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Abstract 
Security of a cryptographic application is highly related to the quality of randomness of the mechanism used 
to encrypt a message. A ciphering process used to encrypt a message is mainly based on the cryptographic 
random numbers. There are numerous methods proposed to generate random numbers for cryptographic 
applications in the literature. To decide whether a cryptographic random number generator is suitable for 
cryptographic applications or not, various statistical randomness tests are introduced. In practice, test 
batteries that contain more than one randomness test are constructed and all the tests in a battery are applied 
to evaluate the quality of random number generator. In this article, we present a review of test batteries and 
recent statistical randomness tests used to evaluate output of a cryptographic random number generator. We 
criticize test batteries in the sense of multiple testing problem, highlight some misuses of statistical notions in 
hypothesis testing of cryptographic randomness, and discuss potential solutions to multiple testing problem 
seen in the test batteries. 
Keywords: Chi-Square, Kolmogorov-Smirnov, hypothesis testing, multiple testing, power, random number 
generator, significance level, test battery, test of randomness, Type-I error, Type-II error. 

Öz 
Kriptografik Rasgeleliğin İstatistiksel Olarak Test Edilmesi 

Bir rasgele sayı üretecinin rasgeleliğinin değerlendirilmesi için bir test kümesindeki tüm testler ilgili üretece 
uygulanmaktadır. Bu çalışmada, test kümeleri ve güncel olarak önerilmiş olan kriptografik rasgelelik testleri 
derlenmiş, test kümeleri çoklu test problemi açısından değerlendirilmiş, bazı istatistiksel kavramların hatalı 
kullanımları ve çoklu test problemine ilişkin olası çözümler üzerinde durulmuştur.  
Anahtar sözcükler: Çoklu test problemi, rasgele sayı üreteci, rasgelelik testi, test kümesi.  

1. Introduction 
Cryptographic applications are based on random numbers that have some special characteristics. Mainly, 
there are three classes of random numbers: true random numbers, pseudo-random numbers, and quasi-
random numbers. True random numbers are based on physical sources and do not require a starting 
sequence, which is called seed. It is expected that they have neither a correlation pattern nor period. 
Pseudo-random numbers seem as random, pass through statistical randomization tests, and they are 
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efficiently generated by computers. However, they require a seed; hence, they are reproducible. Quasi-
random numbers are generated by using special algorithms and they are well-distributed within a unit-
square or unit-cube. The main disadvantages of quasi-random numbers are that quasi-random number 
generators lose their performance with increasing dimensionality and there is no statistical test to evaluate 
the quality of a quasi-random number generator [22]. In cryptographic applications, a special subset of 
pseudo-random numbers called cryptographic random numbers are employed. Cryptographic random 
numbers must satisfy very strong statistical requirements to be unpredictable. Unpredictability is directly 
related with contexts of autocorrelation and independence of a sequence of random variables, realizations 
of which constitute a cryptographic random number sequence. For a sequence of random variables, no 
autocorrelation and independence both imply randomness. In cryptography, randomness is the key 
requirement for suitability of a random number generator (RNG). In addition to context of randomness, 
local randomness concept is also considered in terms of cryptographic randomness [28]. 
A randomness analysis of output of an RNG is necessary to confirm that an RNG of interest is suitable for 
use in encryption processes. This analysis is made by conducting one or more statistical randomness tests. 
The issue of testing the random number generators has been attracted attention of researchers from 1960's 
to nowadays. Because the quality of randomness in used random number sequence constitutes the hearth 
of a ciphering process, it is very important to apprehend mechanism behind the statistical testing of 
randomness. A randomness test of an RNG is conducted at two stages. At the first stage, empirical 
distribution of a test statistic is obtained over a random number sequence being tested. At the second 
stage, goodness-of-fit of the empirical distribution to a theoretical distribution is tested. For instance, let 
us have  ones and zeros at hand. It is possible to generate  different sequences with this set of zeros 
and ones. In a randomness test, whether these  sequences occur with equal probability or not is tested. 
The null hypothesis of this test is “  Sequences generated by the RNG of interest are random.” This 
null hypothesis is tested at a predetermined probability of rejecting the null hypothesis when it is true, 
which is called significance level. Actual value of this probability is called Type-I error rate. 
There are more than a hundred statistical tests that can be used to test randomness of a sequence of 
random numbers [19]. Because individual use of these tests would not be beneficial under some 
circumstances, use of their collections as test batteries is proposed in the literature [20, 24]. Each test in a 
test battery is applied separately to the RNG under consideration at a level of significance of . If all or a 
predetermined portion of tests conclude that the RNG of interest generates random numbers, it is deduced 
that the degree of positive belief on randomness of the RNG is strong [2, 15, 25]. 
Although this manner of testing seems to be reasonable, it causes a severe problem called multiple testing 
problem in statistics. However, to the best of our knowledge, there is no article in the cryptography 
literature focusing on the test of cryptographic randomness under multiplicity. Also, we identify some 
mistakes in use of some important notions of statistical hypothesis testing in the cryptography literature. 
For a reliable and scientifically suitable hypothesis testing in such an important and critical field, these 
issues should be taken into consideration. With this motivation, we focus on statistical randomness tests, 
test batteries, and use of basic statistical hypothesis testing notions in testing the cryptographic 
randomness. In this article, our aim is twofold. First, we review the literature on the cryptographic 
randomness tests, provide basic information on test batteries as a whole, and highlight recent innovations 
in statistical randomness tests for cryptographic RNGs. Second, we aim at attracting attention to an 
appropriate and scientific way of testing randomness of an RNG. In this regard, we focus on selection and 
interpretation of significance level and multiple testing problem in detail. We evaluate each test battery 
according to the impact of conducting more than one statistical randomness test simultaneously. 
In Section 2, test batteries seen in the literature are described. In Section 3, some basic and recently 
proposed cryptographic randomness tests not included in a test battery are mentioned. In Section 4, some 
statistical issues that should be handled with care are mentioned and impact of multiplicity are evaluated 
for each test battery in terms of statistical measures used to evaluate quality of a statistical test procedure. 
In Section 5, findings are summarized and discussed. 
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2. Test batteries 
Instead of testing the quality of randomness of an RNG by using an individual statistical test, some test 
batteries have been formulated in the literature. An RNG is expected to pass through (the null hypothesis 
cannot be rejected) all or a predetermined portion of tests in a test battery of interest to be useful in 
cryptographic applications. In this section, we review the basic and mostly used test batteries proposed in 
the literature. 
The first test battery for testing cryptographic randomness is the one introduced by Knuth [16, 17, 18]. 
This battery has survived for a long time and it is referred as a basic test battery [21]. It includes 10 
statistical tests which are stated in Table 1 [18, 38]. Nowadays, it is claimed that Type-I error of Knuth 
test battery tends to be more than a predetermined nominal significance level [15]. This implies that the 
probability of deciding the randomness of a sequence when it is actually non-random is not as low as 
desired for the battery of Knuth. 

 
Marsaglia [23] introduced the Diehard test battery. It includes 12 tests mentioned in Table 1 [1]. Some of 
the tests are repeated with different parameter settings. Tests and their details are given by Marsaglia and 
Tsang [24]. It is claimed that there are several disadvantages that decreases suitability of Diehard battery 
of tests. The most important disadvantage of Diehard is that input parameters are fixed by software; 
hence, user is not allowed to change the values of parameters. Besides, there are some difficulties in data 
input [20]. 
Regarding the disadvantages of Diehard test battery, a new one called Dieharder is introduced [5]. 
Dieharder includes 26 fully implemented randomness tests mentioned in Table 1 [5]. It can be perceived 
as a novel improvement of Diehard and provides a user friendly interface and a useful and open source 
toolset for users of random numbers [5, 40]. Dieharder test battery is beneficial in testing the random 
numbers rather than bit sequences [40]. Software used to implement Dieharder battery is open source and 
prepared in R that works under Linux or Unix operating systems. 
US National Institute of Standards and Technology (NIST) developed a test battery called NIST battery in 
2001 [31, 32]. This battery is composed of 15 tests given in Table 1 [36, 38]. NIST is beneficial in testing 
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output of binary RNGs used in cryptographic applications. It includes existing and new randomness tests 
from the literature and applies chi-square goodness-of-fit test with two different degrees of freedom 
approaches [20, 36]. Because being defined as a standard, NIST battery is still used as a straightforward 
tool for formal certifications. Sadique et al. [36] review the tests included in NIST test battery. They also 
provide minimum required lengths of bit sequences for the tests included in NIST battery and criticise 
some of the tests of NIST battery in terms of CPU time and values of test statistics. In both Diehard and 
NIST batteries, parameters of the tests are fixed; hence, it is possible to run a test by a simple function call 
[20]. Although this makes these batteries more user-friendly than their existing counterparts, it decreases 
their flexibility. 
L'Ecuyer and Simard [20] composed a C library called TestU01 that includes most of the available 
randomness tests and RNGs in the literature. TestU01 is able to run various combinations of these tests. It 
is possible to test some combinations of RNGs by using combinations of randomness tests via TestU01 
suite [20, 21, 29]. It includes six predefined test batteries working for either uniform distributed random 
numbers or bit sequences [20]. Therefore TestU01 can be perceived as a suite of test batteries. Test 
batteries in TestU01 are mentioned in Table 2. Some of the tests are applied more than once with different 
parameter combinations under some of the batteries of TestU01. The batteries Rabbit, Alphabit, and 
BlockAlphabit, which applies the same tests with Alphabit under different parameter combinations, are 
used to test bit sequences, and the rest are used for sequences of random numbers. Although some of the 
NIST tests are also included in TestU01, it does not implement all tests in NIST test battery [39]. The 
library TestU01 is developed on ANSI C; hence, it is compiled by GNU tools instead of today's C 
compilers. L'Ecuyer and Simard [20] also present results of applications of test batteries of TestU01 to 
well-known RNGs. 

 
In addition to these test batteries, there are also small scale test batteries that have limited impact in the 
literature. ENT is another test battery proposed by Walker [42]. ENT has 5 very basic statistics given in 
Table 1 [14]. Two of these statistics provide statistical goodness-of-fit tests and the rest are statistical 
measures used to evaluate quality of randomness. The web site ``random.org" uses ENT battery to test its 
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random numbers [15, 25]. Vattulainen et al. [40] proposed a test battery based on Ising model and random 
walks on lattices. This battery is called Helsinki by Rutti [33]. Tests included in Helsinki battery are 
mentioned in Table 1 [41]. Information Security Research Center at Queensland University of 
Technology introduced another test battery called Crypt-X, which was for commercial purposes, in 1998 
[39]. It includes 6 tests given in Table 1 [38]. SPRNG test battery was proposed in 2000. It includes some 
tests from Knuth test battery and some new additions [26]. SPRNG has 10 randomness tests mentioned in 
Table 1 to evaluate randomness of serial and parallel random number sequences. Also, SPRNG includes 
some RNGs tested by its test battery. Rutti [33] evaluated existing test batteries and composed a new test 
battery with the tests mentioned in Table 1. It consists 37 statistical and physical randomness tests [33]. 
This test battery is a combination of Knuth, Helsinki, Diehard, and SPRNG batteries. 
3. Tests not included by a test battery 
There are numerous randomness tests not included in a test battery and can be used to test randomness of 
an RNG. Most of these tests are proposed to formulate a universal test rather than testing randomness of 
an RNG by using batteries. 
Maurer [27] proposed a statistical test for random bit generators that does not include disadvantages of 
preceding tests. This test is able to detect deviations from statistics of binary symmetric sources and it 
determines cryptographic significance of an inadequacy of an RNG by measuring per-bit entropy. This 
work of Maurer [27] provides a guideway to statistical testing of randomness. 
Hernandez et al. [12] proposed a new test called SAC, namely Strict Avalanche Criterion, and tested 
some RNGs by SAC. It is possible to apply the SAC test to sequences longer than 32 bits efficiently in 
terms of computational time. Hernandez et al. [12] compared performance of SAC test with Frequency, 
GCD, Bday, Gorilla, and Collision tests over seven RNGs and concluded that the SAC test is more 
powerful than some of the classical randomness tests. 
Ryabko and Monarev [35] proposed an adaptive chi-square test that is suitable for testing with smaller 
sample sizes than those required for the classical chi-square test. They conducted an experimental study 
with Rijndael and RC6 block chippers over English and Russian texts of various lengths to evaluate 
performance of their new test. Consequently, they obtained that their test identifies non-randomness more 
efficiently than chi-square test in small samples [35]. 
Ryabko and Monarev [34] proposed “Book Stack” and “Order” tests for testing binary random bit 
sequences. These tests are based on the contexts of entropy and universal coding, respectively. They 
compare these tests with some standard tests and the one proposed by Ryabko et al. [35]. After a limited 
simulation study, it was observed by Ryabko and Monarev [34] that Book Stack test rejects the null 
hypothesis stating randomness of an RNG easier than Order test. Thus, Book Stack test is found more 
conservative than Order test. Accordingly, it is obtained that an information theoretic approach is useful 
in randomness tests of RNGs. 
Random walk is a stochastic process composed of a sequence of variations with random magnitudes and 
directions. It is possible to analyse binary sequences in detail by using random walk process. In the 
literature, there are various tests based on random walk. Because related test statistics are based on 
approximate distributions, these tests are not applicable to short sequences. Doganaksoy et al. [7] 
proposed three randomness tests based on random walk process. In these tests, it is possible to calculate 
exact probabilities used to make decision on the null hypothesis. Therefore, in contrast to existing tests 
based on random walk, those of Doganaksoy et al. [7] are applicable to short sequences. Doganaksoy et 
al. [8] proposed another group of randomness tests based on randomness postulates of Golomb. 
Sequences satisfying the postulates of Golomb are called pseudonoise sequences [8]. Recently, 
Doganaksoy et al. [8] utilized postulates on the runs of lengths and proposed tests based on runs of 
lengths one, two, and three. The chi-square test is employed as the goodness-of-fit test within their test 
process. 
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Alcover et al. [2] proposed “Topological Binary Test” to test randomness in bit sequences. This test 
works on different bit patterns of pre-determined length in the sequence of interest. If many different bit 
patterns are obtained, this leads to acceptance of the null hypothesis stating the randomness of considered 
RNG. Distribution of the resulting test statistic is exact rather than approximate; hence, this test is also 
applicable to short bit sequences. Besides, fast computing is another advantage of this test [2]. 
4. Statistical issues in testing the randomness 
In this section, we focus on selection and interpretation of significance level and multiplicity problem in 
simultaneous application of more than one hypothesis tests. 
4.1. Significance level and Type-I error 
Significance level and Type-I error rate are briefly defined in the introduction. A more formal definition 
of Type-I error, denoted by , and related concepts are given in Table 3 [10]. In the cryptography context, 
if we decide non-randomness of an RNG while it is actually generating random numbers, we commit a 
Type-I error, which is also called false positive decision. Whereas, if we decide randomness of an RNG 
while it is not generating random numbers, we commit a Type-II error, which is called false negative 
decision and denoted by . The context of statistical power of a hypothesis test is closely related with 
Type-II error. For a randomness hypothesis, power, denoted by , is the probability of deciding non-
randomness of an RNG while it is actually non-random. It measures the chance of identifying a non-
random RNG correctly. 

 
Significance level constitutes a pre-determined value for the Type-I error. To decide rejection or approval 
of the null hypothesis, we obtain a probability, namely p-value that measures the degree of support for the 
null hypothesis provided by observed data. Let  be the test statistic and  be the region determined by 
the observed value of . Statistically, p-value corresponds to the probability , where is the 
null hypothesis [11]. To reach a decision on the randomness of an RNG, p-value is compared with a pre-
determined α. If p-value is smaller than α, we reject the null hypothesis. The smaller the p-value, the more 
confidently we decide non-randomness of an RNG (see Nuzzo [30] for a comprehensive evaluation of the 
context of p-value). However, this inference is not valid for the value of . Because value of  is directly 
related to the decision about randomness of an RNG, it should be determined with caution. 
Alani [1] proposed an approach for the interpretation of randomness test results. Alani [1] considered 
normal distribution as the reference distribution. It is stated by Alani [1] that “p-values near 0 or 1 
indicate deviation from normal distribution.” This implies that a p-value is interpreted in a symmetric 
fashion. Based on this symmetric interpretation, he divides the set [0,1) into safe (0.25,0.75), doubt 
((0.1,0.25] or [0.75,0.9)), and failure ((0,0.1] or [0.9,1]) areas, and uses the numbers of test results fall in 
these areas to judge the degree of deviation from randomness. We illustrate the relationship between 
rejection region and p-value in Figure 1. A p-value near 1, namely , implies that the 
probability of having a value of employed test statistic within the rejection region is nearly impossible; 
hence, it is nearly impossible to either reject a null hypothesis or infer a deviation from randomness. 
Based on a p-value near 1, one can conclude randomness of an RNG with virtual certainty. An example of 
this situation is seen in panel (a) of Figure 1. For a p-value near zero, we can confidently reject the null 
hypothesis as seen in panel (b) of Figure 1. Consequently, a p-value should always be interpreted in one-
sided manner by directly comparing a p-value with . 



H. Demirhan, N. Bitirim / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2016, 9, 1-11  7

 
L'Ecuyer and Simard [20] provided results on periods, CPU times, and numbers of statistical tests with a 
p-value outside the interval . This interval implies that the nominal  level used for 
testing is . This choice of  is far from the common manner and it is somewhat problematic. 
Difference between using  and a common choice of 0.05 is illustrated in Figure 2 over the chi-
square distribution with 10 degrees of freedom. As seen in Figure 2, we have an invisible rejection region 
at  significance level. Actually, total area under the curve is  for any degrees of 
freedom. Thus, it is nearly impossible to reject the null hypothesis stating the randomness of an RNG. 
However, we have a clear and appropriate rejection region, shaded area under the curve in Figure 2, at 
0.05  level. Although any value greater than zero can be assigned to , it should be chosen 
appropriately. When we decrease the value of , correspondingly, we increase the probability of deciding 
that the RNG of interest generates random numbers while it is not generating random sequences actually. 
Therefore, it is very important to use an appropriate value for α regarding the delicacy of matter in 
cryptography. 
4.2. Multiple testing problem on test batteries 
Multiple testing problem, also called multiplicity problem, is one of the basic problems seen in multiple 
hypothesis testing. To illustrate the problem, let us have  tests in a test battery and suppose that tests in 
the battery are conducted at a significance level of . We have the following result on the probability of 
having at least one significant result: 
           (1) 
For example, with  and , we have a  chance of deciding that sequences generated by 
an RNG of interest is not random in at least one of the tests, even if all of the tests actually indicate that 
the sequences are random. When we simultaneously use more than one test to evaluate randomness of an 
RNG, the probability of rejecting the null hypothesis simply due to chance increases with increasing 
values of . It is apparently seen that one should regard the multiple testing problem in statistical testing 
of cryptographic randomness. 
For a test battery, L'Ecuyer and Simard [20] highlight importance of having tests with different 
characteristics to identify deviations from randomness in different conditions. They remark the need for 
small batteries to increase computational efficiency, and state that small batteries may be more efficient in 
the detection of gross defects in RNGs or errors in their implementation. In fact, L'Ecuyer and Simard 
[20] intuitively describe the multiplicity problem in terms of computational efficiency. As the result of 
decreasing the number of tests in a battery, we not only gain computational speed but also decrease the 
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probability of incorrectly deciding non-randomness of a battery. Thus, we make more reliable decisions 
on the randomness of an RNG. 

 
Alcover et al. [2] claim that instead of a specific test, multiple tests together constitute a useful tool to 
study randomness of an RNG. They base this idea on the fact that some of the tests in a test battery may 
commit a Type-II error while the rest reach a correct decision. Thus, each test has its own strengths, and 
use of tests as a battery gives us the chance of utilizing strengths of tests. However, when we use more 
than one test at the same time, we increase the chance of committing a Type-I error. In this case, it is hard 
to take advantages of some tests due to the increasing Type-I error. 
For the considered test batteries, probabilities of incorrectly identifying at least one random sequence as 
non-random for various values of significance level are presented in Table 4. For a reliable and 
appropriate hypothesis testing, we consider two main characteristics of the considered test. The first is the 
ability of controlling nominal significance level and the second is the power of test. As seen in Table 4, 
none of the batteries is able to control α due to the multiplicity problem. Decreasing the nominal α level 
seems to be a solution of the problem of incorrectly identifying a random sequence as non-random. 
However, in this case, we decrease the area of rejection region and it becomes almost impossible to reject 
the randomness hypothesis. 
The most common solution of multiplicity problem is to use a Bonferroni correction [9, 13]. Although it 
is mentioned in the literature of cryptography (see for example, Bogdanov et al. [4]), to the best of our 
knowledge, Bonferroni correction has not been used in randomness tests of a test battery. 
Bonferroni correction is based on scaling nominal significance level for each test in a set of hypothesis 
tests. Let  be the p-value obtained for th test for . In a Bonferroni corrected test, we reject 
th null hypothesis if . For example, with  and , the probability of having at least 

one significant result is obtained from eq. (1) as  . Thus, it is possible to 
control α level successfully with a Bonferroni correction. However, Bonferroni corrected tests are found 
to be conservative in many studies (see for example Demirhan et al. [6]). There are modifications of 
Bonferroni correction such as Dunn-Sidak correction provided that the tests are independent.  In a Dunn-
Sidak corrected test, we reject th null hypothesis if  [9, 37]. In the example with 
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 and , the probability of having at least one significant result is obtained from eq. (1) as 
. To control , there are also sequential versions of the family of 

Bonferroni corrections and other approaches working with a similar logic [3]. Although these approaches 
successfully control , their probability of correctly deciding non-randomness of a sequence while it is 
actually non-random is not as high as desired. This is the common deficiency of tests with Bonferroni 
correction and its adaptations [6]. 

 
Application of multiple randomness tests to evaluate randomness of an RNG's output seems to be 
reasonable to utilize strength of included tests in different cases. However, one should use a correction 
method or an approach that does not affected by multiplicity to make a reliable decision on the 
randomness of an RNG. A test battery including a small number of tests with high power can be applied 
with Bonferroni corrections. 
5. Conclusions 
Randomness of a sequence generated by a random number generator is evaluated by using some 
statistical hypothesis tests. These randomness tests are applied either individually or together. Some tests 
are collected under test batteries or test suites including batteries. The logic behind simultaneous 
application of more than one test is to utilize different advantages of tests for different cases seen in 
number sequences. However, there are vital inconveniences of application of more than one statistical 
hypothesis test. Also, appropriate use and interpretation of some notions of statistical hypothesis tests is 
of crucial importance. 
In this article, we consider statistical testing of randomness of a sequence generated by a random number 
generator. We review test batteries and basic and recent individual randomness tests in the cryptography 
literature. Then, we focus on some misuses of statistical notions in the randomness tests of random 
number generators, and mention multiple testing problem and its possible solutions for test batteries. 
Pre-determined significance level of a randomness test should be chosen and interpreted cautiously. An 
appropriate value of significance level may be chosen as 0.05 or 0.01. Lower values than 0.01 make 
rejection of null hypothesis harder; and hence, the probability of incorrectly deciding randomness of a 
random number generator synthetically increases. 
As for the multiple testing problem, one should use a Bonferroni correction or another method to control 
observed Type-I error level at a nominal value. A small test battery composed of tests with high power 
can be employed. As another possible solution, multiple comparison procedures used to conduct multiple 
pairwise hypothesis tests can be adapted for randomness testing by a test battery. 
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