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ABSTRACT  

The primary objective in the production of parts is to optimize the manufacturing process. As the industry 

recognizes the roughness of the cut product as one of the key criteria, it becomes critical to select the 

correct laser settings with minimum trial, error and at the lowest possible cost while using reliable 

techniques to achieve the desired surface finish. Due to the nonlinear nature of laser cutting, statistical 

analysis is necessary to obtain a satisfactory surface finish. In this study, experimental data sourced from 

literature were subjected to analytical processes. In the experimental design, L25 orthogonal array was 

used. The optimization process for the laser cutting parameters (laser power, cutting speed, and assist 

gas pressure) was implemented using regression analysis and a differential evolution algorithm. The 

regression model, with an R2 value of 83.21%, accurately predicted roughness based on these 

parameters. The model's effectiveness was further supported by the high correlation (R2 = 86.6%) 

between the experimental and predicted results. Using the differential evolution optimization method, 

the minimum surface roughness was calculated as 0.442 µm. This study provides a method for identifying 

optimal laser settings to achieve the desired surface roughness based on the obtained results. 

Keywords: Laser Cutting, Differential Evolution, Roughness, Regression Analysis, Stochastic Optimization 

I. INTRODUCTION 

Identifying optimal criteria is essential prior to employing optimization techniques, such as 

Differential Evolution (DE) and other evolutionary algorithms, in product development. To determine the 

effective parameters utilized during production, optimization techniques have been developed in the 

manufacturing sector (Nas & Özbek, 2020). Differential Evolution is an optimization algorithm known for 

its simplicity and robustness and is widely used to solve complex optimization problems (Kocak et al., 

2024; Ozdemir et al., 2017; SHAH & Karabulut, 2022). DE, developed by (Storn & Price, 1997), is a 

population-based method in the evolutionary algorithms (EA) family (Ahmad et al., 2022). Unlike other 

traditional methods, DE generates new generations by recombining solutions with scaled difference 

vectors, and if the new solution outperforms the existing solution, the existing solution is replaced by this 

new generation (Price et al., 2006). The algorithm relies on a few specific parameters such as the scaling 

factor, crossover rate mutation and crossover are observed to play an important role in search 

performance (Qin et al., 2009). In another study (Y. Wang et al., 2024), a model for surface roughness 

prediction was proposed based on the DE algorithm combined with ensemble learning, aiming to explain 

the relationship between the machining parameters and surface roughness. Experiments on 3D-printed 
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components made of 316L stainless steel demonstrated that the proposed algorithm is more effective 

than other algorithms, with an average absolute percentage error approximately 42% lower than that of 

other algorithms. The DE algorithm is known for its straightforwardness and reliability in addressing 

non-linear and multi-modal optimization challenges. Unlike other algorithms such as Genetic Algorithms 

(GA) or Particle Swarm Optimization (PSO), DE is less sensitive to parameter settings and often provides 

better convergence in fewer iterations, making it more efficient for laser cutting parameter optimization. 

Laser cutting is an important application of lasers in industry, especially for the processing of 

materials that are difficult to cut. In contrast to traditional machining methods, laser cutting is 

characterized by minimal material removal (Xiao et al., 2024), localized precise heat application to the 

workpiece (Madhava, 2024), minimal distortion (Samantaray et al., 2024), and the absence of tool wear 

(Begic-Hajdarevic et al., 2016). This technique uses a laser beam to supply thermal energy, which is then 

transformed into heat. Because the laser beam is electromagnetic radiation, it does not require 

mechanical cutting force, tool wear, or vibration, and can be focused on the material surface to an 

extremely small point. Thus, laser beam cutting can be used to cut soft or hard materials (Genna et al., 

2020). In laser cutting, a localized increase in the surface temperature occurs due to the interaction of the 

laser beam with the electrons of the material, which absorb some of the energy. Melting, vaporization, or 

other chemical changes in the material may result from this increase. The wavelength and power density 

of the laser, as well as the chemical and physical properties of the material, such as thermal conductivity 

and absorption capacity, influence these phenomena, which in turn determine the laser-material 

interaction (Shugaev et al., 2020; Tamrin et al., 2021). 

Surface roughness is a technical requirement for mechanical products and is used to measure product 

quality (Çaydaş & Hasçalik, 2008; Kasman, 2023; Suhail et al., 2010). One of the most important aspects 

of the functional performance of a part is ensuring the desired surface quality (Magdum et al., 2022; 

Zdravković et al., 2020). Production costs are significantly impacted by product surface roughness, which 

is a measure of product quality (Anuja Beatrice et al., 2014; Suhail et al., 2010). Higher manufacturing 

costs correlate with lower desired surface roughness (Ratnam, 2017). Prior to the production process, 

the selection of the appropriate cutting parameters is necessary to achieve the expected surface 

roughness (Aslan et al., 2007; Sharma et al., 2012; Tseng et al., 2016) Although it is usually desirable to 

reduce surface roughness in industry, the opposite situation may be desired in some studies. 

Ghalandarzadeh et al. (2023) found that zirconia samples treated with different laser power densities 

exhibited higher surface roughness compared to untreated samples. This increase in surface roughness 

corresponded to an increase in hydrophobicity, indicating a potential relationship between surface 

texture and wettability. 

Laser surface treatment is a highly nonlinear process (Ozbey & Tıkız, 2024; Tamanna et al., 2019). 

Optimization of laser parameters and analysis of the changes that occur on the surface of the laser-

machined material are of great importance for the manufacturing industry (2022; Ürgün et al., 2024). 

Accurate adjustment of these parameters plays a critical role in bringing the material properties to the 

desired level and increasing the efficiency of the production processes (Rouf et al., 2022). In literature, 

laser material interaction has been studied experimentally and analytically from different perspectives 

(Um et al., 2022; G. Wang et al., 2021). The various forms of selective laser–material interaction 

approaches and their properties utilized in biomedical devices and materials were presented by Um et al 

(2022).  G. Wang et al. (2021) utilized laser direct deposition, an additive manufacturing technique, to 

produce W‒Cu composite material. Experimental and simulation analyses were conducted to investigate 

laser-powder interaction and particle transport phenomena. The microstructure of mild steel samples 

was altered through the use of a diode laser with a maximum power output of 3.3 kW, combined with 

electrochemical processes in another study (Speidel et al., 2016). The findings showed that the exposed 

surface textures and the chemistry of the surfaces can be modified by combining laser pretreatment with 

EJM. In this case, the machined surface roughness was shown to increase from approximately 0.45 μm 

for untreated surfaces to roughly 18 μm for surfaces subjected to intensive laser pretreatment. In another 

study (Salleh et al., 2020), mild steel was subjected to surface hardening with a fiber laser with a 
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wavelength of 1060 nm. It was observed that higher laser power increased the surface hardness, but 

higher scanning speeds decreased the surface hardness. Laser material interaction can be studied with 

various optimization techniques. (Fan et al., 2023) used Taguchi Methods and Response Surface Method 

to improve surface roughness in laser-assisted rapid tool servo (LAM-FTS) machining of glass-ceramic 

materials. The results showed that the most effective parameters were laser power, spindle speed, feed 

rate and piezoelectric frequency, respectively. In other study (G. Wang et al., 2024), the optimal cleaning 

parameters were determined using the response surface method and the second-generation non-

dominated sequencing genetic algorithm (NSGA-II) to improve the surface quality during laser removal 

of rust layers on Q390 steel. In the study, a mathematical model was established between input variables 

(laser power, cleaning speed, scanning speed and repetition frequency) and target values (surface oxygen 

content, rust layer removal rate and surface roughness). As a result of the study, surface corrosion was 

effectively removed, a distinct metal brightness was achieved, and a pre-weld surface treatment standard 

was achieved. 

In this study, regression analysis and stochastic optimization were carried out for the laser cutting of 

mild steel. Experimental data were obtained from the literature and analytical processes were examined 

in detail. The laser parameters (laser power, cutting speed and assist gas pressure) were specified as 

inputs in 5 levels, and the response was considered roughness. The measurement analysis results were 

examined using Minitab 19 software for a 0.05 significance level (α =0.05) with an L25 Orthogonal Array. 

The regression equation was determined, and the surface roughness was optimized using the differential 

evolution algorithm. The originality of this study lies in the combination of regression analysis and DE 

algorithm to optimize the surface roughness during laser cutting. This combination offers an innovative 

and effective approach to optimize critical parameters such as surface roughness in laser cutting 

processes. While statistical analyses reveal the relationship between cutting parameters and surface 

roughness by modeling the effects of independent variables, the DE algorithm optimizes these 

parameters to improve both accuracy and efficiency in manufacturing processes. Unlike existing methods 

in literature, this novel approach allows for a more effective handling of nonlinear manufacturing 

processes. 

II. MATERIAL METHODS 

In this study, experimental data were obtained from (Madić & Radovanović, 2013). Madić and 

Radovanović used a 2.2 kW CO2 laser for the laser cutting of commercial mild steel sheets with a thickness 

of 2 mm. The chemical compositions, (Samatham et al., 2017) mechanical and physical properties (Khan 

et al., 2013; Villavicencio & Guedes Soares, 2011) of mild steel are given in Table 1.  

 
Table 1. Chemical composition (wt.%) (Samatham et al., 2017), physical and mechanical properties of mild steel (Khan et al., 

2013; Villavicencio & Guedes Soares, 2011). 

Chemical composition (wt.%) 

Sample Fe Si Mn P C 

Mild Steel 98.7 0.2 0.54 0.16 0.17 

Mechanical properties 

Yield strength 
Tensile 

strength 
Hardness Young’s modulus Poisson’s ratio 

275 MPa 475 MPa 143 HB 206 GPa 0.3 

Physical properties 

Density Thermal conductivity 
Specific heat 
capacity 

Melting Point 

7850 kg/m3 51.9 W/m. K 0.472 J/g °C 1523 °C 
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The cutting process was performed in Gaussian distribution beam mode using 99.95% pure oxygen 

as the protective gas. With a 127 mm focal length focusing lens, the laser beam was focused on the sample 

surfaces. A conical nozzle (HK10) with a 1 mm diameter, a consistent stand-off distance of 0.7 mm was 

used to maintain between the nozzle and the workpiece. The parameters, including the focusing lens 

specifications, nozzle diameter, focus position, stand-off distance and sheet thickness, were held constant 

throughout the experiment (Madić & Radovanović, 2013). In their study, Madić and Radovanović (Madić 

& Radovanović, 2013) investigated the roughness of mild steel by varying laser parameters such as the 

laser power, cutting speed , and assist gas pressure. The specific process variables and their levels are 

listed in Table 2.  
Table 2. Process parameters and experimental design levels (Madić & Radovanović, 2013). 

  Levels 

Variables 1 2 3 4 5 

Cutting speed, v (mm/min) 3000 4000 5000 6000 7000 

Laser power, P (W) 700 900 1100 1300 1500 

Assist gas pressure, p (bar) 3 4 5 6 7 

 

This study employed five levels and three main laser parameters, namely, cutting speed, laser power, 

and assist gas pressure, to optimize the cutting process. The experimental design was created using an 

L25 orthogonal array, and MINITAB (Version 19) was employed as the statistical tool for its development. 

The experimental results and input parameters are given in Table 3. 

 

Table 3. Experimental results (Madić & Radovanović, 2013). 

Exp. No Cutting speed 
(mm/min) 

Laser Power 
(W) 

Assist gas Pressure 
(bar) 

Surface Roughness 
(µm) 

1 3000 700 3 1.487 
2 3000 900 4 1.29 
3 3000 1100 5 2.073 
4 3000 1300 6 2.477 
5 3000 1500 7 2.937 
6 4000 700 4 1.78 
7 4000 900 5 1.707 
8 4000 1100 6 2.337 
9 4000 1300 7 3.307 

10 4000 1500 3 1.19 
11 5000 700 5 2.013 
12 5000 900 6 2.017 
13 5000 1100 7 2.603 
14 5000 1300 3 1.173 
15 5000 1500 4 1.38 
16 6000 700 6 1.66 
17 6000 900 7 1.71 
18 6000 1100 3 0.963 
19 6000 1300 4 1.007 
20 6000 1500 5 1.143 
21 7000 700 7 1.587 
22 7000 900 3 0.832 
23 7000 1100 4 0.903 
24 7000 1300 5 0.88 
25 7000 1500 6 1.073 
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Differential evolution  is a powerful stochastic real parameter optimizing algorithm (Islam et al., 

2012). DE is sensitive to the choice of mutation strategy and the settings of control parameters such as 

crossover rate, scale factor and population size (Mallipeddi & Suganthan, 2010; Saad et al., 2024) . 

Because of these features, DE generates better optimal solutions for optimization issues involving 

experimental work and time constraints (Ahmed et al., 2020). The mathematical modeling of the 

Differential Evolution (DE) algorithm was done using Wolfram Mathematica. The steps used in the 

program are given below (Ceylan et al., 2023; Dash et al., 2023; Rubal & Kumar, 2018): 

 

1. Define a population consisting of h points {a1,a2,…,ah}, ensuring that h exceeds the total number of 

design variables. 

2. Generate the population points randomly. 

3. Utilize the real scaling factor rsf, defined as arsf = aw+rsf⋅(au−av), to generate new iteration points 

based on the existing population. 

4. Update a by modifying its j-th coordinate from arsf according to the probability P. In this stage, the 

"CrossProbability" parameter within Mathematica is set within the range [0,1]. If the constraint 

f(ai)>f(anew) is satisfied, the original point is retained instead of the newly generated point. 

5. Evaluate the convergence by comparing the difference between the two most recently generated 

points. If this difference is below the specified tolerance, the algorithm halts. This hybrid approach 

can address problems involving integer variables or cases where the objective function is non-

numeric. 

The steps of the Differential Evolution Algorithm are presented in Figure 1. 

 

 
Figure 1. Steps for Differential Evolution Algorithm (Rubal & Kumar, 2018). 

III. RESULTS AND DISCUSSION 

In this study, it is aimed to determine the laser parameters that would improve the surface properties 

of mild steel using statistical methods. To achieve the highest surface quality, surface roughness should 

be minimized. In the first part of this study, the response (roughness) values were assessed using the 

normality test. Probability charts are vital for examining whether a dataset matches a particular 

theoretical distribution. These plots compare the actual dataset with a theoretical distribution to test the 

hypothesis that a statistical sample derives from a specified distribution (Ferré, 2009). As shown in 

Figure 2, the P-value is greater than 0.05; therefore, the response values are normally distributed and 

follow almost a straight line; thus, surface roughness data can be used in statistical analysis.    
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Figure 2. Probability plot of roughness. 

 

Table 4 presents the correlation matrix. There is an inverse, moderate and statistically significant 

relationship between cutting speed and surface roughness, a strong and statistically significant 

relationship between assist gas pressure and surface roughness as in reference (Zeilmann & Conrado, 

2022), and a weak and statistically insignificant relationship between laser power and surface roughness. 

In addition, as in reference (Erkan, 2023), while surface roughness decreases with increasing cutting 

speed, surface roughness increases with increasing assist gas pressure. 

 
Table 4. Correlation matrix ((*. Correlation is significant at the 0.05 level (2-tailed)) and ( **. Correlation is significant at the 0.01 

level (2-tailed))). 

 Cutting Speed Laser Power 

Assist Gas 

Pressure 

Surface 

Roughness 

Cutting Speed Pearson Correlation 1 0 0 -0.398* 

Sig. (2-tailed)  1 1 0.049 

N 25 25 25 25 
Laser Power Pearson Correlation 0 1 0 0.093 

Sig. (2-tailed) 1  1 0.657 
N 25 25 25 25 

Assist Gas 
Pressure 

Pearson Correlation 0 0 1 0.526** 

Sig. (2-tailed) 1.000 1.000  0.007 
N 25 25 25 25 

Surface 
Roughness 

Pearson Correlation -0.398* 0.093 0.526** 1 

Sig. (2-tailed) 0.049 0.657 0.007  
N 25 25 25 25 

 

The multicollinearity between independent variables was checked. The variance inflation factor (VIF) 

< 10 and the condition index (CI) < 30 indicate that there is no multicollinearity problem among the 

independent variables. 

Statistical regression analysis was performed to characterize the interaction between one or more 

independent variables and dependent variables. The objective of regression analysis is to determine how 

independent factors affect the dependent variable (Arnab, 2017; Freund et al., 2010; Thomasian, 2022). 

The regression equation (R2= 83.21%) for the laser cutting process was determined in Equation 1 using 

Minitab 19.  
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Surface Roughness (µm)=1.458 - 0.000276 Cutting speed (mm/min)- 0.000032 Laser power  

                                                        (W) + 0.3240 Assist gas pressure (bar)                                                                      (1)  

   

Contour and surface plots for surface roughness are given in Figures 3 and 4 respectively. The analysis 

shows that the laser parameters have a significant effect directly on the roughness and in interaction with 

each other. In contour plots, laser power and cutting speed have been observed to reduce roughness 

beyond a certain threshold value. Similarly, the roughness exhibits different trends with increasing 

pressure. In the surface plots, the relationship between these parameters is revealed in more detail and 

low roughness regions are identified. 

 

 
Figure 3. Contour plots of roughness. 
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Figure 4. Surface plots of roughness. 

 

After regression analysis, the estimated roughness was determined and compared with the 

experimental results.  experimental and estimated results obtained by the second-order regression 

analysis are compared in Figure 5. The figure demonstrates a strong correlation between actual test 

results and predicted outcomes. The calculated coefficient of determination (R²) values, reaching 86.6 %, 

for the equations used to determine the surface roughness, signify a high degree of accuracy. 

Consequently, the second-order regression model was effective for estimating surface roughness within 

the 95% CI. 

 
Figure 5. The quadratic regression model compared with the experimental roughness results. 
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In order to understand the effect of the laser parameters on the surface roughness, a Pareto chart is 

provided in Figure 6. In the Pareto chart, the standardized effect represents the magnitude and 

significance of the effect of each factor on the response variable (Hashem et al., 2018; Makableh et al., 

2021). The red dashed line in the figure represents a boundary with a value of 2.080, which indicates the 

level of statistical significance (95% confidence interval). The laser parameter that has the most influence 

on the surface roughness is assist gas pressure and the second most influential parameter is the cutting 

speed. The laser power is statistically below the analytical limit of 22.080, i.e. the laser power does not 

have a statistically significant effect on the surface roughness. Possible reasons for the lack of effect of 

laser power on surface roughness could be the power range used or the type of laser used in the study. It 

can be concluded from these results that future studies should focus on laser parameters such as gas 

pressure and laser cutting speed of mild steel. 

 
Figure 6. Pareto Chart of the Standardized Effects for Surface Roughness (α = 0.05). 

 

Differential evolution is a stochastic, population-based heuristic search approach for continuous 

domains, which is a subfield of evolutionary programing. Differential evolution is a straightforward, user-

friendly, fast, and reliable heuristic technique (Karci, 2017). Table 5 shows the optimization results 

obtained using the differential evolution algorithm, which minimizes the surface roughness during laser 

cutting. The results show that the optimal parameter settings to achieve a minimum roughness value of 

0.442 µm are a cutting speed of 7000 mm/min, laser power of 1500 W, and gas pressure of 3 bar. 

 
Table 5. Optimization results of the differential evolution algorithm for roughness (a: Cutting speed (mm/min), b: Laser power 

(W), and c: Assist gas pressure (bar)). 

Objective Function Constrains Min Roughness (µm) Suggested Design 

1.458 - 0.000276 a - 

0.000032 b + 0.3240 c 

3000≤ a ≤7000 

700≤ b ≤1500 

3≤ c ≤7 

0.442 

a = 7000 

b = 1500 

c = 3 

 

Figure 7 shows how the differential evolution algorithm optimizes the objective function value during 

the iteration process. In the first iteration, there is a rapid decrease in the value of the objective function, 

and the solution stabilizes at about the 40th iteration. This indicates that the algorithm has reached an 

optimal solution. Differential Evolution is an efficient solution method for engineering design, 

hyperparameter optimization and similar problems. 
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Figure 7. Convergence graphic for differential evaluation algorithm. 

 

In this study, it was observed that increasing laser power led to a significant increase in surface 

roughness. However, when laser power decreased, surface roughness showed a tendency to decrease as 

well. This is consistent with previous studies (Kim et al., 2022), where lower laser power resulted in 

minimal changes in surface roughness. In industrial applications, these findings can enhance the 

efficiency of laser cutting machines. For example, the combination of low laser power and high cutting 

speed can save time in rapid prototyping and mass production. 

IV. CONCLUSIONS 

The aim of this study was to determine the optimum cutting settings for achieving superior surface 

finish in laser cutting processes. First, normality tests confirmed that the surface roughness data followed 

a normal distribution, indicating their suitability for statistical analysis. Regression analysis showed a 

strong relationship between surface roughness and independent variables (cutting speed, laser power 

and auxiliary gas pressure), resulting in a regression equation with an R² value of 83.21%. The 

predictions of the model are in close agreement with the experimental results and demonstrate high 

accuracy, as evidenced by the R² value of 86.6%. Optimization by means of the DE algorithm determined 

the optimal parameters for the minimum surface roughness as 7000 mm/min cutting speed, 1500 W 

laser power, and a 3-bar auxiliary gas pressure, resulting in a minimum roughness of 0.442 µm. The 

results of this study are highly relevant for industries that utilize the laser cutting process for precision 

manufacturing, such as automotive, aerospace and metal fabrication. The combined use of regression 

analysis and differential algorithms can be applied to nonlinear manufacturing processes, offering a 

reliable and cost-effective parameter optimization approach. Overall, this study could contribute to 

reducing production costs and improving product quality in industrial settings. By optimizing laser 

cutting parameters, particularly for high-volume production, it is possible to achieve faster processing 

times, reduce energy consumption, and minimize material waste. 
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