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Abstract   Öz  

This paper presents an optimized lightweight CNN model 

developed using a unique dataset introduced here for the 

first time to detect defects in manufacturing processes in a 

factory. The model performance was analyzed 

comparatively with widely used large-scale deep learning 

architectures such as VGG16 and ResNet50. All models 

were trained on the same original dataset, followed by the 

same approach in tuning hyperparameters such as learning 

rate, optimization algorithm, and data augmentation 

strategies. Performance analyses were conducted using 

fundamental metrics such as accuracy, precision, and F1 

score, along with confusion matrices and randomly selected 

test images. Our proposed model attained high accuracy 

while reducing computational cost and significantly 

shortening training time compared to traditional 

architectures. The results demonstrate that the proposed 

CNN model achieves a competitive level of accuracy 

comparable to large-scale deep learning models while 

serving as a more suitable alternative for low-power 

hardware systems. 

 Bu makale, bir fabrikadaki üretim süreçlerinde ortaya çıkan 

kusurların tespiti için burada ilk kez sunulan benzersiz bir 

veri kümesi kullanılarak geliştirilen, optimize edilmiş hafif 

bir CNN modelini tanıtmaktadır. Model performansı, 

VGG16 ve ResNet50 gibi yaygın kullanılan büyük ölçekli 

derin öğrenme mimarileriyle karşılaştırmalı olarak analiz 

edilmiştir. Tüm modeller, aynı özgün veri kümesi üzerinde, 

öğrenme oranı, optimizasyon algoritması ve veri artırma 

stratejileri gibi sabit hiperparametrelerle eğitilmiştir. 

Performans analizleri doğruluk, kesinlik ve F1 skoru gibi 

temel metriklerin yanı sıra, karmaşıklık matrisleri ve 

rastgele test görüntüleri üzerinden gerçekleştirilmiştir. 

Önerdiğimiz model, geleneksel mimarilere kıyasla daha 

düşük hesaplama maliyeti ve çok daha kısa eğitim süresi ile 

yüksek doğruluk elde etmiştir. Elde edilen sonuçlar, 

önerilen CNN modelinin büyük ölçekli derin öğrenme 

modelleriyle rekabet edebilecek düzeyde doğruluk 

sunarken, düşük güçlü donanıma sahip sistemler için daha 

uygun bir alternatif olduğunu göstermektedir. 

Keywords: CNN, Fault detection, Solar panel, By-Pass 

Diode, Classification methods 

 Anahtar kelimeler: CNN, Hata tespiti, Güneş paneli, 

Baypas diyotu, Sınıflandırma metotları 

1 Introduction  

Today, image-based defect and error detection systems 

provide great advantages in terms of both time and cost by 

making great contributions to the automation of quality 

control systems in industrial production [1]. Traditional 

methods are used in product defect detection today, and these 

systems progress based on human observations. Therefore, 

human-dependent systems have disadvantages such as 

fatigue, carelessness and variables caused by human factors 

[2]. Contrary to these disadvantages, deep learning-based 

models can be trained on large datasets and detect error 

outputs faster and with higher success rates; thus, they can 

help to significantly increase efficiency in a production line 

[3]. 

In recent years, numerous studies have been conducted to 

detect output defects during production stages using various 

deep learning-based architectures, particularly convolutional 

neural networks (CNNs) [4]. For instance, an examination of 

the study conducted by Elmas and Korkmaz reveals that a 

deep learning-based model was developed for detecting 

socket cable defects, achieving a test accuracy of 97.25% [5]. 

Similarly, in the study of Tan et al., applications for object 

detection and tracking utilizing deep learning algorithms 

were examined and incorporated into the literature [6]. In 

another study, Yıldırım et al. employed image processing 

and deep learning algorithms to classify assembly parts used 

in a manufacturing company, achieving a highly accurate 

automation system for assembly processes [7]. A separate 

study by Lei and Sui developed a Faster R-CNN-based 

model for detecting faults in high-voltage electrical 

transmission lines, accurately identifying insulator breaks 

and the presence of bird nests using the ResNet-101 

architecture [8]. 

In addition, literature studies have implemented original 

model designs and conducted comparative analyses with 

traditional deep learning models. For example, the 

https://orcid.org/0009-0000-8893-813X
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DEA_RetineNet model proposed by Cheng and Yu employs 

a channel attention mechanism and adaptive spatial feature 

fusion methods for detecting defects on the surface of steel 

parts. According to the comparative analysis, this model 

increased the mAP value to 78.25% and provided a 

performance improvement of 2.92% compared to the 

traditional RetinaNet model [9]. Another investigation by He 

et al. proposed a CNN-based model for detecting steel 

surface defects. The model aimed to determine defect 

locations on surfaces by combining a multi-level feature 

fusion network (MFN) with feature maps produced by the 

CNN. Subsequently, regions of interest were identified using 

a Region Proposal Network (RPN), and a model 

incorporating both a classifier and a bounding box regression 

module generated the final detection results. The model was 

evaluated on the NEU-DET dataset, achieving mAP 

accuracies of 74.8% and 82.3% with 300 proposals using 

ResNet34 and ResNet50, respectively. Furthermore, it was 

noted that the model reached 92% of its performance while 

operating at a speed of 20 ft/s on a single GPU with only 50 

proposals. Consequently, the researchers concluded that the 

proposed method is suitable for real-time defect detection 

[10]. 

Based on the findings obtained from the literature, both 

analytical studies and original deep learning-based model 

designs addressing the problem are frequently integrated into 

industrial automation. It is anticipated that the requirements 

of systems intended to restore production to its most efficient 

state will be fulfilled by deep learning models. 

A review of recent studies reveals a notable emphasis on 

real-time defect detection applications in industrial 

production processes. A study by Özcan et al. utilised 

machine learning and image processing methodologies to 

identify contamination and deformations on the surfaces of 

LPG cylinders[11]. In a similar vein, Ozan and Ceylan have 

proposed a Raspberry Pi-based image processing system for 

the detection and classification of defective eggs in egg 

production facilities[12]. 

A literature review on studies emphasizing the 

significance of datasets and data quality reveals that class 

imbalance and data scarcity pose considerable challenges. 

These challenges hinder the generalization capability of the 

model, thereby leading to errors in defect detection [13]. An 

imbalance in datasets directly affects the model's reliability, 

leading to critical issues such as misclassification and 

disruptions in the production process [14]. 

In this context, the study aimed to classify output 

products labeled as either faulty or intact at a factory 

producing bypass diodes for solar panels in the Elazığ 

Organized Industrial Zone, and an original dataset was 

created by collecting data directly from the production site. 

Concurrently, data augmentation techniques were applied to 

prepare this data for the model, thereby enhancing its 

suitability for diverse inputs and improving its performance. 

Finally, a unique, lightweight, and efficient CNN-based 

defect detection model was implemented to detect and 

classify physical defects in both intermediate and final 

products within the production process.  

This paper makes four main contributions to the field, as 

summarized below: 

 We develop a model designed to rapidly achieve high 

accuracy in detecting faulty intermediate and final 

products while minimizing the misclassification of 

non-defective items. Our proposed model achieves an 

overall accuracy of 94.2% in defect detection and 

classification. 

 We evaluate the effectiveness of the newly designed 

model by comparing it against traditional architectures. 

These comparative tests provide an understanding of 

the strengths and limitations of our approach, 

emphasizing the specific areas where the proposed 

model demonstrates superiority. 
 We conduct performance comparisons in later stages 

by benchmarking our model against pre-trained deep 

learning architectures, including ResNet50 and 

VGG16. This evaluation ensures an objective analysis 

of its performance relative to well-established models. 

 Finally, we assess the models using a consistent 

evaluation framework, where all models, including pre-

trained architectures, are trained on the same custom 

dataset. The results are analyzed using key performance 

metrics such as accuracy, loss, and training time, 

providing a comprehensive understanding of the trade-

offs between model complexity and efficiency. 

The rest of the paper is organized as follows. 

Section 2 provides key methodological and analytical 

components in a systematic manner. This section includes a 

comprehensive discussion of the dataset characteristics, 

model architecture, training strategies, and computational 

methodologies employed to evaluate success criteria. 

Section 3 rigorously assesses the proposed model’s 

performance through both quantitative and qualitative 

analyses, accompanied by a comparative evaluation against 

conventional approaches to ensure a critical discussion on 

the significance of the results. Finally, the paper concludes 

with the findings presented in Section 4. 

2 Materials and methods  

In this study, the aim was to systematically process 5751 

high-resolution diode images labeled as A, B, and C types, 

which were originally generated for the first time in this 

study, to develop a deep learning-based classification model 

for detecting final and intermediate product defects at an 

industrial production site manufacturing bypass diodes for 

solar panels. These images consist of samples collected 

periodically from the production line that reflect various 

production defects. 

2.1 Creating a data set 

In our study, we utilized images collected from the 

factory operating in the Elazığ Organized Industrial Zone in 

Elazığ province to train our model. These images depict 

junction boxes, which are key components of solar energy 

systems, and within these boxes, bypass diodes are installed. 

The components referred to as junction boxes are 

categorized into three types A, B, and C. Bypass diodes are 

installed inside the junction boxes and then secured by 
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riveting. During this process, visually detectable errors occur 

in these products both before and after the riveting 

procedure. 

 

 

Figure 1. Type A, B and C empty junction box 

 

The dataset we created to detect these errors, as provided 

by the manufacturer, contains a total of 5751 images. In our 

dataset, 3245 product images are labeled "intact" and 2506 

are labeled "faulty."  

 

Table 1. Example of “faulty” status 

Types of Error 

Diode that is not suitable for the body 

Reverse riveting of the diode to the body 

Wrong body selection. 

By-pass diode not fully seated on rivets 

 

Table 1 lists the reasons for “faulty” situations. For 

example, Figure 1 shows an example of a bypass diode that 

is not fully seated on the rivets. 

 

 

Figure 2. Distribution rate of dataset 

 

Figure 2 explains the statistical distribution of the data 

set. 

In the process of creating a dataset, it is essential to 

remember that data quality directly affects model 

performance. In this regard, careful attention was paid to 

ensuring high image quality, with photographs captured 

from various angles, under different lighting conditions, and 

at varying distances. Figure 3 illustrates examples of junction 

boxes containing diodes. 

 

 

Figure 3. Type A, B and C with By-Pass diode junction 

box 

 

2.2 Labeling the dataset 

Our dataset comprises images of products classified as 

either "intact" or "faulty," with the latter exhibiting physical 

defects. This dataset was collected directly from the 

production site by the researchers, and no public dataset was 

utilized. The labeling process was conducted by the 

researchers as well. Consequently, the objective was to train 

and test the developed model to address challenges 

encountered in a real production environment. 

2.3 Data pre-processing 

In the Microsoft Visual Studio Code environment where 

the research was conducted, the Python programming 

language was utilized along with the TensorFlow and Keras 

libraries. Additionally, the OpenCV (cv2) library was 

employed for visual processing and preliminary preparation 

steps. In the initial stage of model training, the 5751 images 

created by the researchers were consolidated into a single 

dataset and organized into two folders, labeled as "faulty" 

and "intact" according to their classifications. Subsequently, 

the resolution of the images was standardized to 55×55 

pixels for consistency and normalization, and the pixel 

values were rescaled to the range [0, 1] to make them suitable 

for the model. Prior to training, the dataset was partitioned 

into training (80%) and test (20%) sets, with the parameter 

"random_state=42" selected to prevent overfitting. 

2.4 Data augmentation techniques 

Data augmentation techniques were employed to utilize 

the dataset more comprehensively during training and to 

enhance the generalization ability of the developed model. 

The Keras class, ImageDataGenerator, is widely used for 

both data augmentation and preprocessing in the training of 

deep learning models. During the augmentation process, 

various transformations were applied to all training data 

using ImageDataGenerator to increase its diversity and 

generalizability. Table 2 shows data augmentation 

techniques. 
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Table 2. Data augmentation methods 

Data Augmentation 

Techniques 
Parameter 

Random Rotation 

-20, +20 
rotation_range = 20 

Shifting in Horizontal and 

Vertical Directions 

width_shift_range = 0.2, 

height_shift_range = 0.2 

Shear or Shift shear_range =  0.2 

Zoom Range zoom_range = 0.2 

Horizontal Flip True 

Fill Mode nearest 

 

 

Figure 4. Examples of augmented images 

 

Employing data augmentation techniques ensures that the 

model is not limited solely to the data it encounters directly 

in the dataset and enhances its generalization ability by 

learning how defects appear in different sizes, angles, and 

positions. Figure 4 shows the intermediate images after these 

data augmentation techniques are applied, demonstrating the 

transformations introduced to the dataset. 

Convolutional Neural Networks exhibit high 

performance, particularly in image processing and object 

recognition. In the study by Şeker et al., it was stated that 

CNNs yielded superior results compared to other deep 

learning methods in image processing [15]. The feature 

extraction and classification capabilities of Convolutional 

Neural Networks are frequently employed in data analysis. 

For example, in the work of Oyucu and Herdem, the 

performance of the CNN-LSTM model in capturing long-

term dependencies and complex features was emphasized 

[16]. 

In our study, Convolutional Neural Networks (CNNs) 

were employed because they can accurately recognize 

complex features in visual data. 

2.5 Proposed CNN architecture 

Our model architecture, illustrated in Figure 5, is 

constructed in a multi-layered manner based on the 

Convolutional Neural Network (CNN) model. The first 

convolutional layer employs 32 filters of size 3×3, while the 

subsequent convolutional layer utilizes 64 filters of the same 

size to extract higher-quality information. 

After each convolutional layer, a MaxPooling layer is 

applied to perform spatial downsampling and reduce the 

model's size. Additionally, dropout layers, used in 

conjunction with pooling layers, temporarily disable certain 

neurons to prevent memorization issues. 

After the convolutional layers, the two-dimensional data 

is flattened into one-dimensional vectors using a flattening 

layer. These vectors are then fed into a Dense layer with 128 

neurons, which employs a ReLU activation function along 

with L2 regularization. Subsequently, a dropout layer with a 

rate of 0.5 is applied to enhance regularization. Finally, the 

output is passed through a Sigmoid activation function to 

address the binary classification problem of “faulty” and 

“intact.”. 

In our study, the Binary Crossentropy loss function, 

which is frequently employed in two-class classification 

problems, was used. The purpose of this function is to 

minimize the difference between the probability distribution 

predicted by the model and the actual class labels. The 

function is based on the principle that the model's predictions 

for the correct class should be as high as possible while those 

for the incorrect class should be close to zero by evaluating 

the probability that each example belongs to the correct class 

in binary scenarios. In this way, it aims to improve the 

model's ability to distinguish between classes and enhance 

its generalization capability. 

During the compilation phase, the Adam optimizer was 

employed for model optimization, and the 

"ReduceLROnPlateau" callback function was utilized to 

automatically adjust the learning rate based on the validation 

loss performance. This approach enabled continuous 

parameter updates and prevented unnecessary computational 

expenditure by avoiding an excessively high training rate. 

To enhance the continuity of the model and improve the 

reliability of the output, the training process was conducted 

through five independent trials, with each trial consisting of 

300 epochs. This approach allowed for a comparison of the 

effects of varying initial weight configurations and random 

conditions on the results. The statistical metrics obtained at 

the conclusion of each training session were recorded, and 

their averages were calculated. Additionally, the test data 

accuracy at the end of each trial was measured and 

documented separately. Consequently, detailed insights into 

the temporal dependencies of the model's performance, the 

learning process trajectory, and the associated performance 

statistics were obtained. 

Our proposed CNN architecture is designed to achieve an 

optimal balance between complexity and computational 

efficiency. Unlike deeper networks that require extensive 

computational resources, our model employs only two 

convolutional layers, making it lightweight and suitable for 

real-time or resource-limited applications. 

The inclusion of dropout layers after each pooling layer 

is a deliberate choice to mitigate overfitting, ensuring the 

model generalizes well across different data distributions. 
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Figure 5. Proposed model with explanation 

 

In the implemented CNN model, dropout layers with a 

rate of 0.25 are strategically placed after each max-pooling 

operation, reducing the risk of over-reliance on specific 

neurons and improving the model's ability to extract robust 

features from the input data. Additionally, a higher dropout 

rate of 0.5 is applied before the final dense layers to further 

enhance regularization, preventing co-adaptation of neurons 

and leading to better generalization. 

The L2 regularization in the dense layer further prevents 

excessive weight magnitudes, leading to better stability in 

training. This regularization technique is particularly crucial 

in the fully connected layers, where a large number of 

parameters can increase the risk of overfitting. By penalizing 

large weight values, L2 regularization ensures a controlled 

optimization process, resulting in improved model 

robustness. 

Hyperparameter tuning was performed systematically to 

optimize the model’s performance. The initial learning rate 

was set to 0.001, a standart choice for the Adam optimizer. 

This adaptive adjustment helps prevent convergence to 

suboptimal solutions by reducing the learning rate when 

performance improvements stagnate. 

The batch size was experimentally determined to be 16, 

as it provided a balance between training stability and 

computational efficiency. A smaller batch size allows for 

more frequent weight updates, leading to faster convergence, 

while still maintaining a stable training process. Data 

augmentation techniques, including rotation, width and 

height shifts, shear transformation, zoom, and horizontal 

flipping, were applied to the training data to artificially 

increase its diversity, further enhancing generalization. 

The architecture was designed to maximize feature 

extraction efficiency while maintaining a compact model 

size, making it suitable for real-world applications requiring 

rapid inference. The use of two convolutional layers with 32 

and 64 filters, respectively, ensures progressive feature 

extraction, capturing both low- and high-level patterns in the 

input images. The choice of 3×3 kernel size and ReLU 

activation function enables effective non-linear 

transformations, crucial for deep learning-based visual 

recognition tasks. 

2.6 Other models 

By comparing our proposed model with pre-trained 

large-scale models such as ResNet50 and VGG16, we 

examined the pursuit of a model that is particularly suited for 

embedded systems and mobile devices, considering the high 

parameter counts and processing power requirements. 

Figure 6 highlights the visual that shows the mutual 

aspects of the proposed model with deep learning. 

 

 

Figure 6. Used models on study 

 

The ResNet50 architecture is a member of the ResNet 

family introduced by He et al. in 2015 for addressing the 

gradient vanishing and optimization challenges that arise 

with deeper neural networks, this architecture enhances 

gradient flow in deep layers by incorporating residual 

connections, thereby streamlining the training process. With 
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a total depth of 50 layers, ResNet50 has demonstrated 

superior performance on the ImageNet dataset and is widely 

employed in computer vision applications such as object 

detection and image classification [17].  

The VGG16 model, developed by Simonyan and 

Zisserman, is a CNN-based model comprising 16 deep 

layers. A significant outcome of VGG16 is that increasing 

network depth can improve accuracy, and, in this context, the 

use of convolutional layers with smaller filters has proven to 

be effective [18]. 

2.7 Success parameters 

In our study, various success parameters of the proposed 

model, such as accuracy, loss, sensitivity, precision, and F1 

score, were analyzed, and the model's performance 

evaluation was explained in detail. Additionally, a 

complexity matrix analysis was performed to 

comprehensively assess the model's classification success 

after training. Moreover, to objectively analyze the model's 

real-world outputs, a probabilistic estimation of its output 

classification was conducted using randomly selected test 

images. 

2.7.1 Confusion matrix 

The complexity matrix is a critical analysis tool for 

evaluating the success of a machine learning model. This 

matrix compares the model’s prediction results with the 

actual labels to determine which classifications are made 

correctly and to what extent. Figure 7 details the contents of 

the confusion matrix. 

 

 

Figure 7. Confusion Matrix Interpretation 

 

True Positive: Data that the model predicts as positive 

and is actually positive. 

True Negative: Data that the model predicts as negative 

and is actually negative. 

False Positive: Data that the model classifies as positive 

but is actually positive. 

False Negative: Data that the model predicts as negative 

but is actually positive. 

 

 Accuracy 

Gives the total correct prediction rate of the model. In 

general, it is a metric that shows the total success of the 

model. It is expressed by Equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 

 Recall 

Essentially, it shows how accurately the data belonging 

to the positive class are predicted. It is expressed as in 

Equation 2. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 Precision 

It is the metric that measures how accurate the positive 

predictions made by the model are. It is shown in Equation 

3. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

 F1 Score 

Precision alone is not a fully sufficient metric. For 

precision to be meaningful, it must be balanced with 

sensitivity. The F1-Score is used to measure the balance 

point of these two metrics. It is expressed as in Equation 4. 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 Macro Average 

It is the success parameter that calculates the average of 

the metrics of each class by taking them equally weighted. It 

is expressed as in Equation 5. 

 

𝑀𝑎𝑐𝑟𝑜 𝐴𝑣𝑔 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 + ⋯ + 𝑅𝑒𝑐𝑎𝑙𝑙𝑁

𝑁
 (5) 

N: Number of class 

 

 Weighted Average 

After calculating the metrics of each class, the average is 

obtained by weighting it with the total number of examples 

of the class. It is shown in Equation 6. 

 

𝑊 𝐴𝑣𝑔 =
(𝑃1 × 𝑁𝐸1) + ⋯ + (𝑃𝑁𝑥𝑁𝐸𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (6) 

P: Precision, NE: Number of examples, N: Number of class 

 

3 Findings and discussions  

The present study trained a CNN-based model on an 

uniqe dataset of 5751 images, classifying the products as 

either "faulty" or "intact.". 

The study's results were analyzed using fundamental 

metrics, including the model's classification performance, 

recall, precision, and F1 score. In addition, classification 

errors were examined in detail with the assistance of a 

confusion matrix. 
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3.1 Classification performance 

 

Table 3. Classification report 

Classification Report 

 Precision Recall F1– Score Support 

Intact 0.99 0.90 0.95 3245 

Faulty 0.89 0.99 0.94 2506 

Accuracy - - 0.94 5751 

Macro Avg 0.94 0.95 0.94 5751 

Weighted 
Avg 

0.95 0.94 0.94 5751 

(The values are rounded to closest value.) 

 

Table 3 presents the output metrics of the proposed 

model. The overall accuracy was determined to be 94%. In 

class-based evaluations, the precision for “intact” products 

was 99%, and the recall was 90%. These results indicate that 

the model is highly accurate in detecting “intact” products; 

however, in certain cases, products classified as “intact” 

were misidentified as “faulty,” which is undesirable. The 

recall and precision values for “faulty” products were found 

to be 99% and 89%, respectively. Consequently, the model 

almost completely detects defective products correctly, 

rarely misclassifying defect-free products as faulty. 

Class-based evaluation entails computing performance 

metrics (e.g., accuracy, precision, F1-score) separately for 

each class, enabling a detailed analysis of the model’s 

performance across different categories. This approach is 

particularly crucial for imbalanced datasets, as it highlights 

class-specific variations. In contrast, overall evaluation 

provides a single aggregated measure of the model’s 

effectiveness across all classes, offering a holistic 

assessment. This is achieved through macro, micro, or 

weighted averaging methods. However, overall evaluation 

may obscure disparities in class-wise performance. 

Therefore, to ensure a comprehensive assessment, both 

overall and class-based results are presented in detail in 

Table 3. 

3.2 Confusion matrix 

 

 

Figure 8. Confusion matrix result 

 

The confusion matrix of the model is given in Figure 8, 

which enables the analysis of the samples taken by our model 

in incorrect classification. According to the confusion matrix 

obtained in our study: 

 Approximately 90.3% of error-free products were 

predicted correctly. 

 Approximately 99.2% of defective products were 

predicted correctly. 

 313 error-free labeled products were classified as faulty 

due to incorrect prediction. 

 Only 20 of the faulty products were classified as 

faultless. 

3.3 Validation on real images 

 

 

Figure 9. Test on real images 

 

The real world labeled outputs of the model are given in 

Figure 9. During the model design phase, outputs were also 

validated using randomly selected test images. An 

examination of these examples indicates that the model 

produces very high prediction probabilities and accurately 

classifies error-free products with a proportional accuracy 

ranging from 95% to 100%. 

Based on the analysis of these images, it was observed 

that the proposed model can successfully distinguish even 

subtle differences in detail. 

3.4 Comparison of models 

In the field of deep learning, large-scale models trained 

using transfer learning techniques are frequently favored, 

particularly in object recognition and classification tasks. 

Models such as ResNet50 and VGG16, which achieve high 

performance in image-based tasks owing to their deep and 

expansive architectures, have been well established in the 

literature and are commonly employed in contemporary 

studies. However, the inherent disadvantages of large-scale 

models may render specialized, compact models more 

advantageous in certain contexts. 

Within this scope, comparative analyses were conducted 

using traditional deep learning methods to contextualize the 

proposed model. The study results were presented in detail, 

outlining the characteristics of each model based on tests 

performed with the created dataset on traditional models. 
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3.4.1 Proposed model vs ResNet50 

 

 

Figure 10. Proposed model and ResNet50 validation loss 

analysis 

 

 

Figure 11. Proposed model and ResNet50 validation 

accuracy analysis 

 

For the first application, Figure 10 and 11 show the 

comparative analysis of accuracy and loss values of the CNN 

architecture proposed in this study and the ResNet50 model. 

The information in the graph shows the average performance 

of the models after 300 epochs of training over five different 

iterations. 

Upon examining of Figure 10, it is observed that the 

proposed model reduces the validation loss more rapidly 

during the initial epochs and approaches stability after 

approximately 100 epochs. Conversely, an analysis of the 

validation loss of the compared ResNet50 model reveals that 

its loss value decreases at a significantly slower rate and 

remains higher than that of the proposed model after 

approximately epoch 10 in each iteration. This indicates that 

the proposed model exhibits a faster learning capacity and 

achieves a lower validation loss rate. 

An examination of the Figure 11 reveals that proposed 

model reached to 90% accuracy approximately in 30 epochs 

and largely maintained this level. In contrast, the compared 

ResNet50 model remained at 65-70% levels on our dataset 

and did not show significant improvement in the later stages 

of training. These results indicate that the specially designed 

CNN architecture generalizes much better than ResNet50 on 

our dataset and can successfully distinguish between target 

classes. 

Considering another parameter like a training time our 

proposed CNN model completes training in 1260 seconds 

(21 minutes) per iteration on average, whereas the ResNet50 

architecture requires 10,558 seconds (175 minutes). In CPU-

based training, our model exhibits a significant advantage in 

updating parameters compared to ResNet50, which is 

hindered by extended parameter update durations and 

increased memory management overhead during mini-batch 

operations. 

These results show that the transfer learning-based 

ResNet50 model cannot achieve optimal results on the uniqe 

dataset we created and that the CNN model we proposed has 

a much more suitable, lightweight, fast and reliable 

architectural design for certain tasks. 

3.4.2 Proposed model and VGG16 

 

 

Figure 12. Proposed model and VGG16 validation loss 

analysis 

 

 

Figure 13. Proposed model and VGG16 validation 

accuracy analysis 

 

In the second application, the performances of the 

proposed model and the VGG16 model, which is frequently 

used in the deep learning literature, were compared. In this 
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study phase, both models were trained five times with 300 

epochs and the graphs in Figure 12 and 13 were created 

based on the average values. 

An examination of the graphs reveals that VGG16 can 

stabilize the validation loss during training on the dataset up 

to a certain level, owing to its deep and complex structure. 

The VGG16 model demonstrates a balanced learning curve 

with low loss values, benefiting from the advantage of pre-

trained weights. However, in terms of validation accuracy, 

our proposed model achieves nearly the same accuracy 

levels as VGG16. Moreover, although our proposed model 

is not pre-trained like VGG16, it has nonetheless attained a 

high accuracy rate and exhibited a stable, steadily improving 

learning process on average. 

Compared to the proposed model, the primary 

disadvantage of VGG16 lies in the weight and computational 

cost associated with its deep structure. During training, 

VGG16 requires significant memory due to its large number 

of parameters, resulting in intensive CPU resource 

consumption in local training environments. During the 

training process on the same hardware as the proposed 

model, the high resource consumption of VGG16 becomes 

particularly apparent. While our proposed model completes 

one training iteration in approximately 450 seconds, the 

VGG16 model requires around 2560 seconds for the same 

process. Consequently, large-scale models such as VGG16 

become less suitable for environments with hardware 

limitations, such as embedded systems and mobile devices. 

In contrast, our proposed model trains much faster due to its 

lighter and simpler structure, and it requires substantially less 

computational cost to achieve a comparable level of 

accuracy. These results support the evaluation of the 

proposed model as a more suitable alternative for practical 

applications. 

Based on this comparative analysis, we concluded that 

traditional models pre-trained on large datasets, such as 

VGG16, may encounter limitations and exhibit 

disadvantages in flexibility when adapting to new datasets. 

In contrast, our proposed model demonstrates a more 

targeted and adaptable performance, as it is directly 

optimized for our originally created dataset. 

The model proposed in the study is regarded as a strong 

alternative to VGG16 due to its shorter training time, lower 

parameter requirements, and computational efficiency. 

Although the literature demonstrates that VGG16 performs 

well on large-scale, general-purpose datasets, a lighter and 

more problem-oriented model may be preferable in scenarios 

that demand rapid and frequent optimization. 

In future studies, the objective is to test the proposed 

model on more comprehensive datasets, integrate it into 

various production areas, and enable real-time object and 

defect detection. Specifically, detailed analyses of the 

model's performance metrics on these datasets are planned, 

along with efforts to enhance its generalization ability by 

testing it on diverse data. Additionally, hyperparameter 

optimization aimed at increasing the hardware efficiency of 

the proposed model—as well as research and 

implementation of techniques to minimize memory 

management and computational costs—will be considered 

key areas for further investigation. 

Integration evaluation will be made in different systems 

in order to increase the portability and effectiveness of the 

model in practical use areas. In particular, parameter and 

hyperparameter optimization studies will continue to be 

carried out to further reduce the processing power 

requirements of our model. 

3.5 Future studies 

One of the main goals expected to be achieved as a result 

of future studies is to make this supported model operable in 

embedded systems, mobile devices and devices with low 

hardware power and to be used for real-time applications. 

In the light of such an approach, it is expected that the 

proposed model will contribute to digital industrialization by 

increasing its share in industrial production sites, IoT devices 

and platforms with low power consumption. 

At the same time, increasing the energy efficiency of the 

model, improving data processing times and accelerating 

detection capabilities will be the main focus of future 

research. 

As a result, a comprehensive development process is 

carried out to increase the applicability potential of the 

developed model for academic and industrial use, and it is 

aimed to provide an efficient, low-cost and highly 

generalizable artificial intelligence solution that appeals to a 

wide range of uses. 

4 Results 

In this study, a novel convolutional neural network 

(CNN) model was developed to detect defects in 

intermediate and final products within a factory production 

line. The proposed model was trained using an original 

dataset, systematically processed and labeled from data 

collected at regular intervals from the production site. The 

model's performance was statistically evaluated based on 

key success metrics. Additionally, to ensure a 

comprehensive analysis, the proposed model was compared 

with widely used deep learning architectures, focusing on 

computational load, training time, and parameter 

optimization. To maintain objectivity in the comparative 

analysis, all models were trained using the same dataset, and 

hyperparameters such as data augmentation techniques, 

learning rate, and optimization algorithm were kept constant. 

The findings demonstrate that the proposed model not only 

achieves high accuracy and a low loss rate but also offers 

efficient processing capabilities with reduced computational 

costs. Furthermore, it represents a viable alternative for 

deployment on resource-constrained devices, outperforming 

large-scale deep learning architectures in terms of efficiency. 

The results indicate that the proposed model is a strong 

candidate for real-time defect detection in production 

processes. 
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