond(s): TYR A: 121, ARG 

A: 293, PHE A: 292 

Caffeine -5.7 -5.7 -5.7 chain a  

hydrogen bond(s): ASP A: 371, TYR A: 
334, TYR A: 338, GLU A: 199; Carbon-
Hydrogen Bonds: THR A: 80, TRP A: 

83 
 
Table 4: Count of binding sites from Table 3. Based on this, TRY A:121 has interacted the most with the docked ligands 

Chain A Chain B 

Binding Side Count Bindin Side Count 

TYR A: 121 15 TYR B: 661 2 

PHE A: 292 13 ASP B: 611 2 

TYR A: 338 13 HIS B: 824 1 

TYR A: 334 10 SER B: 830 1 

SER A: 290 9 PRO B: 772 1 

GLU A: 199 6 THR B: 775 1 

TRP A: 83 6 PRO B: 947 1 

ARG A: 293 5 HIS B: 942 1 

ASP A: 71 5 GLY B: 771 1 

VAL A: 291 5 
  

 

 

 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Barış KURT et al. 725 
 

3.2. Active Sites 

Table 4 displays the results of docking studies with AChE 

and identifies the amino acid residues where ligands 

most frequently bind on the enzyme. In CHAIN A, 

aromatic amino acid residues such as TYR A: 121, PHE A: 

292, and TYR A: 338 are observed to be common ligand 

binding sites. This suggests that ligands may form strong 

π-π interactions and hydrophobic contacts with these 

aromatic surfaces. In CHAIN B, interactions with various 

amino acids occur less frequently, indicating that ligands 

exhibit fewer specific interactions on CHAIN B compared 

to CHAIN A. We believe these findings will provide a 

foundation for a more detailed characterization of AChE's 

active sites and binding regions. 

3.3. Molecular Dynamics Simulation and MM/GBSA 

Results: 

The analysis of docking scores and MM/GBSA binding 

energies in Table 3 reveals a high affinity of a range of 

compounds to AChE, with several exhibiting particularly 

strong binding preferences. Compounds like Rutin and 

Hesperidin not only show favorable interactions with 

aromatic residues within Chain A, indicative of potent π-

π interactions, but also display consistently better 

MMGBSA binding energies, suggesting their potential as 

high-efficiency AChE inhibitors. This specificity, 

particularly in the hydrophobic pocket of Chain A, may 

account for the enhanced interaction strength, and the 

varied binding sites observed across the compounds 

emphasize the role of individual residue interactions in 

binding efficacy. Collectively, these insights offer a 

comprehensive foundation for advancing these 

compounds in the development of Alzheimer’s disease 

therapeutics. 

Initially, a 2 ns preliminary trial was conducted for all 

molecules with docking energies better than -7.0 

kcal/mol. Figure 5 shows the docking scores and 

MM/GBSA binding energies for the 24 selected 

molecules. Following this stage, MMGBSA energies were 

calculated and Table 3 was created. 

Based on the data in Table 3, the 4 molecules showing the 

best MMGBSA binding energy were selected and 

compared with physostigmine, the current Alzheimer's 

disease drug on the market. All 4 of these molecules 

exhibited better MMGBSA values than physostigmine. 

Consequently, the molecular dynamics simulation times 

of the selected chemicals and physostigmine were 

extended to 20 ns for re-examination. RMSF (Figure 6) 

and RMSD (Figure 7) graphs were plotted to examine the 

stability of the simulations. 

 

 
 

Figure 6. RMSF chart of Physostigmine, Hesperidin, Rutin, Chlorogenic acid, and Epigallocatechin. 
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Figure 7. RMSD Chart of Physostigmine, Hesperidin, Rutin, Chlorogenic acid, and Epigallocatechin. 
 

3.4. RMSF and RMSD 

Figure 6 is an RMSF (Root Mean Square Fluctuation) 

analysis showing the behavior of five different 

components (Physostigmine, Hesperidin, Rutin, 

Chlorogenic acid, and Epigallocatechin) over time. RMSF 

is a frequently used measure in molecular dynamics 

simulations and indicates how much molecules or atoms 

deviate from their average positions. The graph shows 

atomic fluctuations between the 540-residue chain-A and 

ligands. Physostigmine exhibits generally higher RMSF 

values compared to other compounds, indicating that 

Physostigmine affects a wider region of the protein or 

shows more dynamic interactions. We can interpret this 

as physostigmine's binding being more flexible compared 

to other molecules. 

For all components, significant peaks are observed 

especially in the 100-200 and 400-500 residue ranges. 

This indicates that these regions are more sensitive or 

flexible to ligand binding. Physostigmine significantly 

diverges from other compounds, especially in the 300-

400 residue range. This suggests that Physostigmine 

shows a unique interaction in this region or significantly 

affects the conformation of this region. 

Other compounds, Hesperidin, Rutin, Chlorogenic acid, 

and Epigallocatechin generally exhibit similar RMSF 

profiles. Among these molecules, Chlorogenic acid 

belongs to a phenolic acid group while the other 3 belong 

to the flavonoid group. This suggests that both phenolic 

acids and flavonoids may show similar effects, however, 

more detailed further studies focusing solely on this issue 

should be conducted to reach a definitive conclusion. All 

4 molecules exhibited similar properties with minor 

differences. 

Binding regions showing high RMSF values (e.g., 100-200 

and 400-500 residue ranges) may indicate potential 

ligand binding regions. These regions may be flexible or 

adaptive parts where compounds interact. 

Structural Stability: Regions showing low RMSF values 

(e.g., 0-100 and 200-300 residue ranges) may indicate 

more stable or rigid parts of the protein. These regions 

may be parts that maintain the structural integrity of the 

protein or are important for catalytic activity. 

The RMSD (Root Mean Square Deviation) analysis in 

Figure 7 examines the structural changes of five different 

compounds (Chlorogenic acid, Epigallocatechin, 

Hesperidin, Rutin, and Physostigmine) over a 20-

nanosecond molecular dynamics simulation. The analysis 

shows how the molecules deviate from their minimized 

initial geometries, and these changes can be interpreted 

as an indicator of the molecules' conformational 

dynamics. 

All molecules show conformational changes at the start 

of the simulation. After approximately 5 nanoseconds 

(ns), RMSD values for most compounds reach a relatively 

stable plateau, fluctuating around 1.5 angstroms (Å). This 

indicates structural stability observed throughout the 

simulation. Epigallocatechin has the highest RMSD 

values, generally ranging between 1.7-2.0 Å. This 

suggests that Epigallocatechin undergoes more 

conformational changes compared to other components, 

thus exhibiting a more dynamic structure. Chlorogenic 

Acid, while generally following a stable course, shows a 

notable peak around 10 ns. This indicates that the 

molecule undergoes a temporary conformational change 

during a specific time period. Hesperidin and Rutin 

exhibit similar and relatively low RMSD profiles. Both 

molecules generally show a stable RMSD of 1.5 Å, 

indicating that they display relative structural 

consistency throughout the simulation. Physostigmine, 

on the other hand, shows a profile relatively different 

from the others: While initially exhibiting an RMSD 

profile similar to other molecules, a decrease in RMSD 
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values was observed in the final part of the simulation 

(between 15-20 ns). This decrease indicates that 

Physostigmine becomes structurally more stable in the 

later stages of the simulation. 

 

4. Conclusion 
In conclusion, the 20 ns simulation time appears to 

provide sufficient equilibration for all components 

studied. While Epigallocatechin exhibits a dynamic 

structure, other compounds generally show more stable 

structures. These differences are important for better 

understanding the functionality and interactions of 

molecules in biological systems. 

This study aims to discover new AChE inhibitors that can 

be used in the treatment of Alzheimer's disease and to 

develop new, effective, and cost-efficient drugs that could 

serve as alternatives to physostigmine, which is currently 

used in treating Alzheimer's disase symptoms. 

Molecules obtained from selected plant extracts have 

played a critical role in identifying candidate molecules 

with AChE enzyme inhibition potential. Docking studies, 

molecular dynamics simulations, and MM/GBSA analyses 

have demonstrated that these molecules can effectively 

inhibit this enzyme by binding to AChE with high affinity. 
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