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Abstract: Mathematicians find it valuable to extend the concept of ideals within algebraic
structures. The bi-quasi (BQ) ideal was introduced as a broader version of quasi-ideal, bi-ideal,
and left (right) ideals in semigroups. This paper applies this concept to soft set theory and
semigroups, introducing the "Soft intersection (S-int) BQ ideal." The goal is to explore the
relationships between S-int BQ ideals and other types of S-int ideals in semigroups. It is shown
that every S-int bi-ideal, S-int ideal, S-int quasi-ideal, and S-int interior ideal of an idempotent soft
set are S-int BQ ideals. Counterexamples demonstrate that the reverse is not always true unless
the semigroup is simple* or regular. For soft simple* semigroups, the S-int BQ ideal coincides
with the S-int bi-ideal, S-int left (right) ideal, and S-int quasi-ideal. The main theorem shows that
if a subsemigroup of a semigroup is a BQ ideal, its soft characteristic function is an S-int BQ
ideal, and vice versa. This connects semigroup theory with soft set theory. The paper also discusses
how this concept integrates into classical semigroup structures, providing characterizations and
analysis using soft set operations, soft image, and soft inverse image, supported by examples.

Yanigruplarin Esnek Kesisimsel Bi-quasi Idealleri
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Oz: Matematikgiler, cebirsel yapilardaki ideal kavramini genisletmeyi degerli bulmaktadir. Bi-
quasi (BQ) ideal, yarigruplarda quasi-ideal, bi-ideal ve sol (sag) idealin daha genis bir versiyonu
olarak tanitilmigtir. Bu makale, bu kavrami esnek kiime teorisi ve yarigruplara uygulayarak "Esnek
kesisimsel (EK) BQ ideali" tanitmaktadir. Amag, EK BQ idealleri ile diger EK ideal tiirleri
arasindaki iligkileri incelemektir. Bir idempotent esnek kiime i¢in her EK-bi-ideal, EK-ideal, EK-
quasi-ideal ve EK-i¢ idealin ayn1 zamanda bir EK*BQ ideal oldugu gosterilmistir. Ancak, tersinin
her zaman gegerli olmadig1, yalnizca yarigrubun basit* veya regiiler oldugunda saglandigi aksine
orneklerle gosterilmistir. Esnek basit* yarigruplarda, EK-BQ idealin EK-bi-ideal, EK-sol (sag)
ideal ve EK-wuazi-ideal ile ¢akistig1 kanitlanmistir. Ana teorem, bir yarigrubun alt yarigrubu bir
BQ ideal ise, onun esnek karakteristik fonksiyonunun bir EK-BQ ideal oldugunu ve bunun tersinin
de gecerli oldugunu gostermektedir. Bu sonug, yarigrup teorisi ile esnek kiime teorisi arasindaki
baglantiyr kurmaktadir. Ayrica, bu kavramin klasik yarigrup yapilariyla nasil biitiinlestigi
tartisilmakta ve esnek kiime islemleri, esnek goriintii ve esnek ters goriintii kullanilarak gesitli
karakterizasyonlar ve analizler yapilmistir. Bulgular 6rneklerle desteklenmistir.

1. INTRODUCTION

Semigroups are crucial in various areas of mathematics as
they provide the abstract algebraic foundation for
"memoryless" systems, which reset after every iteration.
Initially studied in the early 1900s, semigroups serve as
key models for linear time-invariant systems in applied

mathematics. Their connection to finite automata makes
the study of finite semigroups particularly important in
theoretical computer science. The concept of ideals is
vital for understanding the structure and applications of
mathematical systems, and thus, many mathematicians
have focused on extending the theory of ideals in
algebraic structures. By utilizing the concept and
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properties of generalized ideals, mathematicians have
made significant contributions by characterizing algebraic
of algebraic structures. Dedekind introduced ideals in the
context of algebraic number theory and Noether expanded
this concept to include associative rings.

In 1952, Good and Hughes [1] introduced the concept of
bi-ideals for semigroups. Steinfeld [2] was the first to
present the idea of quasi-ideals for semigroups, later
extending it to rings. Quasi-ideals generalize right and left
ideals, while bi-ideals are a further generalization of
quasi-ideals. The concept of interior ideals was initially
introduced by Lajos [3] and later explored by Szasz [4,5].
Interior ideals represent a generalization of the traditional
ideal concept. Rao [6-9] developed several novel types of
semigroup ideals that generalize existing ones, such as bi-
interior ideals, bi-quasi ideals, quasi-ideal, interior ideals,
weak-interior ideals, and bi-quasi-interior ideals.
Baupradist et al. [10] proposed the concept of essential
ideals in semigroups. As a more generalized form of
various types of ideals, the notion of "almost" ideals was
introduced, with a thorough examination of their
characteristics and the relationships between them. The
idea of almost ideals for semigroups was first introduced
in [11], and a subsequent paper [12] expanded the concept
to include almost bi-ideals. The concept of almost quasi-
ideals was first presented in [13], and the study of almost
interior ideals and weakly almost interior ideals followed
in [14]. The authors proposed various types of soft
intersection (S-int) almost ideals of semigroups in [15—
18]. Additionally, in [13, 15-20], several fuzzy almost
ideal types for semigroups were explored.

In 1999, Molodtsov [21] introduced "Soft Set Theory" to
address problems involving uncertainty and to develop
effective solutions for them. Since its inception,
significant research has been conducted on various
aspects of soft sets, particularly in relation to soft set
operations. Maji et al. [22] provided definitions for soft
sets and introduced several operations on them. Pei and
Mia [23], along with Ali et al. [24], expanded on the
operations of soft sets. For a more comprehensive
overview of the growing body of research on soft set
operations, we refer to [25-37].

The concept and operations of soft sets were further
refined by Cagman and Enginoglu [38]. Building on this
work, Cagman et al. [39] introduced the concept of S-int
groups, which spurred the investigation of various soft
algebraic systems. In the context of semigroup theory,
Sezer et al. [40,41] applied soft sets to define and explore
soft intersection (S-int) semigroups, as well as left, right,
and two-sided ideals, interior ideals, quasi-ideals, and
generalized bi-ideals of semigroups, thoroughly analyzing
their key properties. Sezgin and Orbay [42] further
studied the soft intersection (S-int) substructures of
semigroups, classifying various types, including
semisimple semigroups, duo semigroups, and different
categories of zero and simple semigroups, along with the
semi-lattices of left and right simple semigroups, left and
right groups, and groups. S-int almost ideals were
introduced and examined as a generalization of various
types of S-int ideals in [43-54]. Additionally, the soft

versions of different algebraic structures were explored in
[55-67].

As aresult of the reviews conducted in the literature, some
important studies on bi-quasi ideals are identified. The
first of these is the study by Rao [69] on the bi-quasi ideals
of I'-semigroups and the fuzzy bi-quasi ideals of these
semigroups. Rao [70,71] provided an extensive study on
the bi-quasi ideals of semirings. Additionally, the bi-quasi
ideals of TI'-semirings were examined by Rao,
Venkateswarlu and Rafi [72]. Similarly, Rao [8] made
significant contributions to the study of bi-quasi ideals of
semigroups. In this paper, we extend the concept to soft
set theory and semigroups by introducing "Soft
intersection (S-int) bi-quasi (BQ) ideals of semigroups."
We explore the relationships between S-int BQ ideals and
other types of S-int ideals within a semigroup. Under
certain necessary conditions, it is demonstrated that an S-
int ideal (bi-ideal, quasi-ideal, or interior ideal) is indeed
an S-int BQ ideal of a semigroup. Counterexamples are
provided to show that the reverse of these statements does
not always hold. It is also proven that for the converse to
be true, the semigroup must be a soft simple* (see
Definition 2.19) or regular semigroup. Our key theorem
reveals that if a nonempty subset of a semigroup is a BQ
ideal, its soft characteristic function is an S-int BQ ideal,
and vice versa. This result facilitates the integration of
semigroup theory with soft set theory. We illustrate how
this concept connects to established algebraic structures
in classical semigroup theory by utilizing this theorem.
Moreover, we offer conceptual characterizations and
analyses of the new idea in the context of soft set
operations, soft image, and soft inverse image, supporting
our findings with detailed and insightful examples.

The paper is organized into four sections. Section 1
presents an introduction to the subject, whereas Section 2
delves into the basic concepts of semigroups and soft set
ideals, detailing their essential definitions and
significance. In Section 3, we define S-int BQ ideals,
examine their properties, and discuss their relationships
with other forms of S-int ideals, supported by practical
examples. Finally, Section 4 offers a summary of our
findings and suggests potential avenues for future
research.

2. MATERIAL AND METHOD

In this study, S is used to represent a semigroup. A
nonempty subset K of S is called a subsemigroup of S if
KK € 'K, is called a bi-ideal of S if KK € K and 'KSK <
'K, is called an interior ideal of S if S'TKS € 'K, and is
called a quasi-ideal of S if KS N SK € K.

A subsemigroup K of S is called a left (L-) BQ ideal of S
if SKN'KSK € K, is called a right (r-) BQ ideal of S if
KS N 'KSK € 'K, and is called a BQ ideal of S if it is both
L-BQ ideal of S and rR-BQ ideal [8].

Definition 2.1. [21] Let E be the parameter set, U be the
universal set, P(U) be the power set of U, and D € E.
The soft set (SS) gp over U is a function such that
op: E = P(U), where for all ¥ € D, 9p(¥) = @. That is,
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ep = {(*,ep(®)): ¥ € E, 0p (%) € P(U)}

The set of all SSs over U is designated by Sz(U)
throughout this paper.

Definition 2.2. [38] Let 9p € Sg(U). If 9p(t) = @ for all
t € E, then @q is called a null SS and indicated by @ .

Definition 2.3. [38] Let Qpr, 9n € Sp(U). If gy (@) S
gn(@), for all @ € E, then @y, is a soft subset of gy and
indicated by g € gn. If 9 (¢) = on(¢), for all ¢ € E,
then @, is called soft equal to gy and denoted by Qs =

ON-

Definition 2.4. [38] Let ap;, 01y € Sg(U) . The union
(intersection) of aq and aqy is the SS
ope Uay (ape Nay) . where  (oppc U g (v) =
e (V) U apy(v) ((OIM N ap) (V) = appe (V) N OIM(U)) )
for all v € E, respectively.

Definition 2.5. [39] Let fi,fi, € S;(U), and ¢ be a
function from I to Ho. Then, the soft image of fi; under ¢,
and the soft pre-image (or soft inverse image) of fy, under
¢ are the SSs ¢(fi;) and ¢~ (f,,) such that

(#(f) )
_ {U{f}s(tﬂt eBand p(t) = +), if ¢~1() £ 0
9, otherwise

for all # € H and (d)‘l(fﬂ,))(t) = fiu(¢(©)) for all t €
.

Definition 2.6. [39] Let fi; € Sp(U) and @ € U. Then,
upper a-inclusion of fi, denoted by ’u(fls; a), is defined
as U(flsi a) = {x el |fl5(x) 2 a} .

Definition 2.7. [40] Let ng, gs € Sg(U). S-int product
Ng © gs is defined by

(ns ° gs)(®)
U {hs) Nngs(2)}, if y,z € S suchthat v = yz

y=yz
o, otherwise

Theorem 2.8. [40] Let hg, s, ng € Sg(U). Then,

i (hs e Rs) e ng = hg o (Rs ° g)

1i. hs o s # Ps o hs

1il. hs o (Ps Ung) = (hs o ps) U (hs o ng)
(hs Ups) e ng = (hs o ng) U (s © ng)

iv. hs o (s N ng) = (hs o ps) N (hs o ng)
(hs A Ias)ins = (hsong) N (s o n5)~

v. If hs € Bs, then hs o ng € s o ng
and ng o hg € ng o g

vi.  Ifjg, Ug € Sg(U) such that jg € hg and g € pg,
then jg o Ug € hg o ps.

Definition 2.9. [40] Let @ #T €S . The soft
characteristic function (SCF) of T, denoted by Sr, is
defined as

(U, ifveT
ST(”)‘{Q), if v ES\T

Theorem 2.10. [40,49] LetF, G € S . Then,

i.  F < Tifand only if (iff) Sy € Sy,
il. Sf ﬁ ST, = an"[', and Sf G SHJ = SfUD
111 S_‘F ° ST! = Sj:"'[*,

Definition 2.11. [40] An SS hg over U is called an S-int
subsemigroup of S if hg(cv) 2 hs(s) Nhg(v) for all
¢, VES.

Note that in [40], the definition of “S-int subsemigroup of
S” is given as “S-int semigroup of S”’; however in this
paper, without loss of generality, we prefer to use “S-int
subsemigroup of S”.

Definition 2.12. [40] An SS hg over U is called an S-int
1-(r-) ideal of S if hg(zv) 2 hs(v) (hs(zv) 2 hs(2)) for
allz,y € S, and is called an S-int two-sided ideal (S-int
ideal) of S if it is both S-int L-ideal of S over U and S-int
r-ideal of S over U. An S-int subsemigroup hg is called
an S-int bi-ideal of S if hg(ryv) 2 hg(r) N hs(v) for all
r,y,v €S. An SS hg over U is called an S-int interior
ideal of S if hg(ryv) 2 hg(y) forallr,y,v € S.

It is easy to see that if hg(v) = U forall v € S, then hg is
an S-int subsemigroup (r-ideal, r-ideal, ideal, bi-ideal,
interior ideal). We denote such a kind of S-int
subsemigroup (r-ideal, r-ideal, ideal, bi-ideal, interior
ideal) by S. It is obvious that S = S, that is, S(v) = U
for all v € S [40].

Definition 2.13. [41] An SS hg over U is called an S-int
quasi-ideal of S over U if (8 o h ) 7 (hg o §) & hs.

Theorem 2.14. [40] Let hs € Sg(U). Then,

i S.S&S o
ii. So hs € .SLand hg © .S'~§ S
iii. hsUS=SandhsNS =hs

Theorem 2.15. [40, 41] Let D be a nonempty subset of a
semigroup S. Then, D is a subsemigroup (r-ideal, r-ideal,
two-sided ideal, bi-ideal, interior ideal, quasi-ideal) of S
iff Sp is an S-int subsemigroup (r-ideal, r-ideal, two-
sided ideal, bi-ideal, interior ideal, quasi-ideal).

Theorem 2.16. [40, 41] Let hg € Sg(U). Then,

i.  hgis an S-int subsemigroup < (hs © hg) € hg,
ii. g is an S-int 1-(r-) ideal & (S o hg) & hs and

(hs©S) Ehs,
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ili. hg is an  S-int bi-ideal & (hgo

hs) € hs and (hs oS o hs) € hs,
iv. hs is an S-int interior ideal <& (S' ohgo

S) € hs.

Theorem 2.17. [40, 41] The following assertions hold:

i. Every S-int r-(r-/two-sided) ideal is an S-int
subsemigroup (S-int bi-ideal/S-int quasi-ideal),
il. Every S-int ideal is an S-int bi-ideal.

Proposition 2.18. [40] Let hg € Ss(U), a be a subset of
U, Im(hg) be the image of hg such that & € Im(hg). If
hs is an S-int subsemigroup of S, then U(hg; @) is a
subsemigroup of S.

Definition 2.19. [68] Let hg € Sg(U). Then, S is called a
soft left simple* semigroup (with respect to hg) if S=
So hs, is called a soft right simple* semigroup (with
respect to hg) if S = hg S', is called a soft simple*
semigroup (with respect to hg) irtS=So hs = hs oS 1f
S is a soft (left/right) simple* semigroup with respect to

all soft sets over U, then it is called a soft (left/right)
simple* semigroup .

For the sake of brevity, soft (left/right) simple* semigroup
is abbreviated by soft (L-/ R-) simple*.

Corollary 2.20. [40] For a semigroup S, the following
conditions are equivalent:

i S is regular.
il. hs © s = hg N s for every S-int ideals hg and
Bs of S over U.

3. RESULTS

Definition 3.1. A soft set g over U is called a soft
intersection left (right) (L-(r-) bi-quasi ideal of S over U
if

(gons)ﬁ(nsogons)gns
((nsog)ﬁ(ns"g"ns)gns)

A soft set over U is called a soft intersection bi-quasi ideal
of S if it is both a soft intersection left bi-quasi ideal and
a soft intersection right bi-quasi ideal of S over U. For the
sake of brevity, soft intersection bi-quasi ideal of S over
U is abbreviated by S-int BQ ideal.

Example 3.2. Consider the semigroup S = {f,h,#}
defined by the following table:

Table 1. Cayley table of ‘¢’ binary operation.

. i h ¥
f f ¥ ¥
h ¥ h ¥
¥ ¥ ¥ ¥

Let g and 4 be SSs over U =D; = {< x,y >: x3 =
y? =e, xy = yx?} = {e,x,x%,y,yx, yx?} as follows:

ns = {(f. {e,x, x*}), (h,{e, x}), (v, {e, x, x*, y})}

8s = {(. {e.x,y]), (h.{e.x}), (7. {e, x*, y, yx*}}
It can be readily proven that 7 is an S-int BQ ideal of S.
Here, we find it appropriate to give a few concrete

examples of elements for ease of illustration in order to be
more understandable. In fact,

[(Sens) i (fsoSons)| D =ns® < ns(®
[(Sons) i (nsoSons)| () = nsh) < ns(h)

[(Sens) A (15 > Soms)| @) = ms() Uns @) U ns(D

< ns(¥)
It can be easily shown that the SS 7 satisfies the S-int L-
BQ ideal condition for all other element combinations of
the set S. Similarly,

|[(ns < 8) 7 (nseSons)| ) € nsh
[(7)5 ° SI) n (7)5 oS 7)5)] (h) € ns(h)

[(773 ° g) A (773 °So 773)] () € ns(®)

It can be easily shown that the SS 7 satisfies the S-int r-
BQ ideal condition for all other element combinations of
the set S, thus 75 is an S-int BQ ideal. However, since

[(S' ° '%s) A (A%s ° S' ° A%s)] ()
= [8s(h) U 85(¥) U 8s(N] & 8s5(¥)

&5 is not an S-int BQ ideal.

Corollary 3.3. S and @s are S-int BQ ideals.

Theorem 3.4. Let Hy be a subsemigroup of S. Then, Hy is
aBQideal of S iff Sy, the SCF of Hy, is an S-int BQ ideal.
Proof: Let H) be a BQ ideal of S . Then, SHhN
HSH) € Hy and HhS N HhSHy € Hy. By Theorem 2.10,

(SIOSH’J) ﬁ (SH.) OSOSHJ) = (SS OSH)) ﬁ (SH) OSS OSH))
= Ssty 1V Stpsty = Sstyntnsth S Shy

and
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(SHDOSi) ﬁ (SH_) OSOSH)) = (SH) OSs) ﬁ (SHDAOISS OSH))
= Sips 0 Sinsi, = Stysnmsty, E Sty

Hence, Sy, is an S-int BQ ideal.

Conversely, let Sy be an S-int BQ ideal and H, be a
subsemigroup of S. Then,

(Sosi) A (SipoSosi) E Sy
and

(Sie S ) A (S 0 SoSiy) E Sy
Let ¥ € SHy N HhSHy. Then,

Siy () 2 (§ o sH)) @) N (SH) oS SHJ) )
2 Sgip, (F) N Sty &) 2 Sspnrnsw, F)
U

Thus, Sy, (¥)) = U and so # € Hy, implying that SHy N
HSH) € Hy. Hence, Hy is an L-BQ ideal of S. Similarly,
let 2 € HhS N HhSHy. Then,

Sy (2) 2 (SHJ o §) @ n (Sl-b oS °5H;) (2) 2 Spps(z) N
SH)SH) (z) 2 Sl-bsnl-bsl-b(z) =U

Thus, Sy, (2) = U, and so z € Hy, implying that HhS N
HSHy € Hy. Hence, Hy is an r-BQ ideal of S. Therefore,
Hy is a BQ ideal of S.

Example 3.5. We consider the semigroup in Example 3.2.
One can show that B = {f, #} is a BQ ideal of S. By the
definition of SCF, Sz = {(f, U), (h,®), (¥, U)}. One can
easily show that Sg is an S-int BQ ideal. Conversely, by
choosing the S-int BQ ideal as 1ng=
{(f, ), (h, U), (¥,U)}, which is the SCF of K = {h, ¥}, one
can show that K is a BQ ideal of S.

Now, we continue with the relationships between S-int
BQ ideals and other types of S-int ideals of S.

Proposition 3.6. Every S-int bi-ideal is an S-int r-BQ

ideal.
Proof: Let B be an S-int bi-ideal of S . Then,

Bs o |SI o Bg g Bs. Thus,
(13508)5(135080135) € Bs o o Bs & B
Hence, 5y is an S-int R-BQ ideal of S.

We show with a counterexample that the converse of
Proposition 3.6 is not true:

Example 3.7. Consider the semigroup S = {a-V, 1,5}
defined by the following table:

Table 1. Cayley table of ‘¢’ binary operation.

|
o

Y

T

\2 T s

¥ ¥ @ @@
< @ @

toud
o
o
o

< @ @ @

S T

Let 5g be an SS over U = N as follows:

5s = {(2,{1,2,3,4}), (v, {1,2,3}), (v, {4}, (5, {1.21)}

Here, K is an S-int R-BQ ideal. In fact,

[(155 ° SI) A (155 °So 55)] (@)
= Bs(2?) U Bs(y) U Bs(x) U Bs(s)
€ ps(a)

(55 2 S) A (55 0 S o 55)] ) = Bs(5) € Bs(¥)
[(55
[(Bs

Thus, §g is an S-int R-BQ ideal of S. However, since

(Bs 0 Bs)(r) = Bs(s) N Bs(s) & Bs(x), Bs is not an S-int
bi-ideal.

S) 7 (55°So5s)| @ = 0 < 55
S) 7 (55°S5s)| 2 =0 S 55(s)

Proposition 3.8 shows that the converse of Proposition 3.6
holds for soft L-simple* semigroups.

Proposition 3.8. Let g € Sg(U) and S be a soft r-
simple* semigroup. Then, the following conditions are

equivalent:

(1) B is an S-int bi-ideal.
(2) By is an S-int r-BQ ideal.

Proof: (1) implies (2) is obvious by Proposition 3.6.
Assume that Fg is an S-int r-BQ ideal. By assumption,
S = S o 5. Thus,

55°135:(55°55)ﬁ(135°55)g(ﬁs"g)ﬁ 55°-SI)
=(550,§)ﬁ(550,§'055)§55

Hence, By is an S-int subsemigroup. Moreover,
Bs o 0 fs = (53°S°155) ﬁ(ﬁs"s"ﬁs)
= (550.3)5(13505'0135) < Bs
Thus, B is an S-int bi-ideal.

Proposition 3.9. Every S-int bi-ideal is an S-int .-BQ
ideal.

Proof: Let 5g be an S-int bi-ideal of S . Then,
Bs ©® oBs € K. Thus,
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(S”js) ﬁ(135°5|°155) € 55°S°55 € bs
Hence, 5y is an S-int L-BQ ideal of S.

We show with a counterexample that the converse of
Proposition 3.9 is not true:

Example 3.10. Consider the SS 5 in Example 3.7. The
SS Bg is an S-int L-BQ ideal. Since,

[('NSI ° 155) A (133 oS 133)] (&)
= Bg(2) U Bs(¥) U Bs(x) U Bs(s)
€ ps(a)

[(§ ° ‘55) n (Bs °So 155)] () = Bs(s) € Bs(¥)
[(S‘ ° 55) n (53" So 55)] (r) =0 S 5s(v)
n

[(g ° 55) (55 0 S 135)] (s) =@ S 5s(s)
Hence, gg is an S-int L.-BQ ideal. However, since
(Bs © Bs)(xr) = Bs(s) N Bs(s) & Bs(x)
s is not an S-int bi-ideal.

Proposition 3.11 shows that the converse of Proposition
3.9 holds for soft rR-simple* semigroups.

Proposition 3.11. Let 55 € Sg(U) and S be a soft r-
simple* semigroup. Then, the following conditions are

equivalent:

(1) By is an S-int bi-ideal.
(2) B is an S-int L.-BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.9. Assume
that 55 is an S-int L-BQ ideal. By assumption, S = Fg o
S. Thus,

Bs o Bs = (Bs o Bs) N (Bs o Bs) & (55°S)ﬁ (Bs"s)
= (135°S)ﬁ (135°S°135) € Bs
Hence, 5y is an S-int subsemigroup. Moreover,
Bs 0 0 s = (55°S°55)ﬁ (55°S°Bs)
= (S o Bs) ﬁ(155°s°155) € Bs
Thus, g is an S-int bi-ideal.
Theorem 3.12. Every S-int bi-ideal is an S-int BQ ideal.

Proof: It is followed by Proposition 3.6 and Proposition
3.9.

Theorem 3.13 shows that the converse of Theorem 3.12
holds for soft simple* semigroup.

Theorem 3.13. Let 5g € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) B is an S-int bi-ideal.
(2) Bs isan S-int BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.12.
Assume that 5g is an S-int BQ ideal. Then, by Definition
2.19, S is both a soft r-simple* and a soft r-simple*
semigroup. The rest of the proof follows from Proposition
3.8 and Proposition 3.11.

Proposition 3.14. Every S-int r-ideal is an S-int r-BQ
ideal.

Proof: Let ng be an S-int r-ideal of S. Then, 7g o Se 5.
Thus, (TIS o |SI) ﬁ (7750 |SI o ns) § ns o |SI g 7]5. Hence, ns
is an S-int R-BQ ideal of S.

Additionally, since ngis an S-int r-ideal, by Theorem
2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.6,
7 is an S-int R-BQ ideal.

We show with a counterexample that the converse of
Proposition 3.14 is not true:

Example 3.15. Consider the semigroup S ={y,7}
defined by the following table:

Table 3: Cayley table of ‘XX’ binary operation.

1t y Z
¥ ¥ (4
4 ¥ 4

Letng be an SS over U = Z as follows:

ns = {(v. {1,3}), (z. {1,2})}
Here, 15 is an S-int R-BQ ideal. In fact,
|[(ns < 8) A (nseSens)|
= Mso g)(Y) n (775 °S °7ls) (¥)
=1s(y) € ns(y)
[(ns ° g) A (ns oS ns)] @

(775 ° SI) @n (TIS oSo Tls) @
ns(0) € 1s5()

Thus, 15 is an S-int R-BQ ideal of S. However, since

(ns-S)w) = [ns(Y) n S'(Y)] U [ns(z) n S'(Y)]
=ns(y) Uns(@ € ns(y)
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(n5°8) @ = [ns») n S@| u 15 N S@|
=ns(¥) Uns(@ & ns()

1 is not an S-int r-ideal.

Proposition 3.16 shows that the converse of Proposition
3.14 holds for soft L-simple* semigroups.

Proposition 3.16. Let ng € Ss(U) and S be a soft r-
simple* semigroup. Then, the following conditions are
equivalent:

(1) ng is an S-int r-ideal.
(2) ng is an S-int R-BQ ideal.

Proof: (1) implies (2) is obvious by Proposition 3.14.
Assume that 1 is an S-int r-BQ ideal. By assumption,
S = S ons. Thus,

(775°'§) = (775"'~SI) A (775°SI)
= (775°-Sl)ﬁ (Us°-§°775) € ns
Hence, 15 is an S-int r-ideal.

Proposition 3.17. Every S-int r-ideal is an S-int .-BQ
ideal.

Proof: Let ns be an S-int r-ideal of S. Then, 15 0 S & 15
and NsoMNs g Ns. Thus,

('SI”?S) ﬁ(ns°s°ns) EnsoSens Ensons Eng
Hence, 75 is an S-int L.-BQ ideal of S.

Additionally, since ngis an S-int r-ideal, by Theorem
2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.9,
1 is an S-int L-BQ ideal.

We show with a counterexample that the converse of
Proposition 3.17 is not true:

Example 3.18. Consider the SS 1 in Example 3.15. The
SS 75 is an S-int L-BQ ideal. Since,
(Sens) A (nseSeons)|
= (Sons) @ n (nsoSons) W)
=1ns(y) € ns(y)
(8o1) A rs-Sn)] 0
= ('~Sl°775) @n (775°'§°775)(Z)
=1ns(0) €152

Hence, 75 is an S-int L.-BQ ideal. However, since

(n5°8) @) = [ns) nSW] U [ns N Sw)]
=1s(¥) Uns(@ € ns(y)

(n5+8) @ = [15(0) 1 8@] v [ns) n S|
=ns(¥) Uns(@ & ns(0)

7 is not an S-int r-ideal.

Proposition 3.19 shows that the converse of Proposition
3.17 holds for soft simple* semigroups.

Proposition 3.19. Let ng € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) ng is an S-int r-ideal.
(2) ng is an S-int L-BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.17.
Assume that 75 is an S-int L-BQ ideal. By assumption,

S = nsog = gons. Thus,
(775 ° S) = (775 ° S) A (775 ° S)
=(Seons) N (775 °'SI°775) Ens
7 is an S-int r-ideal.
Theorem 3.20. Every S-int r-ideal is an S-int BQ ideal.

Proof: It is followed by Proposition 3.14 and Proposition
3.17.

Here note that the converse of Theorem 3.20 is not true
follows from Example 3.15 and Example 3.18. Theorem
3.21 shows that the converse of Theorem 3.20 holds for
soft simple* semigroup.

Theorem 3.21. Let f5 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) 7 is an S-int r-ideal.
(2) 7 is an S-int BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.20. (2)
implies (1) is obvious by Proposition 3.16 and Proposition
3.19.

Proposition 3.22. Every S-int r-ideal is an S-int R-BQ
ideal.

Proof: Let f; be an S-int L-ideal of S. Then, So f; € f;
and fs o fs € fs. Thus,

(fsoS)A(fsoSofs)EfsoSefs Efsofs S fs
Hence, f; is an S-int r-BQ ideal of S.
Additionally, since fsis an S-int r-ideal, by Theorem
2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.6,

fs 1s an S-int R-BQ ideal.

We show with a counterexample that the converse of
Proposition 3.22 is not true:
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Example 3.23. Consider the semigroup S = {g, 2}
defined by the following table:

Table 4: Cayley table of ‘@R’ binary operation.

R 0 a
0 0 0
Q 2 Q

Let g be an SS over U = Z as follows:

qs = {(0,{3,6}), (2, {391}

Here, (s is an S-int R-BQ ideal. In fact,

[(qs o "s’) A (qs oS qs)] (@
= 45> n (qs ogoqs) (@
= qs(e) € ygs(0)

[(QS ° SI) A (QS oS (Js)] @
= (45> $)(@ N (4525 45) @
=qs(@) < ¢s(D

Thus, (s is an S-int R-BQ ideal of S. However, since

(Seas) (@ =[S@) nas@] v [S@) nas(@]
= qs(0) U qs5(Q) £ qs(0)

(Seas) @ = [S@ nast@] v [S@ nas@)
=(s(0) U 45(Q) £ q5()

(s is not an S-int L-ideal.

Proposition 3.24 shows that the converse of Proposition
3.22 holds for soft simple* semigroups.

Proposition 3.24. Let g5 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) ggisan S-int L-ideal.
(2) g isan S-int .-BQ ideal.

Proof: (1) implies (2) is obvious by Proposition 3.22.
Assume that (g is an S-int rR-BQ ideal. By assumption,
S = (g0S = Soqs. Thus,

g°‘45:('§°QS)ﬁ(g°QS)
=((-|S°'§I)ﬁ(q5°'§°q5)§q5

(s is an S-int L-ideal.

Proposition 3.25. Every S-int r-ideal is an S-int L.-BQ
ideal.

Proof: Let 5 be an S-int L ideal of S. Then, S. qs € gs.
Thus, (.S' 0 qs) n (qs °So qs) € Soqs € qg . Hence,
s 1s an S-int L-BQ ideal of S.

Additionally, since (g is an S-int r-ideal, by Theorem

2.17, it is an S-int bi-ideal. Therefore, by Proposition 3.9,
(s is an S-int L-BQ ideal.

We show with a counterexample that the converse of
Proposition 3.25 is not true:

Example 3.26. Consider the SS (g in Example 3.23. The
SS (s is an S-int L-BQ ideal. Since,

[(SI ° (Is) n ((Is oS (Is)] @)
= (S'oqs) (@ n (qs ogoqs) (o)
=qs(0) S gs(0)

[(SI ° (Is) A (QS" S CIS)] @
= So49@ n (455 45) @
=¢s(D € 45D

Hence, (g is an S-int L.-BQ ideal. However, since

(Seus) @ =[S nas@] v [S(e) n 4s@)]
= qs(@) U qs(Q) £ 4s(0)

(Seas) @ = [S@ nas@] v [S@ n 45|
= qs(@) U q5(Q) € ¢s(D

s is not an S-int L-ideal.

Proposition 3.27 shows that the converse of Proposition
3.25 holds for soft r-simple* semigroups.

Proposition 3.27. Let g5 € Sg(U) and S be a soft r-
simple* semigroup. Then, the following conditions are
equivalent:

(1) g is an S-int L-ideal.
(2) (g is an S-int L-BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.25.
Assume that (g is an S-int L-BQ ideal. By assumption,

S= ds 3. Thus,

Sloqs=(.§loqs)ﬁ Soas)
SI“JS)

( ﬁ(Qs°I~SI°QS)§(Js

(s 1s an S-int L-ideal.
Theorem 3.28. Every S-int L-ideal is an S-int BQ ideal.
Proof: It is followed by Proposition 3.22 and Proposition

3.25.

Here note that the converse of Theorem 3.28 is not true
follows from Example 3.23 and Example 3.26.
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Theorem 3.29 shows that the converse of Theorem 3.28
holds for soft simple* semigroup.

Theorem 3.29. Let g5 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) qg is an S-int L-ideal.
(2) qg is an S-int BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.28. (2)
implies (1) is obvious by Proposition 3.24 and Proposition
3.27.

Theorem 3.30. Every S-int ideal is an S-int BQ ideal.

Proof: It is followed by Theorem 3.20 and Theorem 3.28.
Theorem 3.31 shows that the converse of Theorem 3.30
holds for soft simple* semigroup.

Theorem 3.31. Let g5 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) ggisan S-int ideal.
(2) ¢gisan S-int BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.30. (2)
implies (1) is obvious by Proposition 3.21 and Proposition
3.28.

Proposition 3.32. Every S-int quasi-ideal is an S-int r-
BQ ideal.

Proof: Let f; be an S-int quasi-ideal of S . Then,
(55 °) A (S o 5s) € Bs.
Thus,

(55°-§)ﬁ(55°-§°55) §(55°-§)ﬁ(-§°-§°55)
(55 = S) 1 (S o 5s) E 55

I

Hence, 5y is an S-int R-BQ ideal of S.

We show with a counterexample that the converse of
Proposition 3.32 is not true:

Example 3.33. Consider the SS 5 in Example 3.7. The
SS pg is an S-int R-BQ ideal. Since,

(552 S) A (So5s)| ) = 55s(®) UBs(5) & B5(¥)

Hence, Ky is not an S-int quasi ideal.

Proposition 3.34 shows that the converse of Proposition
3.32 holds for soft r-simple* semigroups.

Proposition 3.34. Let 55 € Sg(U) and S be a soft r-
simple* semigroup. Then, the following conditions are
equivalent:

(1) psis an S-int quasi-ideal.
(2) Bg is an S-int r-BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.32.
Assume that Fg is an S-int r-BQ ideal. By assumption,

S = Bs .. Thus,
(55°g)ﬁ(g°55) = (55°-§I) ﬁ(55°-sl°55) € Bs
s 1s an S-int quasi-ideal.

Proposition 3.35. Every S-int quasi-ideal is an S-int .-BQ
ideal.

Proof: Let gg be an S-int quasi-ideal of S . Then,
(gs°S) A (Sogs) € gs. Thus,

(g°g*s) A (g’s°-§l°g*s) c (g°gfs) A (gfs"sl"g) c
Sogs)A(gs>S) € gs
Hence, g is an S-int L-BQ ideal of S.

We show with a counterexample that the converse of
Proposition 3.35 is not true:

Example 3.36. Consider the SS 5 in Example 3.7. The
SS B is an S-int L-BQ ideal. Since,

(552 S) A (S o55)| ) = B5(x) U Bs(5) € 55 (¥)

s is not an S-int quasi-ideal.

Proposition 3.37 shows that the converse of Proposition
3.35 holds for soft simple* semigroups.

Proposition 3.37. Let g € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) gg is an S-int quasi-ideal.
(2) gg is an S-int L-BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.35.
Assume that g is an S-int L-BQ ideal. By assumption,

S= gsog = Slog»s. Thus,
(95°'§) A (g°95) = ('§°95) A (g*s°l~sl°g*s) € gs
@5 1s an S-int quasi-ideal.

Theorem 3.38. Every S-int quasi-ideal is an S-int BQ
ideal.

Proof: It is followed by Theorem 3.32 and Theorem 3.35.
Here note that the converse of Theorem 3.38 is not true
follows from Example 3.33 and Example 3.36.

Theorem 3.39 shows that the converse of Theorem 3.38
holds for soft simple* semigroup.

Theorem 3.39. Let g € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:
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(1) gs is an S-int quasi-ideal.
(2) gs is an S-int BQ ideal.

Proof: (1) implies (2) is obvious by Theorem 3.38. (2)
implies (1) is obvious by Proposition 3.34 and Proposition
3.37.

Proposition 3.40. Let 95 be an idempotent SS over U. If
Y is an S-int interior ideal, then Js is an S-int L-BQ ideal.
Proof: Let 95 be an idempotent S-int interior ideal of S.
Then, 95 o 95 = 95 and S 0 95 0 S € 9. Thus,

(S 195)“(195"5 ﬁs)cs o s
=So0500; ESos0S E Vs

Hence, 95 is an S-int L-BQ ideal of S.

Proposition 3.41. Let 95 be an idempotent SS over U. If
s is an S-int interior ideal, then Y is an S-int R-BQ ideal.

Proof: Let 5 be an idempotent S-int interior ideal of S.
Then, 195 o 195 = 195 and S o 195 o S g 7.95. Thus,

(850 S) T (950 S o95) EF50 S
=0500500 € SotgoS E

Hence, 95 is an S-int R-BQ ideal of S.

Theorem 3.42. Let 95 be an idempotent SS over U. If 9
is an S-int interior ideal, then Jg is an S-int BQ ideal.

Proof: It is followed by Theorem 3.40 and Theorem 3.41.

Proposition 3.43. Let 95 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) s is an S-int interior ideal.
(2) Y5 is an S-int L-BQ ideal.

Proof: First assume that (1) holds. Where Js is an S-int
interior ideal of S. Then, S o 95 o S € 5. By assumption,
S =500 =S o g. Thus,

(S 195)”(195°S 195)C195 S o g
=8c0509, 8009508 E v,

g is an S-int L-BQ ideal.

Conversely, assume that (2) holds. Where s is an S-int L-

BQ ideal of S. Then, (S 95) N (Vs o S. J5) €Y. In
order to show that J5 S-int interior ideal, we need to show

that Sodg0S E Vs .
S o Y. Thus,

By assumption, S= Yo S=

Hence, 9 is an S-int interior ideal.

Proposition 3.44. Let 95 € S;(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) Y is an S-int interior ideal.
(2) 9 is an S-int R-BQ ideal.

Proof: First assume that (1) holds.Where U is an S-int
interior ideal of S. Then, S o 95 o« S € Y. By assumption,
|SI = 193 o |SI = |SI o 195. ThuS,

(ﬁsog)ﬁ(ﬁsogoﬁs)gﬁsogoﬁs
2501950195§S01950.SI§195

Therefore, Js is an S-int R-BQ ideal.

Conversely, assume that (2) holds, where Js is an S-int r-
BQ ideal of S. Then, (95 03) 7 (¥ 0 S 0 95) E Y. In
order to show that 95 S-int interior ideal, we need to show
that gOﬁsoggﬁS .
S. Ys. Thus,

By assumption, S = g oS =

9508 = (80050 8) A (Sovs08)
§) (95088) & (8508) A (v503)
(95080 05) E 0

- ( oS
= (855)7
Therefore, J is an S-int interior ideal.

Theorem 3.45. Let 95 € Sg(U) and S be a soft simple*
semigroup. Then, the following conditions are equivalent:

(1) s is an S-int interior ideal.
(2) Y5 is an S-int BQ ideal.

Proof: It is followed by Theorem 3.43 and Theorem 3.44.

Proposition 3.46. Let pg and §g be S-int L-(r-) BQ ideals.
Then, pg N &g is an S-int L-(r-) BQ ideal.

Proof: The proof is presented only for S-int L-BQ ideal,

as the proof for S-int r-BQ ideal can be shown similarly.
Let ps and §¢ be S-int L-BQ ideals of S. Then,

(-’SVI°PS)ﬁ (Ps°-§°l95) € ps
(S'oss)ﬁ(ssogoss) € s
Thus,
[SI o (ps N 55)] N [(Ps N 55)°g o(ps N Ss)] c
(Slops) N (psogops) € ps

[S‘ o (ps N Ss)] A [(Ps A 55)°Sl o(ps N Ss)] c
(goss) A (ssogoss) & s
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Hence,
[S o (ps N Ss)] N [(Ps Asg) oo (ps N Ss)] € ps Nsg
Thus, pg N &5 is an S-int L-BQ ideals.

Theorem 3.47. Let ps and §¢ be S-int BQ ideals. Then,
ps N 8¢ is an S-int BQ ideals.

Corollary 3.48. The finite intersection of S-int BQ ideals
is an S-int BQ ideal.

Proposition 3.49. Let @ and §¢ be S-int r-(r-) ideals.
Then, G N g is an S-int L-(r-) BQ ideal.

Proof: The proof is presented only for S-int L-BQ ideal,
as the proof for S-int r-BQ ideal can be shown similarly.

Let G5 and SS be S-int L-ideals of S. Then, S o Q4 & ds
and S o 55 € 5. Thus,

[S e (a5 A A [ s5) o Se (a5 Tisy)| E
(Soq) A (Gs0S0q) ESoqg Eq

[Se (% 7 s)] A [(qf A sg)o ’S; (@5 M 85)| &
(Soss) N (5500 085) ESosg E s
Hence,
[So (@ Asp] A (s o Se@sAsy| Easis
Thus, G5 A & is an S-int L-BQ ideals.

Theorem 3.50. Let Q¢ and §¢ be S-int ideals. Then,
G N 5 is an S-int BQ ideals.

Theorem 3.51. Let 9 be an S-int r-ideal and $¢ be an S-
int L-ideal. Then, G N g is an S-int BQ ideal.

Proof: Let G5 be an S-int r-ideal and fj5 be an S-int L-
ideal. Then, Qg0 C 9y

S o SS g SS 5 and
Q"S o Q"S g Q"S, SS o SS g Ss.ThuS,

[So(qsﬁss)] A [(qsﬁss)ogo(qsﬁss)] e
(Soss) (508 00) E s (Gy0%) T3

Hence, G N &g is an S-int L-BQ ideal. Similarly, since
[(q‘s Nsg) o S'l] A [(q‘s M) oSo(agn Ss)]
(503 M (8505 085) € s A (85085) E G 185

G N &¢ is an S-int R-BQ ideal. Therefore, G5 N &5 is an
S-int BQ ideal.

Theorem 3.52. Let J5 be an S-int L-BQ ideal and t5 be an
S-int L-ideal. Then, 9 N tg is an S-int BQ ideal.

Proof: Let 95 be an S-int L-BQ ideal and tg be an S-int -
ideal.  Then, (Sod) R (195 oS 195) E9; and
Sot, €t Thus,

[S e @5 Ate)| 7|05 Fts) o So (95 Mty)| €
(Soﬁs)ﬁ(ﬁsogoﬁs)iﬁs

[Se s At)] A s Ats) oS o (95 Mts)] €
Soton (tsogots) g8.t, ¢
Hence,
[So s At)] A5 At oS o s Aty)] E 05 At
Thus, 9 7 £ is an S-int L-BQ ideal.

Theorem 3.53. Let §¢ be an S-int L-ideal and pg be an SS
over U. Then, &5 ° pg is an S-int L-BQ ideal.

Proof: Let 55 be an S-int L-ideal. Then, S. 5¢ € ;. Thus,

[S (850 Ps)] A [(55 ops)eS o (850 Ps)] ESo(ssops)
= (S°55)°P5 € $sops
Hence, g © pg is an S-int L-BQ ideal.

Theorem 3.54. Let §5 be an S-int r-ideal and pg be an SS
over U. Then, pg © 8 is an S-int R-BQ ideal.

Proof: Let §; be an S-int r-ideal. Then, $5 0 S & §;. Thus,

[(ps °8g)o S] A [(ps o85) oo (pgo Ss)] € (psoss)ed
=pso(s00) Epsoss

Hence, pg © &5 is an S-int r-BQ ideal.

Theorem 3.55. Let hg be a nonempty SS over U. Then,
every soft subset of hg containing (.S' ° hs) V] (hs ° .S') is
an S-int BQ ideal.

Proof: Let ps be a soft subset of hg containing

(gohs) (hs S) Since,

SopsE8ohs & (Sohs)0(hs-8) Ens

(S' o ps) € ps is obtained. Hence, ps is an S-int L-ideal.
pSOSChS SC(S hS)U<hS S)Cps

Thus, psogips. Hence, pg is an S-int wr-ideal.
Therefore, pg is an S-int BQ ideal. Thus, by Theorem
3.30, pg is an S-int BQ ideal. Hence, every soft subset of

hg containing (S' ° hs) (hs S ) is an S-int BQ ideal.

172




Tr. J. Nature Sci. Volume 14, Issue 2, Page 162-178, 2025

Theorem 3.56. Let Js be a nonempty SS over U. Then,

every soft subset of J5 containing S. Y is an S-int L-BQ
ideal.

Proof: Let fj; be a soft subset of Y5 containing S Ys.
Since, S o fhs € S o 95 € 5. Thus, So fg E fs. Hence,
Ag is an S-int r-ideal. Thus, by Theorem 3.25, fig is an S-
int BQ ideal. Hence, every soft subset of J5 containing

S o ¥y is an S-int L-BQ ideal.

Theorem 3.57. Let U5 be a nonempty SS over U. Then,
every soft subset of Jg containing

(S o 95) A (9 0 S o 9g) is an S-int L-BQ ideal.

Proof: Let fjg; be a soft subset of J5 containing
(S o95) N (g 0 S o V). Then,

SofsESosandfgoSohs E 9so0Sods
Since,
(-Sl°ﬁs)ﬁ(ﬁs°g°f]s) c (-Sl°l95)ﬁ(l95°-§°195) c fs
Hence, fj5 is an S-int r-ideal.

Proposition 3.58. Let pg be an S-int subsemigroup over
U, o be a subset of U, Im(pg) be the image of pg such
that ¢ € Im(pg). If pg is an S-int L —(r-) BQ ideal of S,
then U(pg; o) is a L~(r-) BQ ideal of S.

Proof: The proof is presented only for S-int L-BQ ideal,
as the proof for S-int r-BQ ideal can be shown similarly.
Since, pg(x) = o forsome x € S, @ # U(ps; o) € S. Let
K € (S.U(ps; a)) n (‘U(ps; 0).5. U(pg; a)). Then, there
exist %, ¥,z € U(pg; 0) and 1, 8 € S such that k = 8x =
yrz. Thus, ps(x) 2 g, fs(y) 2 0 and pg(2) 2 0. Since
ps is an S-int L-BQ ideal,

(Seps) 0= (S nostm} 236 nps9
K=mn

=Unps(x) =psx) 20

(PS oo PS) (x) = U {Ps(n]) n (SI ° Qs) (n)}

K=mn
2 ps() N (Sops) (v2)
=050 | | 8@ nos@)

yz=pq
2 ps(x) Nps(¥) Nps(2)
2oNoNo =0

Thus, (.~S' o ps)(K) N (pg o S ps)(x)) 2 ¢. Since pg is
an S-int L-BQ ideal,

ps() 2 (S ps) () N (ps oS o ps)(k) 2 0
Thus, k € U(pg; o). Therefore,

[S. U(ps; a)] N [U(ps; 0). 5. U(ps; 0)]

Hence, U(pg; o) is a BQ ideal of S.

Theorem 3.59. Let pg be an S-int subsemigroup over U,
o be a subset of U, Im(pg) be the image of pg such that
o € Im(pg). If pg is an S-int BQ ideal of S, then
U(ps; 0) is a BQ ideal ideal of S.

We illustrate Theorem 3.59 with Example 3.60.

Example 3.60. Consider the SS 15 in Example 3.2. By
considering the image set of 7, that is,

Im(’?s) = {{e,x,xz, y}' {e! X, xz}i {e! X}}

we obtain the following:

{f' h,‘l"}, 0= {e; X}
u(nS; J) = {f!'F}: o= {e,x,xz}
{r}, o ={e,x,x%y}

Here, {f, h, ¥}, {f, ¥} and {r} are all BQ ideals of S. In fact,
since

{grie} c (e} (T e} {f 9} © (T2} ho#}. {f b7}
c {j, h, ¥}

each U(ng; o) is a subsemigroup of S. Similarly, since

S FH N {#}S. 7 c Fhn{x} < {7}
S ndf e {eh) ciedn{i e} < {is}
S L) n{fhel ST he) c{fhe}n{f h*}
c {f, h, ¥}

each U(ng; 0) is an L-BQ ideal of S. Similarly, since
(&9 n{#}.5.{#) c 7} n{r} < {x}
(e n{f e {ie) c el n{i e} < {i.#}

({f’ h’ F}' S) n ({f’ h’ F}' S' {f’ h’ F}) g {f’ h’ F} n {f’ h’ {:}
c {f, h, ¥}

each U(ng; o) is an rR-BQ ideal of S, and thus each of
U(ns; o) is a BQ ideal of S.

Now, consider the SS &5 in Example 3.2. By taking into
account

Im(A%S) = {{e! x2, y' yxZ}, {e: X, y}; {e; X}}
we obtain the following:

{Tf h}! g = {e,x}
(u('%Sf 0-) = {f}! o= {erxry}
7, o={ex?yyx*}

Here, {f, h} is not a BQ ideal of S. In fact, since

G- 0 ({f, h}.S. R € . h e} 0 {f, h#} & {f, h}
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one of the U(8g; o) is not an L-BQ ideal of S, hence it is
not a BQ ideal of S, It is seen that each of U(4g; o) is not
a 'BQ ideal of S. On the other hand, in Example 3.2 it was
shown that &g is not an S-int BQ ideal of S.

Proposition 3.61. For a semigroup S, the following
conditions are equivalent:

(1) S isregular.

) ng = (S' ong) N (Tls oS °775) for every S-int L-
BQ ideal.

Proof: First assume that (1) holds. Let S be a regular
semigroup, s be an S-int L-BQ ideal and x € S. Then,

(.~S' ong) N (775 oS 775) € 1, and there exist an element
y € § such that x = xyx. Since

(8ons)® = [ {800 nnsew} 286w nnst

x=kn
=UNns(x) =ns(x)

(n58ems) 9 = | fnsr n S empym)

x=kn

2 75) 0 (Sens) %)

= 15(X) _

n | 80 nnss)
YX=TS _

2 15() NSO NNsx)

= ns(X) NUNns(x) =nsKx)

Thus,

(S' ° ns) N (ns o Sons ) (%) 21s&) Nns(x)
2 (%)

implying that ng € (.~S' or)s) n (775 oS0 775). Therefore,
Ns = (SI"TIS) A (775°'~S|°775)-

Conversely, let ng = (S ong) N (115 0o 115), where fs is
an S-int L-BQ ideal. In order to show that S is regular, we
need to show that P = SP N PSP for every L-BQ ideal
of S. It is obvious that SP N PSP € P. Thus, it is enough
to show that P € SP N PSP. Let d € P and P be any L-
BQ ideal of S. Thus, Sp is an S-int L-BQ ideal ideal.
Hence,

Sp(d) = (S55) @ 0 (SpoSo5p) (@)
= (S52Sp)(d) N (Sp o S5 2 Sp)(d)
= Sspapsp(d) = U

implying that d € SP N PSP. Hence, P = SP N PSP so
S is a regular semigroup.

Proposition 3.62. For a semigroup S, the following
conditions are equivalent:

(1) S isregular.

2) bg=(bgo S') n (bs oS bs) for every S-int r-
BQ ideal.

Proof: First assume that (1) holds. Let S be a regular
semigroup, bg be an S-int R-BQ ideal and x € S. Then,

(bs e S‘) n (bs oS bs) € by and there exist an element
t € S such that x = xtx. Since,

(bs+8) = | {bst0 n 8} 2 st n St
x=kn

= bs(x) N U = bs(x)

(bseSobs) %) = Uyern {bs k) 0 S o bs)(m)} 2
bs(s) N (S e bs) (%) = bs(8) N Upy—s {S(@) 0
bs(s)} 2 bs(x) NS») Nbs(®) = bsx)NU N

bs(%) = bs(x).

Thus,

(bsoS) ) N (bseSobs ) X) 2 bs(x) N bs(x)
2 bs(%)
implying that b € (bs ° S‘) n (bs oS bs)~ Therefore,

bs=(bs°s)ﬁ(bs°g°bs)-

Conversely, let bg = (bs ° S') n (bs oS bs) where bg
is an S-int R-BQ ideal. In order to show that S is regular,
we need to show that M = MS N MSY for every rR-BQ
ideal of S. It is obvious that MS N MSM € M. Thus, it is
enough to show that M € MS N MSM. Let¥ € M and M
be any r-BQ ideal of S. Thus, Sy is an S-int R-BQ ideal
ideal. Hence,
Sy @) = (Syo8) @ n (SyoSo8y) ®)
= (Sy ©Ss)(®) N (Sy o S0 Sy)®)
= Sysnmysy () = U

implying that ¢ € MSNMSV .
MSM so S is a regular semigroup.

Hence, M =MSn
Theorem 3.63. For a semigroup S, the following
conditions are equivalent:

(1) Sis regEIar. ~
@ ns = (Sens) A (nsoSens) =

(]15 0 S‘) ] (ﬁs° S ops) for every S-int BQ ideal.

Proof: It is followed by Proposition 3.61 and Proposition
3.62.

Proposition 3.64. Let S be a regular semigroup. Then
every S-int L-BQ ideal of a semigroup S is an S-int quasi
ideal of semigroup.
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Proof: Let f; be an S-int L-BQ ideal of S. Then,

(S'oqs)ﬁ(qsogoqs) & qs. We know that QoS

and So Qs are S-int R-and S-int L-ideals of the semigroup
S respectively. By Corollary 2.20, we have

(qsog')ﬁ(g'oqs) =qsogo.§'oqs.Thus,

(Q‘SOI’VSI) ﬁ (Squ) g chS and (q‘sog) ﬁ (gqu) =
(}SOSOSO(}S quogqu

Hence,

(q‘sog) ﬁ (Tsloq‘s) § (Sloqs) ﬁ(qSOSOQ‘S) § Q‘S
Therefore, G is an S-int quasi ideal.
Proposition 3.65. Let S be a regular semigroup. Then
every S-int R-BQ ideal of a semigroup S is an S-int quasi
ideal of semigroup.
Proof: Let G5 be an S-int r-BQ ideal of S. Then,

(qsog)ﬁ(qsogoqs)iqs. We know that Gg oS

and So Q are S-int rR-and S-int L-ideals of the semigroup
S respectively. By Corollary 2.20, we have

(9508) A (Soa) = 50880y

Thus,

(9508) A (Soa) =950808ca; Eas080ay.
Hence,

(9508) A (Soa) E(a08) A (as0Soa) & ay

Therefore, O is an S-int quasi ideal.

Theorem 3.66. Let S be a regular semigroup. Then every
S-int BQ ideal of a semigroup S is an S-int quasi ideal of
semigroup.

Proof: It is followed by Proposition 3.64 and Proposition
3.65.

4. DISCUSSION AND CONCLUSION

Rao [8] expanded the notions of quasi-ideal, bi-ideal, L-
(r-) ideal, and ideal in semigroups by defining BQ ideals
and examining their characteristics. In this study, we have
applied the concept of "S-int BQ ideals of semigroups" to
both SS theory and semigroup theory. It has been shown
that every S-int bi-ideal, S-int ideal, S-int quasi-ideal, and
S-int interior ideal of an idempotent SS is an S-int BQ
ideal. Counterexamples show that the converse is not
always true, and for the converse to hold, the semigroup
must be simple* or regular. It has also been demonstrated
that in a soft simple* semigroup, the S-int BQ ideal
coincides with the S-int bi-ideal, S-int L-(r-) ideal, S-int
quasi-ideal, and S-int interior ideal. To link SS theory and
classical semigroup theory, it is shown that if a
subsemigroup is an S-int BQ ideal, its upper a-inclusion
set is also a BQ ideal. Furthermore, if a subsemigroup is
a BQ ideal, its SCF is an S-int BQ ideal, and the reverse
is also true. The finite soft intersections of S-int BQ ideals
are shown to be S-int BQ ideals, as are the soft
intersections of S-int ideals. Additionally, the relationship
between regular semigroups and S-int BQ ideals is
explored. In future studies, the characterization of S-int
BQ ideals of semigroups can be conducted with respect
to various types of semigroups, such as rL-(rR-) simple
semigroups, L-(R-) zero semigroups, and intra-regular
semigroups.

The relation between several S-int ideals and their
generalized ideals is depicted in the following figure,
where A — B denotes that A is B but B may not always
be A.
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S-int L-ideal _ S-int ideal — S-int r-ideal <
A A
s@ S soft simple* semigroup - — S soft r-simple* semigroup
® 2 S-int quasi-ideal
2 m —> < i
B 7 . 2
@ S regular S regular =
£ ;
% E
% =
B 5
% 2
S
g £
S soft r-simple* semigroup S soft L- simple* semigroup _g
S-int bi-ideal
17 2]
g g
B
g &
> @
2 v v ®
E £
Q 5 & z =
S S-int 1-BQ ideal S-int BQ ideal S-int R-BQ ideal )
£ Y e | [t g
A
b “
@
2 g
@
g a. o
= £ &
5 oy 2
@ * g
g % 1
. @
g g | ®
:
S-int interior ideal

Figure 1. Diagram illustrating the relationships between some S-int ideals
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