

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2025; 14(2), 649-658

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: htatar@firat.edu.tr (H. Tatar)

Geliş / Received: 17.02.2025 Kabul / Accepted: 13.03.2025 Yayımlanma / Published: 15.04.2025
doi: 10.28948/ngumuh.1641247

649

Deep learning on the production line: A novel lightweight CNN model approach

for efficient and fast defect detection

Üretim hattında derin öğrenme: verimli ve hızlı kusur tespiti için yeni bir hafif

CNN modeli yaklaşımı

Hakan Tatar1,* , Muhammed Furkan Küçük2

1 Fırat University, Academy Of Civil Aviation, Department of Aircraft Electrics and Electronics, 23200, Elazığ, Türkiye
2 Fırat University, Electrıcal and Electronıcs Engıneerıng Department, 23200, Elazığ, Türkiye

Abstract Öz

This paper presents an optimized lightweight CNN model

developed using a unique dataset introduced here for the

first time to detect defects in manufacturing processes in a

factory. The model performance was analyzed

comparatively with widely used large-scale deep learning

architectures such as VGG16 and ResNet50. All models

were trained on the same original dataset, followed by the

same approach in tuning hyperparameters such as learning

rate, optimization algorithm, and data augmentation

strategies. Performance analyses were conducted using

fundamental metrics such as accuracy, precision, and F1

score, along with confusion matrices and randomly selected

test images. Our proposed model attained high accuracy

while reducing computational cost and significantly

shortening training time compared to traditional

architectures. The results demonstrate that the proposed

CNN model achieves a competitive level of accuracy

comparable to large-scale deep learning models while

serving as a more suitable alternative for low-power

hardware systems.

 Bu makale, bir fabrikadaki üretim süreçlerinde ortaya çıkan

kusurların tespiti için burada ilk kez sunulan benzersiz bir

veri kümesi kullanılarak geliştirilen, optimize edilmiş hafif

bir CNN modelini tanıtmaktadır. Model performansı,

VGG16 ve ResNet50 gibi yaygın kullanılan büyük ölçekli

derin öğrenme mimarileriyle karşılaştırmalı olarak analiz

edilmiştir. Tüm modeller, aynı özgün veri kümesi üzerinde,

öğrenme oranı, optimizasyon algoritması ve veri artırma

stratejileri gibi sabit hiperparametrelerle eğitilmiştir.

Performans analizleri doğruluk, kesinlik ve F1 skoru gibi

temel metriklerin yanı sıra, karmaşıklık matrisleri ve

rastgele test görüntüleri üzerinden gerçekleştirilmiştir.

Önerdiğimiz model, geleneksel mimarilere kıyasla daha

düşük hesaplama maliyeti ve çok daha kısa eğitim süresi ile

yüksek doğruluk elde etmiştir. Elde edilen sonuçlar,

önerilen CNN modelinin büyük ölçekli derin öğrenme

modelleriyle rekabet edebilecek düzeyde doğruluk

sunarken, düşük güçlü donanıma sahip sistemler için daha

uygun bir alternatif olduğunu göstermektedir.

Keywords: CNN, Fault detection, Solar panel, By-Pass

Diode, Classification methods

 Anahtar kelimeler: CNN, Hata tespiti, Güneş paneli,

Baypas diyotu, Sınıflandırma metotları

1 Introduction

Today, image-based defect and error detection systems

provide great advantages in terms of both time and cost by

making great contributions to the automation of quality

control systems in industrial production [1]. Traditional

methods are used in product defect detection today, and these

systems progress based on human observations. Therefore,

human-dependent systems have disadvantages such as

fatigue, carelessness and variables caused by human factors

[2]. Contrary to these disadvantages, deep learning-based

models can be trained on large datasets and detect error

outputs faster and with higher success rates; thus, they can

help to significantly increase efficiency in a production line

[3].

In recent years, numerous studies have been conducted to

detect output defects during production stages using various

deep learning-based architectures, particularly convolutional

neural networks (CNNs) [4]. For instance, an examination of

the study conducted by Elmas and Korkmaz reveals that a

deep learning-based model was developed for detecting

socket cable defects, achieving a test accuracy of 97.25% [5].

Similarly, in the study of Tan et al., applications for object

detection and tracking utilizing deep learning algorithms

were examined and incorporated into the literature [6]. In

another study, Yıldırım et al. employed image processing

and deep learning algorithms to classify assembly parts used

in a manufacturing company, achieving a highly accurate

automation system for assembly processes [7]. A separate

study by Lei and Sui developed a Faster R-CNN-based

model for detecting faults in high-voltage electrical

transmission lines, accurately identifying insulator breaks

and the presence of bird nests using the ResNet-101

architecture [8].

In addition, literature studies have implemented original

model designs and conducted comparative analyses with

traditional deep learning models. For example, the

https://orcid.org/0009-0000-8893-813X
https://orcid.org/0000-0003-4344-347X

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

650

DEA_RetineNet model proposed by Cheng and Yu employs

a channel attention mechanism and adaptive spatial feature

fusion methods for detecting defects on the surface of steel

parts. According to the comparative analysis, this model

increased the mAP value to 78.25% and provided a

performance improvement of 2.92% compared to the

traditional RetinaNet model [9]. Another investigation by He

et al. proposed a CNN-based model for detecting steel

surface defects. The model aimed to determine defect

locations on surfaces by combining a multi-level feature

fusion network (MFN) with feature maps produced by the

CNN. Subsequently, regions of interest were identified using

a Region Proposal Network (RPN), and a model

incorporating both a classifier and a bounding box regression

module generated the final detection results. The model was

evaluated on the NEU-DET dataset, achieving mAP

accuracies of 74.8% and 82.3% with 300 proposals using

ResNet34 and ResNet50, respectively. Furthermore, it was

noted that the model reached 92% of its performance while

operating at a speed of 20 ft/s on a single GPU with only 50

proposals. Consequently, the researchers concluded that the

proposed method is suitable for real-time defect detection

[10].

Based on the findings obtained from the literature, both

analytical studies and original deep learning-based model

designs addressing the problem are frequently integrated into

industrial automation. It is anticipated that the requirements

of systems intended to restore production to its most efficient

state will be fulfilled by deep learning models.

A review of recent studies reveals a notable emphasis on

real-time defect detection applications in industrial

production processes. A study by Özcan et al. utilised

machine learning and image processing methodologies to

identify contamination and deformations on the surfaces of

LPG cylinders[11]. In a similar vein, Ozan and Ceylan have

proposed a Raspberry Pi-based image processing system for

the detection and classification of defective eggs in egg

production facilities[12].

A literature review on studies emphasizing the

significance of datasets and data quality reveals that class

imbalance and data scarcity pose considerable challenges.

These challenges hinder the generalization capability of the

model, thereby leading to errors in defect detection [13]. An

imbalance in datasets directly affects the model's reliability,

leading to critical issues such as misclassification and

disruptions in the production process [14].

In this context, the study aimed to classify output

products labeled as either faulty or intact at a factory

producing bypass diodes for solar panels in the Elazığ

Organized Industrial Zone, and an original dataset was

created by collecting data directly from the production site.

Concurrently, data augmentation techniques were applied to

prepare this data for the model, thereby enhancing its

suitability for diverse inputs and improving its performance.

Finally, a unique, lightweight, and efficient CNN-based

defect detection model was implemented to detect and

classify physical defects in both intermediate and final

products within the production process.

This paper makes four main contributions to the field, as

summarized below:

 We develop a model designed to rapidly achieve high

accuracy in detecting faulty intermediate and final

products while minimizing the misclassification of

non-defective items. Our proposed model achieves an

overall accuracy of 94.2% in defect detection and

classification.

 We evaluate the effectiveness of the newly designed

model by comparing it against traditional architectures.

These comparative tests provide an understanding of

the strengths and limitations of our approach,

emphasizing the specific areas where the proposed

model demonstrates superiority.
 We conduct performance comparisons in later stages

by benchmarking our model against pre-trained deep

learning architectures, including ResNet50 and

VGG16. This evaluation ensures an objective analysis

of its performance relative to well-established models.

 Finally, we assess the models using a consistent

evaluation framework, where all models, including pre-

trained architectures, are trained on the same custom

dataset. The results are analyzed using key performance

metrics such as accuracy, loss, and training time,

providing a comprehensive understanding of the trade-

offs between model complexity and efficiency.

The rest of the paper is organized as follows.

Section 2 provides key methodological and analytical

components in a systematic manner. This section includes a

comprehensive discussion of the dataset characteristics,

model architecture, training strategies, and computational

methodologies employed to evaluate success criteria.

Section 3 rigorously assesses the proposed model’s

performance through both quantitative and qualitative

analyses, accompanied by a comparative evaluation against

conventional approaches to ensure a critical discussion on

the significance of the results. Finally, the paper concludes

with the findings presented in Section 4.

2 Materials and methods

In this study, the aim was to systematically process 5751

high-resolution diode images labeled as A, B, and C types,

which were originally generated for the first time in this

study, to develop a deep learning-based classification model

for detecting final and intermediate product defects at an

industrial production site manufacturing bypass diodes for

solar panels. These images consist of samples collected

periodically from the production line that reflect various

production defects.

2.1 Creating a data set

In our study, we utilized images collected from the

factory operating in the Elazığ Organized Industrial Zone in

Elazığ province to train our model. These images depict

junction boxes, which are key components of solar energy

systems, and within these boxes, bypass diodes are installed.

The components referred to as junction boxes are

categorized into three types A, B, and C. Bypass diodes are

installed inside the junction boxes and then secured by

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

651

riveting. During this process, visually detectable errors occur

in these products both before and after the riveting

procedure.

Figure 1. Type A, B and C empty junction box

The dataset we created to detect these errors, as provided

by the manufacturer, contains a total of 5751 images. In our

dataset, 3245 product images are labeled "intact" and 2506

are labeled "faulty."

Table 1. Example of “faulty” status

Types of Error

Diode that is not suitable for the body

Reverse riveting of the diode to the body

Wrong body selection.

By-pass diode not fully seated on rivets

Table 1 lists the reasons for “faulty” situations. For

example, Figure 1 shows an example of a bypass diode that

is not fully seated on the rivets.

Figure 2. Distribution rate of dataset

Figure 2 explains the statistical distribution of the data

set.

In the process of creating a dataset, it is essential to

remember that data quality directly affects model

performance. In this regard, careful attention was paid to

ensuring high image quality, with photographs captured

from various angles, under different lighting conditions, and

at varying distances. Figure 3 illustrates examples of junction

boxes containing diodes.

Figure 3. Type A, B and C with By-Pass diode junction

box

2.2 Labeling the dataset

Our dataset comprises images of products classified as

either "intact" or "faulty," with the latter exhibiting physical

defects. This dataset was collected directly from the

production site by the researchers, and no public dataset was

utilized. The labeling process was conducted by the

researchers as well. Consequently, the objective was to train

and test the developed model to address challenges

encountered in a real production environment.

2.3 Data pre-processing

In the Microsoft Visual Studio Code environment where

the research was conducted, the Python programming

language was utilized along with the TensorFlow and Keras

libraries. Additionally, the OpenCV (cv2) library was

employed for visual processing and preliminary preparation

steps. In the initial stage of model training, the 5751 images

created by the researchers were consolidated into a single

dataset and organized into two folders, labeled as "faulty"

and "intact" according to their classifications. Subsequently,

the resolution of the images was standardized to 55×55

pixels for consistency and normalization, and the pixel

values were rescaled to the range [0, 1] to make them suitable

for the model. Prior to training, the dataset was partitioned

into training (80%) and test (20%) sets, with the parameter

"random_state=42" selected to prevent overfitting.

2.4 Data augmentation techniques

Data augmentation techniques were employed to utilize

the dataset more comprehensively during training and to

enhance the generalization ability of the developed model.

The Keras class, ImageDataGenerator, is widely used for

both data augmentation and preprocessing in the training of

deep learning models. During the augmentation process,

various transformations were applied to all training data

using ImageDataGenerator to increase its diversity and

generalizability. Table 2 shows data augmentation

techniques.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

652

Table 2. Data augmentation methods

Data Augmentation

Techniques
Parameter

Random Rotation

-20, +20
rotation_range = 20

Shifting in Horizontal and

Vertical Directions

width_shift_range = 0.2,

height_shift_range = 0.2

Shear or Shift shear_range = 0.2

Zoom Range zoom_range = 0.2

Horizontal Flip True

Fill Mode nearest

Figure 4. Examples of augmented images

Employing data augmentation techniques ensures that the

model is not limited solely to the data it encounters directly

in the dataset and enhances its generalization ability by

learning how defects appear in different sizes, angles, and

positions. Figure 4 shows the intermediate images after these

data augmentation techniques are applied, demonstrating the

transformations introduced to the dataset.

Convolutional Neural Networks exhibit high

performance, particularly in image processing and object

recognition. In the study by Şeker et al., it was stated that

CNNs yielded superior results compared to other deep

learning methods in image processing [15]. The feature

extraction and classification capabilities of Convolutional

Neural Networks are frequently employed in data analysis.

For example, in the work of Oyucu and Herdem, the

performance of the CNN-LSTM model in capturing long-

term dependencies and complex features was emphasized

[16].

In our study, Convolutional Neural Networks (CNNs)

were employed because they can accurately recognize

complex features in visual data.

2.5 Proposed CNN architecture

Our model architecture, illustrated in Figure 5, is

constructed in a multi-layered manner based on the

Convolutional Neural Network (CNN) model. The first

convolutional layer employs 32 filters of size 3×3, while the

subsequent convolutional layer utilizes 64 filters of the same

size to extract higher-quality information.

After each convolutional layer, a MaxPooling layer is

applied to perform spatial downsampling and reduce the

model's size. Additionally, dropout layers, used in

conjunction with pooling layers, temporarily disable certain

neurons to prevent memorization issues.

After the convolutional layers, the two-dimensional data

is flattened into one-dimensional vectors using a flattening

layer. These vectors are then fed into a Dense layer with 128

neurons, which employs a ReLU activation function along

with L2 regularization. Subsequently, a dropout layer with a

rate of 0.5 is applied to enhance regularization. Finally, the

output is passed through a Sigmoid activation function to

address the binary classification problem of “faulty” and

“intact.”.

In our study, the Binary Crossentropy loss function,

which is frequently employed in two-class classification

problems, was used. The purpose of this function is to

minimize the difference between the probability distribution

predicted by the model and the actual class labels. The

function is based on the principle that the model's predictions

for the correct class should be as high as possible while those

for the incorrect class should be close to zero by evaluating

the probability that each example belongs to the correct class

in binary scenarios. In this way, it aims to improve the

model's ability to distinguish between classes and enhance

its generalization capability.

During the compilation phase, the Adam optimizer was

employed for model optimization, and the

"ReduceLROnPlateau" callback function was utilized to

automatically adjust the learning rate based on the validation

loss performance. This approach enabled continuous

parameter updates and prevented unnecessary computational

expenditure by avoiding an excessively high training rate.

To enhance the continuity of the model and improve the

reliability of the output, the training process was conducted

through five independent trials, with each trial consisting of

300 epochs. This approach allowed for a comparison of the

effects of varying initial weight configurations and random

conditions on the results. The statistical metrics obtained at

the conclusion of each training session were recorded, and

their averages were calculated. Additionally, the test data

accuracy at the end of each trial was measured and

documented separately. Consequently, detailed insights into

the temporal dependencies of the model's performance, the

learning process trajectory, and the associated performance

statistics were obtained.

Our proposed CNN architecture is designed to achieve an

optimal balance between complexity and computational

efficiency. Unlike deeper networks that require extensive

computational resources, our model employs only two

convolutional layers, making it lightweight and suitable for

real-time or resource-limited applications.

The inclusion of dropout layers after each pooling layer

is a deliberate choice to mitigate overfitting, ensuring the

model generalizes well across different data distributions.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

653

Figure 5. Proposed model with explanation

In the implemented CNN model, dropout layers with a

rate of 0.25 are strategically placed after each max-pooling

operation, reducing the risk of over-reliance on specific

neurons and improving the model's ability to extract robust

features from the input data. Additionally, a higher dropout

rate of 0.5 is applied before the final dense layers to further

enhance regularization, preventing co-adaptation of neurons

and leading to better generalization.

The L2 regularization in the dense layer further prevents

excessive weight magnitudes, leading to better stability in

training. This regularization technique is particularly crucial

in the fully connected layers, where a large number of

parameters can increase the risk of overfitting. By penalizing

large weight values, L2 regularization ensures a controlled

optimization process, resulting in improved model

robustness.

Hyperparameter tuning was performed systematically to

optimize the model’s performance. The initial learning rate

was set to 0.001, a standart choice for the Adam optimizer.

This adaptive adjustment helps prevent convergence to

suboptimal solutions by reducing the learning rate when

performance improvements stagnate.

The batch size was experimentally determined to be 16,

as it provided a balance between training stability and

computational efficiency. A smaller batch size allows for

more frequent weight updates, leading to faster convergence,

while still maintaining a stable training process. Data

augmentation techniques, including rotation, width and

height shifts, shear transformation, zoom, and horizontal

flipping, were applied to the training data to artificially

increase its diversity, further enhancing generalization.

The architecture was designed to maximize feature

extraction efficiency while maintaining a compact model

size, making it suitable for real-world applications requiring

rapid inference. The use of two convolutional layers with 32

and 64 filters, respectively, ensures progressive feature

extraction, capturing both low- and high-level patterns in the

input images. The choice of 3×3 kernel size and ReLU

activation function enables effective non-linear

transformations, crucial for deep learning-based visual

recognition tasks.

2.6 Other models

By comparing our proposed model with pre-trained

large-scale models such as ResNet50 and VGG16, we

examined the pursuit of a model that is particularly suited for

embedded systems and mobile devices, considering the high

parameter counts and processing power requirements.

Figure 6 highlights the visual that shows the mutual

aspects of the proposed model with deep learning.

Figure 6. Used models on study

The ResNet50 architecture is a member of the ResNet

family introduced by He et al. in 2015 for addressing the

gradient vanishing and optimization challenges that arise

with deeper neural networks, this architecture enhances

gradient flow in deep layers by incorporating residual

connections, thereby streamlining the training process. With

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

654

a total depth of 50 layers, ResNet50 has demonstrated

superior performance on the ImageNet dataset and is widely

employed in computer vision applications such as object

detection and image classification [17].

The VGG16 model, developed by Simonyan and

Zisserman, is a CNN-based model comprising 16 deep

layers. A significant outcome of VGG16 is that increasing

network depth can improve accuracy, and, in this context, the

use of convolutional layers with smaller filters has proven to

be effective [18].

2.7 Success parameters

In our study, various success parameters of the proposed

model, such as accuracy, loss, sensitivity, precision, and F1

score, were analyzed, and the model's performance

evaluation was explained in detail. Additionally, a

complexity matrix analysis was performed to

comprehensively assess the model's classification success

after training. Moreover, to objectively analyze the model's

real-world outputs, a probabilistic estimation of its output

classification was conducted using randomly selected test

images.

2.7.1 Confusion matrix

The complexity matrix is a critical analysis tool for

evaluating the success of a machine learning model. This

matrix compares the model’s prediction results with the

actual labels to determine which classifications are made

correctly and to what extent. Figure 7 details the contents of

the confusion matrix.

Figure 7. Confusion Matrix Interpretation

True Positive: Data that the model predicts as positive

and is actually positive.

True Negative: Data that the model predicts as negative

and is actually negative.

False Positive: Data that the model classifies as positive

but is actually positive.

False Negative: Data that the model predicts as negative

but is actually positive.

 Accuracy

Gives the total correct prediction rate of the model. In

general, it is a metric that shows the total success of the

model. It is expressed by Equation 1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

 Recall

Essentially, it shows how accurately the data belonging

to the positive class are predicted. It is expressed as in

Equation 2.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

 Precision

It is the metric that measures how accurate the positive

predictions made by the model are. It is shown in Equation

3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

 F1 Score

Precision alone is not a fully sufficient metric. For

precision to be meaningful, it must be balanced with

sensitivity. The F1-Score is used to measure the balance

point of these two metrics. It is expressed as in Equation 4.

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

 Macro Average

It is the success parameter that calculates the average of

the metrics of each class by taking them equally weighted. It

is expressed as in Equation 5.

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 + ⋯ + 𝑅𝑒𝑐𝑎𝑙𝑙𝑁

𝑁
 (5)

N: Number of class

 Weighted Average

After calculating the metrics of each class, the average is

obtained by weighting it with the total number of examples

of the class. It is shown in Equation 6.

𝑊 𝐴𝑣𝑔 =
(𝑃1 × 𝑁𝐸1) + ⋯ + (𝑃𝑁𝑥𝑁𝐸𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (6)

P: Precision, NE: Number of examples, N: Number of class

3 Findings and discussions

The present study trained a CNN-based model on an

uniqe dataset of 5751 images, classifying the products as

either "faulty" or "intact.".

The study's results were analyzed using fundamental

metrics, including the model's classification performance,

recall, precision, and F1 score. In addition, classification

errors were examined in detail with the assistance of a

confusion matrix.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

655

3.1 Classification performance

Table 3. Classification report

Classification Report

 Precision Recall F1– Score Support

Intact 0.99 0.90 0.95 3245

Faulty 0.89 0.99 0.94 2506

Accuracy - - 0.94 5751

Macro Avg 0.94 0.95 0.94 5751

Weighted
Avg

0.95 0.94 0.94 5751

(The values are rounded to closest value.)

Table 3 presents the output metrics of the proposed

model. The overall accuracy was determined to be 94%. In

class-based evaluations, the precision for “intact” products

was 99%, and the recall was 90%. These results indicate that

the model is highly accurate in detecting “intact” products;

however, in certain cases, products classified as “intact”

were misidentified as “faulty,” which is undesirable. The

recall and precision values for “faulty” products were found

to be 99% and 89%, respectively. Consequently, the model

almost completely detects defective products correctly,

rarely misclassifying defect-free products as faulty.

Class-based evaluation entails computing performance

metrics (e.g., accuracy, precision, F1-score) separately for

each class, enabling a detailed analysis of the model’s

performance across different categories. This approach is

particularly crucial for imbalanced datasets, as it highlights

class-specific variations. In contrast, overall evaluation

provides a single aggregated measure of the model’s

effectiveness across all classes, offering a holistic

assessment. This is achieved through macro, micro, or

weighted averaging methods. However, overall evaluation

may obscure disparities in class-wise performance.

Therefore, to ensure a comprehensive assessment, both

overall and class-based results are presented in detail in

Table 3.

3.2 Confusion matrix

Figure 8. Confusion matrix result

The confusion matrix of the model is given in Figure 8,

which enables the analysis of the samples taken by our model

in incorrect classification. According to the confusion matrix

obtained in our study:

 Approximately 90.3% of error-free products were

predicted correctly.

 Approximately 99.2% of defective products were

predicted correctly.

 313 error-free labeled products were classified as faulty

due to incorrect prediction.

 Only 20 of the faulty products were classified as

faultless.

3.3 Validation on real images

Figure 9. Test on real images

The real world labeled outputs of the model are given in

Figure 9. During the model design phase, outputs were also

validated using randomly selected test images. An

examination of these examples indicates that the model

produces very high prediction probabilities and accurately

classifies error-free products with a proportional accuracy

ranging from 95% to 100%.

Based on the analysis of these images, it was observed

that the proposed model can successfully distinguish even

subtle differences in detail.

3.4 Comparison of models

In the field of deep learning, large-scale models trained

using transfer learning techniques are frequently favored,

particularly in object recognition and classification tasks.

Models such as ResNet50 and VGG16, which achieve high

performance in image-based tasks owing to their deep and

expansive architectures, have been well established in the

literature and are commonly employed in contemporary

studies. However, the inherent disadvantages of large-scale

models may render specialized, compact models more

advantageous in certain contexts.

Within this scope, comparative analyses were conducted

using traditional deep learning methods to contextualize the

proposed model. The study results were presented in detail,

outlining the characteristics of each model based on tests

performed with the created dataset on traditional models.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

656

3.4.1 Proposed model vs ResNet50

Figure 10. Proposed model and ResNet50 validation loss

analysis

Figure 11. Proposed model and ResNet50 validation

accuracy analysis

For the first application, Figure 10 and 11 show the

comparative analysis of accuracy and loss values of the CNN

architecture proposed in this study and the ResNet50 model.

The information in the graph shows the average performance

of the models after 300 epochs of training over five different

iterations.

Upon examining of Figure 10, it is observed that the

proposed model reduces the validation loss more rapidly

during the initial epochs and approaches stability after

approximately 100 epochs. Conversely, an analysis of the

validation loss of the compared ResNet50 model reveals that

its loss value decreases at a significantly slower rate and

remains higher than that of the proposed model after

approximately epoch 10 in each iteration. This indicates that

the proposed model exhibits a faster learning capacity and

achieves a lower validation loss rate.

An examination of the Figure 11 reveals that proposed

model reached to 90% accuracy approximately in 30 epochs

and largely maintained this level. In contrast, the compared

ResNet50 model remained at 65-70% levels on our dataset

and did not show significant improvement in the later stages

of training. These results indicate that the specially designed

CNN architecture generalizes much better than ResNet50 on

our dataset and can successfully distinguish between target

classes.

Considering another parameter like a training time our

proposed CNN model completes training in 1260 seconds

(21 minutes) per iteration on average, whereas the ResNet50

architecture requires 10,558 seconds (175 minutes). In CPU-

based training, our model exhibits a significant advantage in

updating parameters compared to ResNet50, which is

hindered by extended parameter update durations and

increased memory management overhead during mini-batch

operations.

These results show that the transfer learning-based

ResNet50 model cannot achieve optimal results on the uniqe

dataset we created and that the CNN model we proposed has

a much more suitable, lightweight, fast and reliable

architectural design for certain tasks.

3.4.2 Proposed model and VGG16

Figure 12. Proposed model and VGG16 validation loss

analysis

Figure 13. Proposed model and VGG16 validation

accuracy analysis

In the second application, the performances of the

proposed model and the VGG16 model, which is frequently

used in the deep learning literature, were compared. In this

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

657

study phase, both models were trained five times with 300

epochs and the graphs in Figure 12 and 13 were created

based on the average values.

An examination of the graphs reveals that VGG16 can

stabilize the validation loss during training on the dataset up

to a certain level, owing to its deep and complex structure.

The VGG16 model demonstrates a balanced learning curve

with low loss values, benefiting from the advantage of pre-

trained weights. However, in terms of validation accuracy,

our proposed model achieves nearly the same accuracy

levels as VGG16. Moreover, although our proposed model

is not pre-trained like VGG16, it has nonetheless attained a

high accuracy rate and exhibited a stable, steadily improving

learning process on average.

Compared to the proposed model, the primary

disadvantage of VGG16 lies in the weight and computational

cost associated with its deep structure. During training,

VGG16 requires significant memory due to its large number

of parameters, resulting in intensive CPU resource

consumption in local training environments. During the

training process on the same hardware as the proposed

model, the high resource consumption of VGG16 becomes

particularly apparent. While our proposed model completes

one training iteration in approximately 450 seconds, the

VGG16 model requires around 2560 seconds for the same

process. Consequently, large-scale models such as VGG16

become less suitable for environments with hardware

limitations, such as embedded systems and mobile devices.

In contrast, our proposed model trains much faster due to its

lighter and simpler structure, and it requires substantially less

computational cost to achieve a comparable level of

accuracy. These results support the evaluation of the

proposed model as a more suitable alternative for practical

applications.

Based on this comparative analysis, we concluded that

traditional models pre-trained on large datasets, such as

VGG16, may encounter limitations and exhibit

disadvantages in flexibility when adapting to new datasets.

In contrast, our proposed model demonstrates a more

targeted and adaptable performance, as it is directly

optimized for our originally created dataset.

The model proposed in the study is regarded as a strong

alternative to VGG16 due to its shorter training time, lower

parameter requirements, and computational efficiency.

Although the literature demonstrates that VGG16 performs

well on large-scale, general-purpose datasets, a lighter and

more problem-oriented model may be preferable in scenarios

that demand rapid and frequent optimization.

In future studies, the objective is to test the proposed

model on more comprehensive datasets, integrate it into

various production areas, and enable real-time object and

defect detection. Specifically, detailed analyses of the

model's performance metrics on these datasets are planned,

along with efforts to enhance its generalization ability by

testing it on diverse data. Additionally, hyperparameter

optimization aimed at increasing the hardware efficiency of

the proposed model—as well as research and

implementation of techniques to minimize memory

management and computational costs—will be considered

key areas for further investigation.

Integration evaluation will be made in different systems

in order to increase the portability and effectiveness of the

model in practical use areas. In particular, parameter and

hyperparameter optimization studies will continue to be

carried out to further reduce the processing power

requirements of our model.

3.5 Future studies

One of the main goals expected to be achieved as a result

of future studies is to make this supported model operable in

embedded systems, mobile devices and devices with low

hardware power and to be used for real-time applications.

In the light of such an approach, it is expected that the

proposed model will contribute to digital industrialization by

increasing its share in industrial production sites, IoT devices

and platforms with low power consumption.

At the same time, increasing the energy efficiency of the

model, improving data processing times and accelerating

detection capabilities will be the main focus of future

research.

As a result, a comprehensive development process is

carried out to increase the applicability potential of the

developed model for academic and industrial use, and it is

aimed to provide an efficient, low-cost and highly

generalizable artificial intelligence solution that appeals to a

wide range of uses.

4 Results

In this study, a novel convolutional neural network

(CNN) model was developed to detect defects in

intermediate and final products within a factory production

line. The proposed model was trained using an original

dataset, systematically processed and labeled from data

collected at regular intervals from the production site. The

model's performance was statistically evaluated based on

key success metrics. Additionally, to ensure a

comprehensive analysis, the proposed model was compared

with widely used deep learning architectures, focusing on

computational load, training time, and parameter

optimization. To maintain objectivity in the comparative

analysis, all models were trained using the same dataset, and

hyperparameters such as data augmentation techniques,

learning rate, and optimization algorithm were kept constant.

The findings demonstrate that the proposed model not only

achieves high accuracy and a low loss rate but also offers

efficient processing capabilities with reduced computational

costs. Furthermore, it represents a viable alternative for

deployment on resource-constrained devices, outperforming

large-scale deep learning architectures in terms of efficiency.

The results indicate that the proposed model is a strong

candidate for real-time defect detection in production

processes.

Acknowledgement

This paper is produced from the part of Hakan TATAR’s

Master Thesis. In addition, we would like to express our

sincere gratitude to all the management of Hatko - Hatsun

Elazig PV-JB Production Factory for their valuable

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 649-658

H. Tatar, M. F. Kuçuk

658

assistance in providing the necessary facilities and

permissions to create the dataset used in this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Similarity Rate (iThenticate): %13

References

[1] I. D. Apostolopoulos and M. Tzani, Industrial object,

machine part and defect recognition towards fully

automated industrial monitoring employing deep

learning. The case of multilevel VGG19, arXiv

preprint arXiv:2011.11305, 2020. https://doi.org/10.4

8550/arXiv.2011.11305

[2] D. Ever and E. N. Demircioğlu, Yapay zekâ

teknolojilerinin kalite maliyetleri üzerine etkisi,

Çukurova Üniversitesi Sosyal Bilimler Enstitüsü

Dergisi, 31 (1), 59-72, 2022. https://doi.org/10.3

5379/cusosbil.1023004

[3] E. Oğuzay and M. Balta, Rulman titreşim verilerinden

derin öğrenme tabanlı arıza tespiti, Karadeniz Fen

Bilimleri Dergisi, 14 (3), 1159-1175, 2024.

https://doi.org/10.31466/kfbd.1434595

[4] E. Akın and M. E. Şahin, Derin öğrenme ve yapay

sinir ağı modelleri üzerine bir inceleme, EMO

Bilimsel Dergi, 14 (1), 27-38, 2024.

[5] B. Elmas and H. Korkmaz, Derin öğrenme ile soket

kablo sıralama hata tespiti, Politeknik Dergisi, 1–1,

2025. (Early Access). https://doi.org/10.2339/politek

nik.1500454

[6] F. G. Tan, A. S. Yüksel, E. Aydemir, and M. Ersoy,

Derin öğrenme teknikleri ile nesne tespiti ve takibi

üzerine bir inceleme, Avrupa Bilim Ve Teknoloji

Dergisi, 25, 159-171, 2021. https://doi.org/10.31590/e

josat.878552

[7] B. Yıldırım and G. Cagıl, Bir Montaj Parçasının Derin

Öğrenme ve Görüntü İşleme ile Tespiti, Journal of

Intelligent Systems: Theory and Applications, 3 (2),

31-37, 2020. https://doi.org/10.38016/jista.710144

[8] X. Lei and Z. Sui, Intelligent fault detection of high

voltage line based on the Faster R-CNN,

Measurement, 138, 379-385, 2019. https://doi.org/10

.1016/j.measurement.2019.01.072

[9] X. Cheng and J. Yu, RetinaNet With Difference

Channel Attention and Adaptively Spatial Feature

Fusion for Steel Surface Defect Detection, IEEE

Transactions on Instrumentation and Measurement,

70, 1-11, 2021. https://doi.org/10.1109/TIM.2020.3

040485.

[10] Y. He, K. Song, Q. Meng, and Y. Yan, An End-to-End

Steel Surface Defect Detection Approach via Fusing

Multiple Hierarchical Features, IEEE Transactions on

Instrumentation and Measurement, 69 (4), 1493-1504,

2020. https://doi.org/10.1109/TIM.2019.2915404

[11] H. Özcan, H. T. Gençtürk, G. Genç, T. E. Yıldırım, F.

Durmuş, and A. Gürleyen, Gerçek zamanlı kusur

tespiti: LPG tüplerinin yüzeylerinde kirlilikleri

tanımlama için görüntü işleme ve makine öğrenimi

teknikleri ile yenilikçi bir yaklaşım, Afyon Kocatepe

Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24

(2), 330-340, 2024. https://doi.org/10.35414/akufe

mubid.1364153

[12] M. Ozan and M. Ceylan, Endüstriyel Üretim

Tesislerinde Yumurtaların Görsel Analizi Ve

Sınıflandırılması İçin Raspberry Pi Tabanlı Gerçek

Zamanlı Bir Uygulama, SETSCI Conference

Proceedings, 3, pp. 727-731, Samsun, Turkey, 2018.

[13] M. Buda, A. Maki, and M. A. Mazurowski, A

systematic study of the class imbalance problem in

convolutional neural networks, Neural Networks, 106,

249-259, 2018. https://doi.org/10.1016/j.neunet.2018.

07.011

[14] R. van den Goorbergh, M. van Smeden, D.

Timmerman, and B. Van Calster, The harm of class

imbalance corrections for risk prediction models:

illustration and simulation using logistic regression,

Journal of the American Medical Informatics

Association, 29 (9), 1525-1534, 2022. https://doi.org/

10.1093/jamia/ocac093

[15] A. Şeker, B. Diri, and H. H. Balık, A Review about

deep learning methods and applications, Gazi Journal

of Engineering Sciences, 3 (3), 47-64, 2017.

[16] S. Oyucu and M. S. Herdem, Hibrit derin öğrenme

algoritmaları kullanılarak biyogaz reform süreçlerinin

optimizasyonu: cnn-lstm modeli ile çıktı

parametrelerinin tahmini, Adıyaman Üniversitesi

Mühendislik Bilimleri Dergisi, 11 (23), 301-316,

2024. https://doi.org/10.54365/adyumbd.1488710

[17] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual

Learning for Image Recognition, 2016 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, USA, pp. 770-

778, 2016. https://doi.org/10.1109/CVPR.2016.90.

[18] K. Simonyan and A. Zisserman, Very Deep

Convolutional Networks for Large-Scale Image

Recognition, arXiv preprint arXiv:1409.1556, 2015.

https://doi.org/10.48550/arXiv.1409.1556

https://doi.org/10.31466/kfbd.1434595
https://doi.org/10.38016/jista.710144
https://doi.org/10.1109/TIM.2019.2915404
https://doi.org/10.54365/adyumbd.1488710
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.48550/arXiv.1409.1556

	1 Introduction
	2 Materials and methods
	2.1 Creating a data set
	2.2 Labeling the dataset
	2.3 Data pre-processing
	2.4 Data augmentation techniques
	2.5 Proposed CNN architecture
	2.6 Other models
	2.7 Success parameters
	2.7.1 Confusion matrix

	3 Findings and discussions
	3.1 Classification performance
	3.2 Confusion matrix
	3.3 Validation on real images
	3.4 Comparison of models
	3.4.1 Proposed model vs ResNet50
	3.4.2 Proposed model and VGG16

	3.5 Future studies

	4 Results
	Acknowledgement
	Conflict of Interest
	Similarity Rate (iThenticate): %13
	References

