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Abstract
The objective of this paper is to investigate a semi-functional partial linear regression
model for spatial data. The estimators are constructed using a k-nearest neighbors local
linear method.Then, under suitable regularity conditions, we establish the asymptotic dis-
tribution of the parametric component and derive the uniform almost sure convergence
rate for the nonparametric component. To assess the performance of the proposed es-
timators, we performed both simulation studies and real-data analyses. The results are
compared with existing methods for semi-functional partial linear regression models using
cross-validation. Specifically, we evaluate the predictive performance in terms of mean
squared error and compare it against several benchmark estimators, including the kernel
estimator, the local linear estimator and the kNN estimator. This practical study clearly
demonstrates the feasibility and superiority of the local linear method estimator k-nearest
neighbors over competing methods. This is evidenced by the lower mean squared error
achieved by this estimator in both the simulation study and the real data application.
These results indicate that this hybrid approach effectively addresses the common issue of
bandwidth selection and yields estimators with reduced bias.
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1. Introduction
In recent years, spatial statistics for functional data has become a major research topic

in mathematics. It focuses on the modeling and analysis of data collected in a spatial
order and valued in functional spaces. Such data arise in various application fields, includ-
ing neuroimaging, epidemiology, chemistry, econometrics, oceanography, soil science, and
environmental sciences. For an introduction to the subject, we refer to the monographs of
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[53,54], while for theoretical and practical aspects of functional data analysis, we refer to
[37,39,42,61]. In addition, statistical methods for analyzing functional data are currently
undergoing intensive development. The reader may consult the survey articles by [9, 10]
or the work of [58] for more recent advances and further references.

The purpose of analyzing spatially correlated functional data is to identify inherent
spatial patterns that provide insight into the underlying spatial structure and dynamics
of the studied phenomena. The aim is also to develop models that can be used for predic-
tion or inference. In this context, nonparametric statistics provide a general framework
for this study, particularly in nonparametric involving functional predictors, which are
used to model the effect of a functional variable on a scalar response variable. For spa-
tially correlated functional data, this type of model was first considered and explored by
[30] using the non-parametric kernel method. Chouaf and Laksaci [29] proposed a func-
tional estimator of the regression function based on the local linear method (LLM), while
Saadaoui et al. [62] established the uniform almost complete convergence (with rate) of
this estimator. A method of estimating spatial k-nearest neighbors for multivariate data
was recently studied by [2]. An alternative approach based on robust kernel estimation
was explored by [14, 15]. In the context of spatial functional data with responses missing
at random, Alshahrani et al. [7] studied the kernel estimation of the regression function.

For a comprehensive discussion including state-of-the-art methodologies and applica-
tions in both parametric and non-parametric modeling of spatially correlated functional
data, we refer readers to the survey articles by [56, 60] and the references therein. For
reviews focused on nonparametric functional regression, see [37, 51]. However, in many
practical applications, the response variable may depend simultaneously on a vector of
scalar covariates and on one or more functional variables, commonly called hybrid data. In
such cases, semiparametric models offer a compelling and flexible framework. These mod-
els benefit, on the one hand, from the flexibility of parametric regression models and, on
the other hand, from the ability of nonparametric approaches to handle high-dimensional
and infinite-dimensional data. For advanced reviews on semiparametric modeling with
functional data, we refer the reader to [52,63].

The semi-functional partial linear regression (SFPLR) is a semiparametric regression
model that has received considerable attention in recent years. It is particularly suited for
applications where understanding dynamic relationships among variables in temporal or
spatial settings is essential. The model was introduced by [12] and is expressed as follows:

Y = XT β +m(Z) + ε , (1.1)

where Y is the scalar response variable, X = (X1, X2, . . . , Xp) is a p-vector of explanatory
variables, β is an unknownp-dimensional parameter vector, Z is a functional explanatory
variable, m(.) is an unknown smooth functional operator, and ε are identically distributed
random errors satisfying E(ε) = 0 and unknown variance σ2(ε) < ∞.

This model combines the strengths of a functional nonparametric component with the
interpretability of a linear component for scalar covariates. Using parametric and nonpara-
metric modeling techniques, the SFPLR model provides a robust framework for solving
complex data analysis problems. Consequently, it has inspired a growing body of research
focused on its estimation, theoretical properties, and practical applications.

Aneiros-Pérez and Vieu [12] proposed estimating the model parameters using the kernel
method under the i.i.d. hypothesis, while Aneiros-Pérez and Vieu [11] extended the model
to α-mixed data. Feng and Xue [35] introduced an estimation procedure based on the local
linear method, and Ling et al. [48] employed the k-nearest neighbors (kNN) procedure
to improve the efficiency of the estimators proposed by [12]. Boente and Vahnovan [23]
investigated the properties of estimators derived from robust procedures, whereas Ling et
al. [49] studied SFPLR models with randomly missing responses. More recently, Kedir
et al. [45] explored a hybrid approach that combines the k-nearest neighbors method
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with local linear estimation (kNN-LLE), still within the i.i.d. assumption. However, few
research studies have focused on estimation in the semi-functional partial linear regression
model for spatially dependent data.

An extension of the SFPLR model to spatial data, referred to as the spatial semifunc-
tional partial linear regression (SFPLSR) model, was proposed by [20]. Using the kernel
method, they established the asymptotic normality of the parametric component and de-
rived the convergence rate in probability for the nonparametric component, considering a
spatial index i = (i1, i2) ∈ Z2. Their work extends to the spatial functional setting the
results previously obtained in [38]. [21] further explored the SFPLSR model under the
setting of responses missing at random. It should be noted that the SFPLSR model can be
viewed as a special case of the spatial semifunctional partial linear autoregressive model
(SFPLAR) introduced in [64]. In this broader framework, quasi-maximum likelihood es-
timation was used for the parametric component, while the local linear estimation (LLE)
method was applied to the nonparametric component, yielding convergence rates for its
estimator. On the other hand, [65] studied the partial functional linear spatial autore-
gressive model, where estimators are constructed using functional principal component
analysis (FPCA). In both of the aforementioned works, spatial dependence is modeled via
a spatial weight matrix, which reflects the geographical configuration or contiguity of the
observations. This matrix can be specified on the basis of decreasing geographical distance,
economic proximity, or the structure of a social network. In particular, no stationarity
assumption is imposed in either framework.

In this paper, we propose the use of the k-nearest neighbors combined with local linear
estimation (LLE-kNN) for the semi-functional partial linear regression (SFPLR) model
with spatially dependent data. This approach builds on the ideas introduced by [45] and
developed in further detail in [5]. One of the main advantages of this method lies in its
ability to reduce the bias term obtained with the classical kernel estimator. By combining
the strengths of kNN and local linear estimation, the resulting estimator inherits favorable
statistical properties from both techniques. Specifically, it produces a robust estimator
with faster convergence and lower bias, while remaining straightforward to implement in
practice. Moreover, the kNN-based smoothing approach naturally addresses the band-
width selection problem, which is often a critical issue in nonparametric estimation. It
should be noted that this kNN-LLE methodology was also employed by [32] in the context
of semifunctional partial linear quantile regression. In fact, in practice, kNN methods
offer several advantages over the traditional Nadaraya-Watson estimator. In particular,
in the kNN framework, the bandwidth parameter is a random variable that depends on
the distance between functional covariates. This introduces a local adaptivity feature that
allows the estimator to adjust to heterogeneous data structures. Moreover, selecting the
smoothing parameter k (i.e., the number of neighbors) involves considerably lower com-
putational cost compared to bandwidth selection, as k typically takes values in a finite
and manageable set. However, the theoretical analysis of kNN estimators remains more
challenging due to the randomness and data dependence of the bandwidth. It is worth
noting that the kNN method has recently been extended to the nonparametric functional
context (see, for instance, [13, 22,24,43,44,47,57] for recent advances and [3, 50] for com-
prehensive overviews). On the other hand, it is known that the local linear approach
helps improve the bias term of the classical kernel method [34]. Due to this attractive
mathematical efficiency, local functional linear modeling has become very popular in the
analysis of nonparametric functional data in recent years. Baíllo and Grané [17] were
the first to introduce this approach to estimate the functional regression operator using
the Hilbert structure, and studied its asymptotic behavior under i.i.d. conditions. Later,
Barrientos-Marin et al. [18] constructed a faster version using covariates with values in the
Banach space for independent observations. The spatial version of the regression operator
was given by [29]. Estimation of conditional models using the local linear approach was
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demonstrated by [46] when the data are spatially dependent and functional in nature,
while Demongeot et al. [31] studied the nonparametric local linear regression model when
all variables are curves. They proved the quasi-complete (pointwise and uniform) consis-
tency of the local linear estimator. More recent advances and references in LLE estimation
in functional nonparametric regression can be found in [1, 19,27].

Motivated by the advantages of the LLE-kNN approach, studies have been conducted
in the field of Functional Data Analysis (FDA). We cite [16] investigated the estimation of
the regression operator; Almanjahie et al. [5] focused on the estimation of the conditional
cumulative distribution function for dependent data; and Almanjahie et al. [6] extended
the methodology to the estimation of conditional expectations, distribution functions, and
probability densities. The strong consistency of the kNN-LL estimator for the functional
conditional density and mode was established by [28]. In addition, Rachdi [59] addressed
the estimation of the regression operator when the response variable is missing at random,
while Almanjahie et al. [4] considered the estimation of the conditional distribution func-
tion under the same missing data mechanism. Despite these developments, the literature
on LLE-kNN estimation for functional spatial data remains scarce. To our knowledge, the
only study to apply this methodology in a functional spatial setting is that of [8], who
investigated its use to estimate conditional density and mode.

The objective is therefore to combine the strengths of both strategies in a spatially
dependent functional data framework and to subsequently establish the almost sure con-
vergence of the proposed estimator with respect to the number of neighbors. As mentioned
previously, the main innovation lies in the integration of the local linear estimation (LLE)
technique with the k-nearest neighbor (kNN) smoothing method to develop new estima-
tors for the spatial SFPLR model. This hybrid approach solves the common problem
of bandwidth selection and produces estimators with reduced bias. Nevertheless, this
combination also presents new theoretical challenges. Specifically, in the kNN approach,
the bandwidth parameter is inherently random, which complicates the analysis of the
estimator’s asymptotic properties.

The paper is organized as follows. We present our model in Section 2 whereas Section
3 is devoted to some notation and hypotheses necessary to obtain our results, which are
given at the end of the section. Some simulation results and an application to real data
are discussed in Section 4. Finally, the proofs of the different results are relegated to the
last section.

2. The model and the local linear-kNN estimators
For i ∈ ZN , N ≥ 1 let (Yi,Xi, Zi) be a R × Rp × F measurable strictly stationary

spatial process defined over a probability space (Ω,A,P), where F represents a functional
semi-metric space equipped with a semi-metric d. We suppose that the (Yi,Xi, Z)’s are
(i.d.), which means identically distributed to (Y,X,Z) and that the process is observed in
the rectangular region expressed by In = {i = (i1, . . . , iN ) ∈ ZN , 1 ≤ il ≤ nl, l = 1 . . . , N}
with a sample size of n̂=n1 × . . .×nN where n = (n1, . . . , nN ). This assumption is obvious
because the observation of data on regular lattice in ZN corresponds to the same principle
as in time series (where the observations are at times equally spaced in time), and this is
also the case in practice because the processes are studied in a discrete manner. Remember
that the term site is used to designate a vector i = (i1, . . . , iN ) ∈ ZN .

The asymptotic behavior of this work is to consider the observation area asymptotically
increasing while keeping the distance between observation positions to a minimum. For
this, we assume that, for l = 1 . . . , N , nl tends towards infinity at the same rate: C1 <
|nj/nk| < C2 for some 0 < C1 < C2 < ∞ and we write that n → ∞ if mink=1...,N (nk) → ∞.
Furthermore, this asymptotic behavior is studied under the condition that the process
(Yi,Xi, Zi) is strictly stationary which satisfies the following α-mixing condition [26]: for
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two σ-fields B(E) and B(E′) generated by a functional random variable Z indexing by
i ∈ E ⊂ ZN and by i ∈ E′ ⊂ ZN respectively, where E, E′ are two subsets with finite
cardinals (Card(.) < ∞), there exists ϕ(t) ↓ 0 as t → ∞, such that:

α(B(E),B(E′)) = sup
(A,B)∈B(E)×B(E′)

|P (A ∩B) − P (A)P (B)|

≤ Φ (d′(E,E′)) Ψ (Card(E),Card(E′)) .
(2.1)

with d′(E,E′) means the Euclidean, and Ψ : Z2 −→ R+, is a symmetric positive function
nondecreasing in each variable. We will be assumed that ψ satisfies

∀(m,n) ∈ Z2, Ψ(m,n) ≤ C min(m,n) , for someC > 0, (2.2)

Furthermore, as is often the case in spatial regression, we assume also assume that the
process satisfies the following mixing condition:

∞∑
i=1

iγ(Φ(i)) < ∞ , for some γ > 0. (2.3)

Note that these conditions are verified by many spatial processes (for example, the
spatial linear process), and the special case N = 1 corresponds to a strong mixture [33,40].
In what follows, we denote by Z a fixed curve in F and we indicate to the neighborhood
of Z by NZ . Furthermore, we denote by B(T, h) = {Z ′ ∈ F such that d(Z,Z ′) ≤ h} is
the topological closed ball. As with all asymptotic results, in nonparametric functional
statistics, it is necessary to control the local concentration of the marginal distributions
of the functional observations. For this, it is assumed that the marginal distribution must
satisfy the following condition: For any h > 0, the small ball probabilities ϕZ(h) :=
P(B(Z, h)) > 0 is continuous and strictly increasing around 0 with ϕZ(0) = 0.

As mentioned in the introduction, our main objective in this work is to study the
spatial co-variation between the response variable Y and the two explanatory variables X
and Z according to a linear partial model. Recall that these links are generally modeled
via the regression function E(Yi|Xi, Zi) expressed by a semi-parametric function , called
semi-functional partial linear regression (SFPLR), in the following form

Yi =
p∑

s=1
Xs

i βs + g(Zi) + εi = XT
i β + g(Zi) + εi i ∈ ZN , (2.4)

where β = (β1, . . . , βp)T is unknown p-dimensional parameter vector, m(.) is an unknown
smooth functional operator and ε is the centered random error with finite unknown vari-
ance such that

E(εi|X
(1)
i , X

(2)
i , . . . , X

(p)
i , Zi) = 0 and E(ε2i |X(1)

i , X
(2)
i , . . . , X

(p)
i , Zi) < ∞.

Under the condition that E(Yi|Zi = Z) and E(Xi|Zi = Z) are known, by the expectation
conditional, the least squares estimator (LSE) of β is given by

βn = arg min
β

∑
i∈In

(Y i − XT
i β)2,

which is obtained by the following formula

β̂n =

∑
i∈In

XiX
T
i

−1 ∑
i∈In

XiY i. (2.5)

where Y i = Yi − E(Yi|Zi = Z) and Xi = Xi − E(Xi|Zi = Z). However, as in the general
case, E(Yi|Zi = Z) and E(Xi|Zi = Z) are unknown and must be estimated to apply the
equation (2.5). In the following, we denote gX(Z) = E(X1|Z1 = Z), gY (Z) = E(Y1|Z1 =
Z), gn(Z) = gY (Z) − gT

X(Z)βn and assume that gX and gY are smooth functions of Z.
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Then, these functions can be estimated using nonparametric estimators. Under this, the
spatial-kernel estimator [30] of ĝX(Z) and ĝY (Z) are defined by

ĝX(Z) =
∑
j∈In

wn(Z,Zj)Xj , and ĝY (Z) =
∑
j∈In

wn(Z,Zj)Yj, (2.6)

where
wn(Z,Zj) =

K
(
d(Z,Zj)h−1

n
)∑

i∈In

K
(
d(Z,Zj)h−1

n
) ,

with K denotes a real-valued kernel function and hn a decreasing sequence of bandwidths
that tends to zero as n tends to infinity.

From where, the kernel estimators of βn and gn are defined by [20] as

β̂n =

∑
i∈In

X̆i(X̆i)T

−1∑
i∈In

X̆iY̆i

 (2.7)

and
ĝn(Z) = ĝY (Z) − (ĝX(Z))T β̂n, (2.8)

where
Y̆i = Yi −

∑
j∈In

wn(Z,Zj)Yj , X̆i = Xi −
∑

j∈In

wn(Z,Zj)Xj.

The main purpose of this article is to using local linear approach weighted by the k-
nearest neighbors smoothing procedure (kNN-LLE) to estimate gX and gY . This approach
was used for SFPLR models in the i.i.d. case by [45]. This study extends the existing
approach to spatial type-dependent data. For this, we assume that, for all Zl ∈ NZ , the
function g.(Zl) is locally approximated by

g·(Zl) = a+ b%(Zl, Z) + o(d(Zl, Z)),
where %(·, ·) is a known function from F2 into R such that %(Z,Z) = 0, and we denote by
hk = hk,n the random sequence of positive real numbers such that

hk = min{h ∈ R+ such that
∑

l∈In 1B(Z,h)(Zl) = k}.
Under this, the LLE-kNN estimator of gX(Z) and gY (Z) is defined in [29] and expressed
by

g̃X(Z) =
∑

i,j∈In Wij(Z, hk)Xj∑
i,j∈In Wij(Z, hk) =

∑
j∈In

Wj(Z)Xj , (2.9)

and
g̃Y (Z) =

∑
i,j∈In Wij(Z, hk)Yj∑

i,j∈In Wij(Z, hk) =
∑
j∈In

Wj(Z)Yj, (2.10)

where Wij(Z, hk) = %i(%i − %j)KiKj, with %i = %(Z,Zi) and Ki = K(h−1
k d(Z,Zi)). Note

that K stands for the kernel function. Hence, an estimator of β after estimating gX and
gY is given by

β̃n =

∑
i∈In

X̃T
i X̃i

−1 ∑
i∈In

X̃T
i Ỹi, (2.11)

where X̃i = Xi −
∑

j∈In Wj(Z)Xj and Ỹi = Yi −
∑

j∈In Wj(Z)Yj. Finally, a nonparametric
estimator for g̃n in SFPLR can be obtained by (2.8) and (2.11)

g̃n(Z) = g̃Y (Z) − g̃X(Z)T β̃n =
∑
j∈In

Wj(Z)Yj −
∑
j∈In

Wj(Z)XT
j β̃n. (2.12)
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It should be noted that the parameter k is unknown, so it is necessary to estimate it and
for this we will use the cross-validation method. Precisely, we choose k according to the
following cross-validation rule

kopt = arg min
k∈]k1,n,k2,n[

CV (k) = arg min
k∈]k1,n,k2,n[

n∑
i=1

(
Yi − Ỹ kNN

(−i) ((Xi, Zi)))
)2

(2.13)

where k1,n and k2,n are two sequences of strictly positive integers and Ỹ
(−i)

kNN−LL (Xl, Zl)
is the values of the leave one-out kNN-LL estimator without observation (Xi, Zi) after
estimating βn. The existence of two suites k1,n and k2,n is guaranteed by the results of
[55] (See [6]).

3. Hypotheses and the theoretical results
We introduce the following notations and pose the required hypotheses that are neces-

sary to obtain our main results. In particular, to derive the asymptotic normality of the
estimator β̃n, the uniform almost complete convergence of g̃n(Z) in some subset S of F.
We denote

g
(s)
Xi

(Z) = E(X(s)
i |Zi = Z), (s = 1, . . . , p),

θ
(s)
i = X

(s)
i − g

(s)
Xi

(Z), θi = (θ(1)
i , . . . , θ

(p)
i )T .

The expressions of our estimators in (2.11) and (2.12) contain estimators of θi. Let S

be a subset of F, such that S ⊂
⋃dn

l=1B(Zl; rn), where dn > 1 is some integer, rn is a
sequence of positive real numbers, and Zl ∈ F, l = 1, . . . , dn (this set can always be built).
Subsequently, we assume that Z is valued in S.

Technical assumptions
(A1): The spatial process (Yi,Xi, Zi)i satisfies the followings:

i) ∀z ∈ S , there exist C > 0 such that, for some 1 < a < γN−1,

sup
i6=j

P
[
(Zi, Zj) ∈ (B(z, h) ×B(z, h)

]
≤ C(ϕz(h))

a+1
a .

ii For some m ≥ 4, there exists C ′ > 0, C ′′ > 0, such that
– E(|Yi|m|Zi = Z) < κ1

m(Z) < C ′ < ∞ and sup
i6=j

E
[
YiYj|

(
Zi, Zj

)]
< ∞,

– for s = 1, . . . , p, E(|X(s)
i |m|Zi = Z) ≤ κ2

m(Z) < C ′′∞
and sup

i6=j
sup

1≤s≤p
E
[
X

(s)
i X

(s)
j |

(
Zi, Zj

)]
< ∞,

where κl
m(Z), l = 1, 2, are continuous functions on S.

(A2): There exists a differentiable invertible function ϕ(.), such that
i) for all Z ∈ S: 0 < C1ϕ(h) ≤ ϕZ(h) < C2ϕ(h), forC1 > 0 and C2 > 0 .
ii) ∃h0 > 0, such that for all h0 > h, ϕ′(h) < C1, where ϕ

′ denote the first
derivative of ϕ.

iii) for all t ∈]0, 1[:

lim
hn→0

ϕ(t hn)
ϕ(hn) = ι(t).

iv) There exists η > 0, τ > 0, C3, C4 > 0 such that: C3n̂(3−a/a+1)+η ≤ ϕ(h) ≤
C4n̂τ , with η < (a− 3)/(a+ 1) and τ > 1.

(A3): For some C5 < ∞, there exists a positive number α, such that, for all u, v ∈ S,
the functions g and g

(s)
Xi

are both in the set

{f : F → R, |f(u) − f(v)| ≤ C5d
α(u, v)}.
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(A4): The kernel K has support [0, 1], which is Lipschitz function on [0, 1[. More-
over, there exist two constants C6 and C7 such that −∞ < C6 < K ′(.) < C7 < 0
for K(1) > 0.

(A5): The function % satisfies the following three conditions:
• for ∀z, z′ ∈ F, there exists 0 < c1 < c2, such that c1 d(z, z′) ≤| %(z, z′) |≤
c2d(z, z′),

• ∀z1, z2 ∈ S, there exists c3, such that |%(z1, z) − %(z2, z)| ≤ C3d(z1, z2) .
• For all sequence hn → 0 , we have

hn

(∫
B(z,hn)

%(u, z)dP z(u)
)
/

(∫
B(z,hn)

%2(u, z)dP z(u)
)

→ 0,

where dP z denotes the probability distribution of the regressor Z.
(A6): The number of neighbors k is such that

k/n̂ → 0 and log n̂
k → 0 as n → ∞.

(A7): The subset S is such that, for rn = O( log n̂
n̂ ), the sequence dn satisfies:

(log n̂)2

k
< log dn <

k

log n̂ ,

and there exits ς > 1 such that
∑

n d
1−ς
n < ∞ .

(A8): There exists a sequence of positive real numbers ϑn such that
• (n̂)1/2 ϕ(h)(2−β)/2β

ϑn
→ 0

•
∑

n n̂ϑ−m
n < +∞ ,

•
∑

n n̂1−γ/2Nϑ
γ/N
n

(
log n̂
ϕ(h)

)γ/2N
< ∞ .

(A9): Let Σ = E
[(

θ1(θ1)T
)]

and let Ri = θiεi where 1 is the site spatial (1, . . . , 1).
i) We assume that Σ = E(θ1θT

1 ) is an invertible matrix.
ii) we assume that the matrix C =

∑
i∈In E

[(
R0R

T
i

)]
is positive definite, where

0 denote the spatial site (0, . . . , 0).
We first recall that our hypotheses cover the three fundamental aspects of the asymp-

totic study in non-parametric functional data analysis: the type of functional data, the
functional space and the parameters involved in local functional linear analysis in the con-
text of uniform consistency including the kernel function, the smoothing parameter and
the bifunctional operator ρ). Note that these assumptions are not the weakest possible
conditions, but they are imposed to facilitate the proof of our results. In fact, hypothesis
(A1) measures the local dependence between observations. Such a condition is necessary
to achieve the same rate of convergence as in the i.i.d. case. Likewise, similar to the
discussions in [44], assumption (A2) imposes the usual conditions on the probability of
a small ball. Assumption (A2)(iii) concerns the standard concentration property of the
functional variable, which is well documented as a key aspect in exploring the functional
nature of the data. The variability of the small-ball probability is addressed by Assumption
(A2)(iii), which is used to control the bias of non-parametric estimators. This assumption
holds for several continuous-time processes (e.g., Gaussian processes, diffusion processes,
and general Gaussian processes) and has been extensively discussed in the literature on
nonparametric functional statistics [37]. These hypotheses could be weakened; however,
the convergence rate would be affected by the presence of covariance terms. Assumptions
(A6) and (A10) are the same as those used in [50] to obtain the uniform consistency rate
of any estimator based on the kNN approach for the dependent data. The conditions
in the set S are provided by assumption (A10). Naturally, these conditions also impose
restrictions on the small-ball probability function φ, as expressed by assumption (A2). We
can see [36,37] for examples of subsets S and functional spaces F where assumption (A10)
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is satisfied. Assumption (A3) characterizes not only the functional space of our model but
also allows us to evaluate the bias term in our asymptotic results. This is a technical as-
sumption that enables the application of Bernstein’s inequality to obtain almost complete
convergence. Assumption (A4) concerns the kernel K(.). It includes two types of kernels
that are traditionally used in practice: box and continuous kernels. This assumption is
satisfied by several kernels, such as the Epanechnikov kernel, Parzen kernels, triangular
kernel, and others. Assumption (A5) has been introduced and discussed in [18] in the
context of functional local linear regression. Readers can find in that reference several
examples of bi-functional operators ρ that satisfy this condition. The moment integrabil-
ity condition in assumption (A1)(ii) and the additional assumptions (A3) and (A11) are
standard in the context of SFPLR. Finally, assumptions (A2)(iv) and (A8) are technical
conditions introduced to simplify the proofs [62].

We are now in a position to give our asymptotic results. The first gives the asymptotic
distribution of the estimator for the parametric component of the model (β̂n).

Theorem 3.1. When the assumptions (A1)-(A9), 2.1, 2.2, 2.3 hold, if additionally the
bandwidth parameter hn and the function ϕz(hn) satisfies n̂ϕx(hn)

log(n̂) −→ ∞ and n̂hκ
n

ϕx(hn)
log(n̂) −→

0, when n −→ ∞, we have:

(n̂)1/2
(
β̂n − β

)
D−→ N

(
0,Σ−1C

(
Σ−1

)T
)
. (3.1)

The following results give the rate of uniform almost complete convergence for the
nonparametric component.

Theorem 3.2. Based on hypotheses of Theorem 3.1, we have

sup
Z∈S

|ĝn(z) − g(z)| = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
. (3.2)

4. Computational study
The main objective of this section is to examine the behavior and practical implemen-

tation of the functional linear local kNN approach on finite samples generated by the
SFPLR model (2.4), with particular attention to the influence of spatial correlation on
the efficiency of estimators. Specifically, we compare the behavior of the mean squared
error of prediction of the semifunctional partial linear regression model for the following
estimators to highlight the superiority of this approach over other estimation methods:

• Spatial Semi-functional partial linear kernel regression (SFPL Kernel CV) intro-
duced by [20],

• Spatial Semi-functional partial linear kernel kNN regression (SFPL Kernel KNN)
proposed by [48],

• Spatial Semi-semi-functional partial linear Local-Linear kernel regression (SFPL
Local.L CV), our estimator given by the equation (2.11) and (2.12) by replacing
hk with hn (through the utilization of a cross-validation procedure),

• Spatial Semi-functional partial linear Local-Linear kNN regression (SFPL Local.L
KNN), our estimator given by the equations (2.11) and (2.12).

Recall that the kernel CV estimator of the SFPL parameters is given by Equations
(2.6), (2.7) and (2.8). with

wn(z, Zi) = K
(
d(z, Zi)h−1

n
)∑

i∈In K
(
d(z, Zi)h−1

n
) , (4.1)



Spatial kNN-Local linear smoothing for semi-functional partial linear regression 1173

and hn being a sequence of bandwidths tending to zero as n tends to infinity, and the
kernel K is a function from R+ to R+. The hopt is the data-driven bandwidth obtained
by a cross-validation procedure

hopt = arg min
h
CV (h)

where
CV (h) =

∑
i∈I

[
Yi −

(
ĝ

(−i)
n (Zi) + XT

i β̂n
)]2

=
∑

i∈In

(
Yi − r̂CV

(−i) (Xi, Zi)
)2

,

with ĝ(−i)
n (.) is the estimator of g(.) based on the leave-one-out method calculated without

observation (Xi, Zi) after estimating βn.

The Kernel kNN estimator of the SFPL parameters is given by Equations (2.7) and
(2.8) with

wn(z, Zi) =
K
(
d(z, Zi)h−1

k,n

)
∑

i∈In K
(
d(z, Zi)h−1

k,n

) , (4.2)

where hk,n is a random bandwidth parameter defined as

hk,n = min

h ∈ R+ such that
∑
i∈In

IB(z,h) (zi) = k

 .

The k-Nearest Neighbors technique is utilized to derive hkopt,n, which represents the band-
width associated with the optimal number of neighbors, as determined by following cross-
validation:

kopt = arg min
h
CV (k) with CV (k) =

∑
i∈In

(
Yi − Ŷ kNN

(−i)

)2
. (4.3)

The Ŷ kNN
(−i) is the leave-one-out values of the SFPL regression estimators calculated without

observation (Xi, Zi) after estimating βn.

4.1. Simulation study
We perform a simulation based on observations (Xi, Zi, Yi) ∈ (R2 ×E×R). In this case,

we take p = 2, i = (i1, i2) ∈ Z2 with 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2. The model was generated
as follows:

Zi(t) = Ai cos(2πt), t ∈ [0, 1], Xi = (X1
i , X

2
i ),

Yi = XT
i β + g(Zi) + εi. (4.4)

Then, we simulated model with following assumptions:
- β = (−1, 3)T (T mean is the transpose symbol),
- Xk

i ∼ U(−1, 2), k = 1, 2,
- Ai = Di ×

(
2 cos (2G) + exp

(
−4G2)), with G = GRF (0, 5, 3),

- g(Zi) = A
π2Z

(2)
i ( Z(2) denotes the second derivatives of a function Z),

- ε = GRF (0, .1, 5),
where
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• GRF
(
m,σ2, s

)
is a stationary Gaussian random field with mean m and covariance

function defined by

C(l) = σ2 exp
(

−
(‖l‖
s

)2)
, l ∈ R2 and s > 0.

• Di = 1
n1×n2

∑
j exp

(
−‖i−j‖

a

) (
D(i,j) = 1

n1×n2

∑
1≤j1,j2≤25 exp

(
−‖(i1,i2)−(j1,j2)‖

a

))
.

The function D is here to ensure and control the spatial mixing condition even if using
Gaussian random fields also brings some spatial dependency. The curve of Z(t), following
the values of a, is shown in Figure 1.
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Figure 1. The curves Zi, for a=5; 20; 50.

The covariance function is presented in Figure 2.

0 5 10 15 20 25

0
1

2
3

4
5

h

C
(
h

)

Figure 2. Covariance function with σ2 = 5 and s = 5.

As seen in Figure 2, since the model is based on Gaussian random fields with covariance
function C and scale s = 5, observations of sites i and j with ‖i−j‖ < 15 spatial dependence
are almost independent of ‖i − j‖ ≥ 15. So, our observations are a mixture of i.i.d. and
dependent observations ). Thus, to move away from independence, it suffices to lower the
value of a. Random field simulation is presented in Figure 3
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Figure 3. Random field simulation.

To compute our estimators, we use the class of semi-metrics d based on derivatives of
sample curves, given by

d
(
Zi, Zj

)
=

√∫ 1

0

(
Z

(κ)
i (t) − Z

(κ)
j (t)

)2
dt, for ∀Zi, Zj ∈ E.

We select the usual kernel function as K(u) = 3
2
(
1 − u2) 1[0,1](u). For the local-linear

estimator, it is constructed by the same procedure proposed by [18] for which the locating
function % is defined by

%(Zi, Zj) =
∫ 1

0
θ(t)(Z(κ)

i (t) − Z
(κ)
j (t))dt (4.5)

where Z(κ)(t) denoting the κth derivative of the curve Zi(t) and θ is the eigenfunction of
the empirical covariance operator given by

1
|In|

∑
i∈In

(Z(κ)
i (t) − Z(κ)(t))t(Z(κ)

i (t) − Z(κ)(t)),

where Z(κ)
i (t) = 1

|In|
∑
i∈In

Z
(κ)
i (t), associated with the q-greatest eigenvalue.

In this simulation study, we take the following parameters κ = 2, q = 5, and |In| =
n1 × n2.

In order to check the performance of the proposed estimator, denoted by r̂(x, z) =
xT β̂ + ĝm,n(z) with (z, x) ∈

(
E × R2), we randomly split our data (Xi, Zi, Yi)i into two

subsets such as the learning sample (Xi, Zi, Yi)i∈In and the test sample (Xi, Zi, Yi) ∈ In′ .
The training sample was used to choose the smoothing parameters hkopt and hopt for
k-Nearest Neighbors and cross-validation CV procedures.

The performance of the models depends on the parameters used in the estimation
process. In fact, bandwidth parameters play a critical role in nonparametric estimation,
affecting all asymptotic properties, and in particular the rate of convergence. As noted in
Section 2, in our study, the k-Nearest Neighbors technique is utilized to derive hkopt , which
represents the bandwidth associated with the optimal number of neighbors, as determined
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by cross-validation in equation (2.13).

kopt = arg min
k
CV (k) = arg min

k

n∑
i=1

(
Yi − Ỹ kNN−LL

(−i) ((Xi, Zi))
)2
,

where Ỹ kNN−LL
(−i) ((Xi, Zi)) is the values of the leave-one-out kNN-LL estimator without

observation (Xi, Zi) after estimating βn.
We use the mean square error (MSE) for the SFPLR model studied by [20]), the kNN

estimator studied by [48] and the LLE-kNN estimator as an accuracy measure and is
defined as follows:

MSEkernel−CV,kernel−kNN = 1
#(I′

n)
∑
i∈I′

n

[
Yi −

(
XT

i β̂ + ĝn(Zi)
)]2

,

MSELL−CV,LL−kNN = 1
#(I′

n)
∑
i∈I′

n

[
Yi −

(
XT

i β̃ + g̃n(Zi)
)]2

,

where #(I′
n) is the size of testing sample I′

n.

The prediction results are presented in Figure 4, where the predicted values are plotted
against the true values for the SFPLR models using four different estimation methods: The
SFPL Kernel CV regression, SFPL Kernel kNN regression, SFPL Local.L CV regression
and SFPL Local-Linear kNN regression. The results are shown for various values of
parameter a. The predictors appear to yield satisfactory results, with a slight advantage
observed for the SFPL Local Linear kNN regression. This observation is supported by
MSE computations. The MSE prediction (MSEP) errors are summarized in Table 1
and illustrated in Figure 5, which displays boxplots of the MSEP values for the testing
sample in the four proposed regression estimation methods. Both Table 1 and Figure 5
demonstrate that the local linear kNN estimator consistently achieves the most accurate
predictions. It outperforms the alternative methods by producing significantly lower MSE
values, underscoring the robustness and reliability of the proposed approach.

Table 1. The MSE values of the models

Model → SFPL Kernel SFPL Local.L SFPL Kernel SFPL Local.L
n1
↓

n2
↓

CV CV KNN KNN

10 0.1757 0.17115 0.10695 0.10405
10 20 0.1556 0.10745 0.0878 0.0839

50 0.1356 0.0873 0.0826 0.07185
10 0.13665 0.0967 0.08465 0.0808

20 20 0.12585 0.0785 0.0756 0.06905
50 0.1191 0.0775 0.07395 0.06545
10 0.12915 0.08715 0.078 0.071

50 20 0.11605 0.07745 0.0691 0.06355
50 0.11 0.0741 0.06465 0.0633
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Figure 4. Predictions of the model (4.1) with different values of a.

Figure 5 displays boxplots constructed from the MSE obtained for the models and the
different values of a.

Table 2. The values of the estimator β̃ for the SFPLR-LL kNN model according
to the sizes (n1, n2).

n2 → 10 25 50
n1
↓

10 ( -0.9165934 , 3.047369 ) ( -1.0371385 , 2.965457 ) ( -0.9865957 , 3.014751 )

20 ( -1.0128823 , 3.014244 ) ( -1.0085904 , 3.011950 ) ( -1.0057499 , 3.008370 )

50 ( -0.9960193 , 3.007497 ) ( -0.9961910 , 2.996413 ) ( -1.0033046 , 2.998738 )
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Figure 5. The box plots of the MSE for a = 5, a = 20 and a = 50.

According to Table 2, we can observe the convergence of the estimators β̂ to the true
values β as n1 and n2 increases.

4.2. Application
The objective of this section is to assess the effectiveness of the SFPLR model using

our proposed estimators on a real data set consisting of particle pollution indices. The
source of these data is the AriaWeb information system, managed by CSI Piemonte and
Regione Piemonte, and our analysis is obtained from 34 monitoring sites using gravimetric
instruments recorded during the winter season from October 2005 to March 2006 (daily
measurements including T = 182 days). This analysis focuses on pollution levels, revealing
higher concentrations in lowland areas near urban centers and lower concentrations near
the Alps. For more detailed information about the dataset, we refer the reader to [25].
To identify relevant covariates, a preliminary regression analysis was performed, leading
to the selection of the following explanatory variables:

• X1 = HMIX(s): maximum daily mixing height (in meters),
• X2 = EMI(s): daily primary aerosol emission rates (in g/s),
• X3 = PREC(s): total daily precipitation (in millimeters),
• Z = TEMP : the average daily temperature (in Kelvin ◦K).
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Specifically, we assume that the observations follow the SFPLR model (2.4), where
the response variable is Y = PM10(s) (in µg/m3) (for each s = 1, ..., 182 ) represents
pollution levels, the functional predictor Zi(t) represents the daily mean temperature
curve recorded at the ith station, with its precise location determined by the coordinates
i = (UTMX;UTMY ), Z = TEMP (t); t = 1, ..., 182, and the parametric part is: X =
(X1, X2, X3), (for 182 days). Figure 6 provides the curves of the functional variable Zi.
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Figure 6. Temperature curves Z.

It is clear that the data exhibit a trend and are therefore non-stationary. Therefore,
implementing this spatial modeling approach requires preliminary data pre-processing to
ensure the stationarity assumption is met. This step is essential to address the spatial
heterogeneity arising from variations in spatial effects between sampled units. To answer
this, we will use an "detrending step" introduced by [41] which is designed for the mul-
tivariate case of the three variables (reponse, functional and vectorial explanatory). This
algorithm is defined by the following regression:

X̃i = m1(i) +Xi, Z̃i = m2(i) + Zi and Ỹi = m3(i) + Yi.

Thus, instead of the initial observations (Xi, Zi, Yi)i, we compute the SFPLR estimator
from the statistics (X̂i, Ẑi, Ŷi)i. The latter are obtained by

X̂i = X̃i − m̂1(i), Ẑi = Z̃i − m̂2(i) and Ŷi = Ỹi − m̂3(i),
and m̂1(.), m̂2 and m̂3 are the kernel estimators of the regression functions m1(.),m2(.)
and m3(.) which are expressed by

m̂1(i0) =
∑

i∈In XiH1
(
‖i0 − i‖/h1

n
)∑

i∈In H1 (‖i0 − i‖/h1
n) , m̂2(i0) =

∑
i∈In ZiH2

(
‖i0 − i‖/h2

n
)∑

i∈In H2 (‖i0 − i‖/h2
n)

and m̂3(i0) =
∑

i∈In YiH3
(
‖i0 − i‖/h3

n
)∑

i∈In H3 (‖i0 − i‖/h3
n) ,

where the functions Hj , j = 1, 2, 3 represent kernel functions, while hj
n, j = 1, 2, 3 are the

bandwidth parameters associated with the actual regression.
We employ the same methodology as employed in the simulation example for the se-

lection of the estimator’s parameters to conduct this analysis. Specifically, we use the
quadratic kernel on the interval (0, 1) in combination with the PCA metric and the k-NN
criterion to determine the smoothing parameter hn. For real regressions m1(.), m2(.), and
m3(.), we use the npreg routine in the R-package np, with K = H1 = H2 = H3. To
assess the feasibility of this approach, we randomly split the data sample multiple times
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(exactly 100 times). The data is divided into two subsets: a learning sample consisting of
24 observations and a test sample containing 10 observations.
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Figure 7. Prediction of the testing sample of the PM10 for s = 1, ..., 182 using
the four models.
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Figure 8. Boxplot of MSE values of the models.

In summary, this study applies the SFPLR model to analyze the particulate pollution
indices collected from 34 monitoring stations. As shown in Figure 7, the model successfully
captures both spatial heterogeneity and functional relationships between pollution levels
and explanatory variables, demonstrating its practical relevance. Furthermore, the use of
the local linear kNN method leads to a substantial improvement in prediction accuracy.
This finding is supported by the reduction in mean square error (MSE), which is consistent
with the results obtained in the simulation study. To evaluate the effectiveness of the
proposed detrending procedure, we examine its impact on MSE values. The analysis
(Figure 8) underscores the role of detrending in enhancing the practical performance of
the estimators. Notably, the MSE is significantly lower when the local linear kNN approach
is combined with detrending, highlighting the benefit of incorporating this preprocessing
step.
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5. Conclusion
This contribution addresses the spatial semi-functional partial linear regression (SF-

PLR) model, which integrates the strengths of partial linear regression and the flexibility
of functional data analysis, while explicitly accounting for spatial dependence. Such models
are particularly useful in applications where understanding complex relationships between
variables across space or time is essential. The main contribution of this work is the in-
tegration of local linear estimation (LLE) with the k-nearest neighbor (kNN) smoothing
method to develop novel estimators for the spatial SFPLR model. This hybrid approach
effectively tackles the common issue of bandwidth selection in nonparametric estimation
and results in estimators with reduced bias. We then establish the asymptotic distribu-
tion for the parametric component, as well as the uniform almost complete convergence
rate for the nonparametric component. Finally, we assess the finite-sample performance
of the proposed estimators through simulations and real data analysis, comparing them
with existing methods for SFPLR models, including the kernel estimator without kNN
smoothing, kernel estimator with kNN smoothing and the local linear estimator (LLE)
without kNN smoothing. The results clearly demonstrate that the LLE-kNN estimator
outperforms its competitors. This superiority is evidenced by the lowest mean squared
error (MSE) obtained across both simulated and real datasets.

As mentioned in the Introduction, the key feature of the proposed estimator lies in
its construction, which combines two major non-parametric approaches: the local linear
method and kNN smoothing. In addition to its strong theoretical properties, the estimator
proves to be highly practical, fast, robust, and more accurate than competing alternatives.
The advantages of the LLE-kNN approach are two-fold. First, although the convergence
rate of the proposed estimator is aligned with that of existing methods in the SFPLR
framework, it significantly improves the bias component. The use of the local linear
method not only reduces computational cost, but also enhances implementation efficiency,
leading to substantial gains in predictive performance. Second, the incorporation of kNN
smoothing offers an elegant and effective solution to the complex problem of bandwidth
selection, a long-standing challenge in nonparametric statistics. Naturally, a remaining
difficulty lies in determining an appropriate rule for selecting the optimal smoothing pa-
rameter and identifying the relevant subset for optimization. However, by reformulating
the problem in terms of selecting an integer k ∈ {1, . . . , n}, the kNN approach simplifies
this task while maintaining high performance. To the best of our knowledge, this is the
first study to propose a location-adaptive semiparametric framework tailored specifically
to functional data that exhibit spatial dependence.

As a direction for future research, our results could be compared with those obtained
using the semi-functional partial linear spatial autoregressive (SFPSAR) model, as pro-
posed in [64]. In their approach, the quasi-maximum likelihood estimation is employed for
estimating the parametric component, while the local linear estimation method is used for
the nonparametric component. Such a comparison would provide further insight into the
strengths and limitations of each modeling strategy.
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APPENDIX
Proofs section

The proof of asymptotic results are given briefly because they follow from the same
ideas as in [11,20].

Proof of Theorem 3.1 The proof of Theorem 1 is established on the following de-
composition

(n̂)1/2
(
β̂n − β

)
=
(

1
n̂
∑

i∈In

X̃i(X̃i)T
)−1

1√
n̂

( ∑
i∈In

Ri +
∑

i∈In

θi
(
∆(0)

i − ∆T
i β
)

+
∑

i∈In

∆iεi +
∑

i∈In

∆i
(
∆(0)

i − ∆T
i β
)) (5.1)

where

∆(s)(z) = E[X(s)
i |Zi = z] −

∑
i∈In

Wj(Zl)X
(s)
j , s = 1, · · · , p .

∆(0)
i = E[Yi|Zi] −

∑
j∈In

Wj(Z)Yj ,

with
∆i = (∆(1)

i , · · · ,∆(p)
i )T .

Thus, is an immediate consequence of the Cauchy-Schwartz inequality, central limit
theorem and the following Lemmas

Lemma 5.1. Under assumptions (A1)-(A8), we have

sup
Z∈S

∣∣∣∆(s)(z)
∣∣∣ = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
. (5.2)

sup
Z∈S

∣∣∣∆(0)
i

∣∣∣ = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
. (5.3)

Lemma 5.2. Under the conditions (A1)-(A10), we have
1
n̂
∑
i∈In

X̃i(X̃i)T −→ Σ a.s. (5.4)

Remark 5.3. The lemma 5.1 extends Theorem 4.1 of [62] using the kNN-LL approach.
The proof of this theorem is the same as that used in this reference. It is not given here.

Proof of Theorem 3.2
From the fact that

ĝ(Z) =
∑

j∈In Wj(Z)Yj −
∑

j∈In Wj(Z)XT
j β̃n

=
∑

j∈In Wj(Z)
(
g(Zj) + εj

)
−
∑

j∈In Wj(Z)XT
j

(
β̃n − βn

)
,

(5.5)
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we have
sup
Z∈S

|ĝ(Z) − g(Z)| ≤ sup
Z∈S

|
∑

j∈In Wj(Z)
(
g(Zj) + εj

)
− g(Z)|+

sup
Z∈S

|
∑

j∈In Wj(Z)Xj
T |‖β̂n − β)‖

≤ sup
Z∈S

|S1| + sup
Z∈S

|S2| .
(5.6)

From Lemma 5.1, we have

sup
Z∈S

|S1| = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
. (5.7)

On the other side, we have
sup
Z∈S

|S2| ≤ sup
Z∈S

|
∑n

j=1 Wj(ξl)Xj|||β̂n − β||

≤ sup
Z∈S

|
∑n

j=1 Wj(Zl)
(
Xj
)

− E (Xl/Zl) | |β̂n − β|+

sup
Z∈S

|E(Xl/Zl)| ||β̂n − β|| .

Then, from Theorem 3.1, we have ||β̂n−β|| → 0 and according to the fact that sup
Z∈S

|E(Xl/ξl)| <

∞, 5.1 implies that

sup
Z∈S

|S2| = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
. (5.8)

So by using Equations 5.6, 5.7 and 5.8, we have

sup
Z∈S

|m̂(ξ) −m(ξ)| = O

(
ϕ−1

(
kn
n̂

))
+Oa.co

(√
log dn
kn

)
.


