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Abstract

A major role of this document is to present a generalized difference spaces denoted by w(∆r, Â, p, f ,q,s), w0(∆
r, Â, p, f ,q,s), and

w∞(∆
r, Â, p, f ,q,s), of which arguments are defined as follows, and also to investigate some algebraic and topological characteristics

of the spaces. Here; Â is an infinite matrix, p = (pk) is a bounded sequence of strictly positive real numbers, f is any modulus function, q is
a semi norm, and s is any non-negative real number. Besides these, the relationship between the spaces obtained by various values of those
arguments is going to be considered. Finally, the newly obtained results are going to be compared with those of other studies.
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1. Fundamental Facts

Although the matrix domain has certainly been the most common tool in recent times used in defining a new sequence space, many other
methods and techniques have been utilized to built a new sequence space. These new sequence spaces, which will be explained in more
detail below, are built using the modulus function. Let us start by giving the basic concepts that will be used in this study. Firstly we want to
give the definition of a sequence. A sequence is a collection of numbers in a particular order. With a more formal statement, a sequence of
numbers is a function whose domain is the set of positive integers Z+. To signal the fact that the domains are restricted to the set of positive
integers, it is conventional to use a letter like n from the middle of the alphabet for the independent variable, instead of the x, y, z and t used
so widely in other contexts. The number a(n) is called the nth term of the sequence, or the term with index n. To describe sequence, we often
write the first few terms as well as a formula for the nth term. We refer to the sequence whose nth term is an as ”the sequence (an).” Here,
the curly braces ( ) indicate we have in mind all the terms of the sequence, not just a single term. We note here that the sequences are named
according to the range set of a given function. Because of all these, if the range is the set of real numbers R, then the sequence is called
real-valued sequence. The space consisting of a collection of all real-valued sequences is indicated by notation w. When a set is a subspace
of w, it is said that a sequence space. The symbols `∞, c and c0 denote spaces whose members consist of all bounded, convergent and null
sequences, respectively. In addition to these, when 1 < p < ∞ the symbols cs, bs, `1 and `p; denote spaces such that its members consist
of all convergent, bounded, absolutely and p−absolutely convergent series, respectively. Also, bv = {x = (xk) : ∑k |∆xk| < ∞} in which
∆x = (xk− xk+1) for all sequences x = (xk) and bv0 = bv∩ c0. Moreover, when p≥ 1 the notations wp

0 , wp and wp
∞ denote spaces whose

members consist of are strongly summable to zero, summable and bounded of by the Cesàro method of order 1.
An important case occurs in such conditions that X is a linear space according to the coordinate-wise addition and scalar multiplication of
sequence when X is equal to any one these sequence spaces `∞, c, c0, `p, bs, cs, bv, bv0, wp

0 , wp and wp
∞.

Now, let us give very short historical knowledge and brief developments about the space of almost convergent sequences. There are two
different notations, which are f and ĉ, of the space of the related space. Since the modulus function is also denoted by f , in order to avoid
any confusion, throughout the article notation ĉ will be used for the aforementioned space. Now, let us explain the concept of Banach limit,
which is the basis for the formation of this idea. The shift by 1 operator ϕ is defined on ω by the rule ϕn(x) = xn+1 for all n ∈ N. A Banach
limit L is defined on `∞, as a non–negative linear functional, such that L(ϕx) = L(x) and L(e) = 1. A sequence x = (xk) ∈ `∞ is said to be
almost convergent to the generalized limit α if all Banach limits of x is α [1] , and denoted by ĉ− lim xk = α . For more comprehensive
information about the Banach limit, the reader can consult to Çolak and Çakar [5], and Das [6]. By utilizing the opinion of the Banach limits,
G.G.Lorentz [11] presented and after then examined some properties of the almost convergent sequence spaces ĉ.
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Let ϕ j be the composition of ϕ with itself j times and define tmn(x) for any sequence x = (xk) by

tmn(x) :=
1

m+1

m

∑
j=0

ϕ
j

n(x) for all m,n ∈ N.

It has been proved by Lorentz in [11] that ĉ− lim xk = α iff limm→∞ tmn(x) = α when it is uniformly in n. The fact that a convergent
sequence is almost convergent and its both ordinary and generalized limits are equal is a widely known fact. By ĉ0 and ĉ, we denote the
space of all almost null and almost convergent sequences, in other words

ĉ0 :=

{
x = (xk) ∈ ω : lim

m→∞

m

∑
k=0

xn+k

m+1
= 0 uniformly in n

}
,

ĉ :=

{
x = (xk) ∈ ω : ∃α ∈ C 3 lim

m→∞

m

∑
k=0

xn+k

m+1
= α uniformly in n

}
.

It is obvious that the following inclusion relations c⊂ ĉ⊂ `∞ are valid.
Also, notations by ĉ0, ĉ and ĉs denote the spaces of almost null and almost convergent sequences and series, respectively.

Maddox [14,15] defined a complex sequence x to be strongly almost convergent to a number l iff 1
m+1

m
∑

k=0
|xn+k− l|→ 0 (m→ ∞, uniformly in n) .

It leads to the concept of what we shall call strong almost convergence. By [ĉ] he denotes the space of all strongly almost convergence
sequences, i.e.,

[ĉ] : =

{
x = (xk) ∈ ω : lim

m→∞

1
m+1

m

∑
k=0
|xn+k− l|= 0, uniformly in n

}
.

It is immediate that [ĉ]⊂ ĉ, and it is easy to see that the inclusion is strict. Also [ĉ] is a closed subspace of l∞ and with strict inclusions we
have c⊂ [ĉ]⊂ ĉ⊂ l∞.
Now, we begin by recalling basic definitions involved in paranorm and others, which will be used in the next sections. Let X be a linear
topological space. If a function g having its domain X and range R and satisfies the following four conditions it is said be a paranorm
function

i) g(θ) = 0,
ii) g(x) = g(−x)

iii) g(x+ y) = g(x)+g(y)
iv) |αn−α| → 0 and g(xn− x)→ 0 imply g(αnxn−αx)→ 0

for all α ∈ R and all x ∈ X , where θ is the zero vector in the linear space X .
In this paragraph, we briefly describe some concepts involved in K− space, FK− space, BK− space, AK− space. These concepts aren’t
fairly easy. For a sequence space X having a linear topology, we recall that X is called a K−space if and only if each of the functions
pn : X →R described by pn(x) = xn is continuous for every n ∈N. This is in fact true if it is assumed that X is a K− space, then the space X
is said to be an FK− space if and only if X is a complete linear metric space. If the definition is examined closely one sees that an FK-space
is a complete total paranormed space. At this point, it is convenient to recall the fact about FK− space. Specifically, if a topology of the
FK− space is normable then a FK−space is said to be a BK−space, that is we can say that a BK-space is a normed FK-space. For example;
when 1≤ p < ∞ the space `p having the norm ‖x‖p = (∑k |xk|p)

1
p is a BK− space and each classical sequence space c0, c and `∞ having the

norm ‖x‖∞ = supk|xk| is a BK− space. By assuming that ek is a sequence in which only non-zero term is in its kth place for each k ∈ N and
φ = span{ek} being the set of all finitely non-zero sequences we can say that an FK− space X has the AK property if φ ⊂ X and {e(k)} is a
basis for X . When φ is dense in X , in that case X is said to be an AD−space whereby AK implies AD. When 1≤ p < ∞, it is known that the
spaces c0, cs and `p are AK-spaces.
In this paragraph, we are going to deal with the definition of the α− and β− duals for any sequence spaces. Let X and Y be sequence spaces.
In that case, the following set

S (X ,Y ) = {z = (zk) ∈ w : xz = (xkzk) ∈ Y for all x = (xk) ∈ X} (1.1)

is known the multiplier space for X and Y. First of all, for arbitrary sequence space V following two inclusion relations S (X ,Y )⊂ S (V,Y )
when V ⊂ X and S (X ,Y )⊂ S (X ,V ) when Y ⊂V are valid. By making special choices in the multiplier space, we reach the α− and β−
duals for any sequence space Ω. More clearly, if we choose Y = `1 and cs in the notation of (1.1) we get Ωα = S (Ω, `1) , Ωβ = S (Ω,cs)
respectively. In literature, the α−dual and β−dual are known as Köthe-Toeplitz dual, and generalized Köthe-Toeplitz dual respectively [2].
The modulus function has fundamental importance for this work. Thus, the definition of it is presented in this paragraph. If a function f has
its domain and range as [0,∞) and satisfies the following four conditions it is said to be a modulus function

i) f (x) = 0 iff x = 0,
ii) f (x+ y)≤ f (x)+ f (y),

iii) f is increasing,
iv) f is continuous from the right at 0 [16].

Actually the conditions clearly show that the function is continuous onto [0,∞) and its another one properties is either bounded or unbounded,
due to well-known results from elementary analysis. If f1 and f2 are modulus function then f1 ◦ f2 and f1 + f2 are modulus functions. For
more detail see [39, 40].
In 1953, Nakano [16] introduced the concept of modulus function and it has been utilized to answer some of the constructional problems
related to the theory of FK-spaces. Among others one question; ”is there an FK−space in which the sequence of coordinate vectors is
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bounded”, put forward by A. Wilansky, has been answered by W. H. Ruckle [19] by a negative one. This problem has been tackled by building
a collection of scalar FK−spaces L( f ) in which f is a modulus function. In fact, L( f ) is a generalization of the spaces `p (0 < p≤ 1) .
When considered in term of a positive real sequence r = (rk) ; another expansion of the space `p if (p > 0) has been presented by Simons [22].
The reader may refer to the reference [19].
Ruckle [19] proved that, for arbitrary modulus f , L( f )⊂ l1 and L( f )α = l∞ in which

L( f )α =

{
y = (yk) ∈ w : ∑

k
|ykxk|< ∞ for all x ∈ L( f )

}

is the α-dual of L( f ).
A sequence a = (ak) is called to be summable (C,1) only when limn

1
n ∑

n
i=1 ai ∈ c. Kuttner [9] have introduced the spaces of strongly Cesàro

summable sequences, and later on Maddox [12] and others have more generalized the concept. Strongly Cesàro summable sequences in term
of a modulus function has been introduced by Maddox [13] as a new expansion of the definition of strongly Cesàro summable. Moreover,
Connor [10] has brought a new insight to his description of summability method by writing a non-negative regular matrix A in place of Cesàro
matrix. Then, in [20], he has presented strongly almost A−summability concept following Connor [10], however, his definition does not
seen satisfactory and natural. Following the definition in [20] and specialising the infinite matrix don’t result in strongly almost convergent
sequences in terms of a modulus function. After that, Savaş has presented an alternative way of defining strongly almost A−summability in
terms of a modulus function in his new study [21]. This new definition is more natural and involves definition of strongly almost convergence
in terms of a modulus function as a particular case. The sets w0

(
Â, f , p

)
, w
(
Â, f , p

)
and w∞

(
Â, f , p

)
will called the spaces of strongly

almost summable to zero, strongly almost summable and strongly almost bounded with respect to the modulus f respectively [21].
The parameter s in the factor k−s has been utilized by Bulut and Çakar [3], in order to generalize the Maddox sequence space l (p) in
which p = (pk) is a bounded sequence consisting of positive real numbers and s ≥ 0. Its function is extension. For instance, the space
l (p,s) =

{
x ∈ w : ∑

∞
k=1 k−s |xk|pk < ∞

}
involves l (p) as a subspace for s > 0, and in that case it coincides with `(p) only when s = 0.

2. Difference Sequence Spaces

In this part of the document, many of the sequence spaces we discuss will be defined by means of a difference sequence or generalized
difference sequence. To study such sequence spaces we shall need to understand the concept of difference sequence of or generalized
difference sequence of a sequence.
Motivation for Kızmaz’s [24] introduction of the difference sequence space in his 1981 paper to be the notion difference operator. Let’s now
explain this concept. Let λ ∈ {`∞,c,c0}. Then, λ (∆) which formed the sequences x = (xk) is called the difference sequence spaces if the
sequence (xk− xk+1) obtained by using x = (xk) is member of the sequence space λ .
In order to effectively deal with concrete situations, we have briefly considered several important articles [23, 25, 26] for difference sequence
space.
Perhaps the most basic article for our document is Çolak and Et’s [8] article entitled ”On generalized difference sequence spaces.” They first
defined the spaces ∆mλ for λ ∈ {c, `∞,c0} and after then examined some of its algebraic and topological properties.
Çolak and Et [8] took further and generalized the Kızmaz’s idea [24] such that

∆
m

λ =
{

x = (xk) ∈ ω : ∆
mx ∈ λ

}
,

in which ∆1x = (xk− xk+1) and ∆mx = ∆(∆m−1x) for m ∈ {1,2,3, . . .}.
Sarıgöl [29] after Kızmaz [24], defined the spaces λ (∆r) which is expanded the difference spaces λ (∆) in a different way. Now, let us
explain this expansion. In 1987 Sarıgöl [29] defined following generalized difference sequence space

λ (∆r) : = {x = (xk) ∈ ω : ∆rx = {kr (xk− xk+1)} ∈ λ for r < 1}

after then he determined the Köthe-Toeplitz dual, generalized Köthe-Toeplitz dual, in addition to these Garling dual, (see [2] definition
of Garling dual ) respectively of the mentioned space λ (∆r), in which λ ∈ {`∞,c,c0}. It is fairly easy to see that λ (∆r) ⊂ λ (∆), when
0 < r < 1 and λ (∆)⊂ λ (∆r), when r < 0.
Ahmad and Mursaleen [27] have expanded those spaces to λ (p,∆) and investigated the related problems in 1987. Köthe-Toeplitz duals for
the set `∞(p,∆) and c0(p,∆) have been described by Malkowsky [30] and, new proofs of the properties of the matrix transformations in [27]
have been presented. Choudhary and Mishra [31] investigated some characteristics of the sequence space c0 (∆r) when r ≥ 1 in 1993. Again
in that year, Mishra [32] has given a characterization of a BK−spaces containing subspace which is isomorphic to sc0(∆) in view of matrix
maps and also a sufficient condition in order that a matrix map from s`∞(∆) into a BK− space is a compact operator. He also demonstrated
that any matrix defined from s`∞(∆) to a BK−space involving any subspace which is isomorphic to s`∞(∆) is a compact one where

sλ (∆) = {x = (xk) ∈ ω : (∆xk) ∈ λ , x1 = 0 for λ = `∞ or c0} .

In 1996, Mursaleen et al. [33] described and investigated the sequence space

`∞ (p,∆r) = {x = (xk) ∈ ω : ∆rx ∈ `∞(p)} , (r > 0).

Gnanaseelan and Srivastava [34] have described and investigated the spaces λ (u,∆) for any sequence u = (uk) consisting of non-complex
numbers in such a way that

(i)
|uk|
|uk+1|

= 1+O(1/k) for each k ∈ N1 = {1,2,3, . . .}.

(ii) k−1 |uk|∑k
i=0 |ui|−1 = O(1).
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(iii)
(

k
∣∣∣u−1

k

∣∣∣) is a sequence composed of positive numbers which are increasing monotonically toward infinity.

Malkowsky [35] defined the spaces λ (u,∆) for any fixed sequence u = (uk) without imposing any restriction onto u in 1986. He also showed
that the sequence spaces λ (u,∆) are BK−spaces having the norm which is described by

‖x‖= sup
k∈N

∣∣uk−1 (xk−1− xk)
∣∣ with u0 = x0 = 1.

When r ≥ 1; the spaces

Sr(p,∆) = {x = (xk) ∈ ω : (kr |∆xk|) ∈ c0(p)}

defined by Gaur and Mursaleen [36] a expanded the space Sr(∆), again they determined the characterization of (Sr (p,∆) : `∞) and
(Sr (p,∆) : `1) matrix classes. Almost simultaneously Malkowsky et al. [37] and Asma and Çolak [28] firstly introduced the sequence spaces
`∞(p,u,∆), c(p,u,∆) and c0(p,u,∆) after then they determined Köthe-Toeplitz duals of those spaces. More Recently; the characterization
the matrix classes (∆λ : µ) and (∆λ : ∆µ) are determined by Malkowsky and Mursaleen [38] in which λ = c0(p), c(p), `∞(p) and µ =
c0(q), c(q), `∞(q).

3. The Sequence Spaces w0(∆
r, Â, p, f ,q,s), w(∆r, Â, p, f ,q,s) and w∞(∆

r, Â, p, f ,q,s)

This section plays a major role in this document. Using the ∆r generalized difference operator for r ∈ N, the infinite matrix A = (amk) of
non-negative real numbers, the p = (pk) sequence of non-negative real numbers, the function f any modulus, the q seminorm function and
s ∈ R are the starting point of this document and each is in itself a vast and complicated subject.
Assume that X is a complex linear space having zero element θ , X = (X ,q) is a seminormed space having the seminorm q. The set of all
X−valued sequences x = (xk) which is the linear space commonly used coordinate-wise operations is denoted by S(X). Assuming λ = (λk)
is an arbitrary sequence and also x ∈ S(X) will allow us to write λx = (λkxk) when X = C is taken, we get w(X) is denoted briefly by w,
which is the space of all complex-valued sequences. We call this condition as scalar-valued one.
If we assume that A = (amk) is any nonnegative matrix, p = (pk) is a sequence consisting of positive real numbers and f is a modulus
function the sequence spaces on the complex field C is given as follows

w0(∆
r, Â, p, f ,q,s) =

{
x ∈ S (X) : lim

m→∞
∑
k

amk

ks [ f (q(∆rxk+n))]
pk = 0,uniformly in n,s≥ 0

}

w(∆r, Â, p, f ,q,s) =

{
x ∈ S (X) : lim

m→∞
∑
k

amk

ks [ f (q(∆rxk+n− le))]pk = 0,uniformly in n,∃l ∈ C,s≥ 0

}

w∞(∆
r, Â, p, f ,q,s) =

{
x ∈ S (X) : sup

m
∑
k

amk

ks [ f (q(∆rxk+n))]
pk < ∞, s≥ 0

}

When φ(X) is given as the space of finite sequences in X , we have the following valid relation φ(X)⊆ w(Â, p, f ,q,s).
In the literature, those spaces are reduced to some sequence spaces. For instance, if we take (X ,q) = (C, |, |), A = (C,1) , the Cesàro matrix,
pk = 1, for each k and r = s = 0, we obtain the spaces [ĉ0 ( f )] , [ĉ( f )] and [ĉ( f )]

∞
which are presented by Pehlivan [18]. Furthermore, the

spaces involve in [4, 7, 14, 15, 17, 21] as derived a particular case.
The lemma that will now be presented is fundamental, but even here it will help us while proving some of the following theorem.

Lemma 3.1. If ak, bk ∈ C and 0 < pk ≤ sup pk = H for all k ∈ N. When C = max
(
1,2H−1) , following famous inequality

|ak +bk|pk ≤C (|ak|pk + |bk|pk )

is valid, see Maddox [12].

Now, we begin to serve and establish some basic theorems related to the sequence spaces introduced in this section.

Theorem 3.2. Let r ≥ 1, then the following inclusion relations are strictly valid.

(i) w0(∆
r−1, Â, p, f ,q,s)⊂ w0(∆

r, Â, p, f ,q,s),
(ii) w(∆r−1, Â, p, f ,q,s)⊂ w(∆r, Â, p, f ,q,s),

(iii) w∞(∆
r−1, Â, p, f ,q,s)⊂ w∞(∆

r, Â, p, f ,q,s).

Proof. Since the proof does not have any difficulty and even it is very simple, here, we will only show that w∞(∆
r−1, Â, p, f ,q,s) ⊂

w∞(∆
r, Â, p, f ,q,s), the validity of other inclusions can also be shown in a similar way. Let us x ∈ w∞(∆

r−1, Â, p, f ,q,s), that is

sup
m

∑
k

amkk−s
[

f
(

q(∆r−1xk+n)
)]pk

< ∞.

Since q is a seminorm, modulus function f is increasing, A = (amk) is a nonnegative matrix and amkk−s > 0 is valid for each m and k;

amk

ks { f [q(∆rxk+n)]}pk <C
amk

ks { f [q(∆r−1xk+n)]}pk +C
amk

ks { f [q(∆r−1xk+n+1)]}pk

is valid from Lemma 3.1. Taking the summation after extending our index from 1 to ∞, if the supremum is taken over m and n, we get
desired inclusion relation.
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Corollary 3.3. We have

(i) w0(∆
i, Â, p, f ,q,s)⊂ w0(∆

r, Â, p, f ,q,s),
(ii) w(∆i, Â, p, f ,q,s)⊂ w(∆r, Â, p, f ,q,s),

(iii) w∞(∆
i, Â, p, f ,q,s)⊂ w∞(∆

r, Â, p, f ,q,s)

for i = 0,1,2, ...,r−1.

Theorem 3.4. When p = (pk) ∈ `∞, therefore the sets w0(∆
r, Â, p, f ,q,s), w(∆r, Â, p, f ,q,s) and w∞(∆

r,
Â, p, f ,q,s) are linear spaces over the complex field C.

Proof. We choose to prove just w0(∆
r, Â, p, f ,q,s), since the other two can be done in a similar way. Now, let us take both x,y ∈

w0(∆
r, Â, p, f ,q,s) and a,b ∈ C, in that case, there exist two positive integers Ta and Tb, depend on a and b respectively such that |a| ≤ Ta

and |b| ≤ Tb. Due to the fact that the modulus function f is subadditive, q is a seminorm and ∆r having a linear property, we have following
inequality

amk

ks { f (q(∆raxk+n +∆
rbyk+n))}pk ≤C amk

ks T H
a { f (q(∆rxk+n))}pk

+C amk
ks T H

b { f (q(∆ryk+n))}pk .

To actually check that by summing over from k = 1 to ∞ in the last inequality requires ax+by ∈ w0(∆
r, Â, p, f ,q,s) a little more care. This,

in fact, concludes the proof.

Theorem 3.5. The spaces w0(∆
r, Â, p, f ,q,s) is paranormed space by G defined by

G(x) = sup
m

{
∑
k

amkk−s[ f (q(∆rxk+n))]
pk

} 1
M

where M = max(1,supk pk).

Proof. According to the definition of the sequence spaces w0(∆
r, Â, p, f ,q,s), we ensure that the existence of G(x) ∈ R, for all x ∈

w0(∆
r, Â, p, f ,q,s). Now, let us trace a standard type procedure in this proof.

It can easily be controlled that the conditions G(θ) = 0, G(x) = G(−x) and G(x+ y)≤ G(x)+G(y) by Minkowski’s inequality are valid.
For showing the continuity of scalar multiplication let us assume that (µt) be a sequence of scalars such that |µt −µ| → 0 and G(xt − x)→ 0
for arbitrary sequence (xt) ∈ w0(∆

r, Â, p, f ,q,s). We are going to demonstrate that G(µtxt −µx)→ 0 as t → ∞. When N ∈ N such that
N > 1, say τt = |µt −µ| then{

∑
k

amkk−s[ f (q(∆r
λ

txt
k+n−∆

r
λ

0x0
k+n))]

pk

} 1
M

≤

{
∑
k

a
1
M
mkk−

s
M

{
(N f (q(∆rxt

k+n−∆rx0
k+n)))

pk
M + ( f (q(λ t −λ 0)∆rx0

k+n))
pk
M

}M
} 1

M

where |λ t | ≤ N. Thus, we get

G
(

λ
txt −λ

0x0
)
≤ N

H
M G(xt − x0)+ sup

m

{
∑
k

amkk−s[ f (q(λ t −λ
0)∆rx0

k+n)]
pk

} 1
M

(3.1)

Because of G
(
xt − x0)→ 0 (t→ ∞) from the assumption what is to be proved that

sup
m

{
∑
k

amkk−s[ f (q(λ t −λ
0)∆rx0

k+n)]
pk

} 1
M

→ 0 (m→ ∞).

Since λ t → λ 0 as t → ∞, we can find a D > 0 such that |λ t −λ 0| ≤ D for all t ∈ N. It is trivial that Dx0 = (Dx0
k) ∈ w0(∆

r, Â, p, f ,q,s)
because w0(∆

r, Â, p, f ,q,s) is a linear space. Therefore, when ε > 0 is given, we can find a unique a positive integer m0 depend on ε such
that {

∑
k

amkk−s[ f (q(D∆
rx0

k+n)]
pk

} 1
M

<
ε

2
(3.2)

for all m > m0, it follows {
∑
k

amkk−s[ f (q(D∆
rx0

k+n)]
pk

} 1
M

< ∞

Additionally, for every t and m≤ m0, by considering that{
∑
k

amkk−s[ f (q(λ t −λ
0)∆rx0

k+n)]
pk

} 1
M

< ∞



22 Konuralp Journal of Mathematics

is valid, and at the same time there exists at least one k0 such that for each t and m≤ m0{
∑

k>k0

amkk−s[ f (q(λ t −λ
0)∆rx0

k+n)]
pk

} 1
M

<
ε

4
(3.3)

is still valid. Again, for λ t → λ 0 as t→ ∞ when m≤ m0, since

lim
t→∞

{
k0

∑
k=1

amkk−s[ f (q(λ t −λ
0)∆rx0

k+n)]
pk

} 1
M

=

{
k0

∑
k=1

amkk−s
[

f
(

lim
t→∞
|λ t −λ

0|q(∆rx0
k+n)

)]pk

} 1
M

= 0

for every m≤ m0 and for the same ε > 0 there exists at least one such that for t > t0{
k0

∑
k=1

amkk−s
[

f
(

q((λ t −λ
0)∆rx0

k+n)
)]pk

} 1
M

<
ε

4
(3.4)

is also valid. Thus, from equations (3.3) and (3.4), for every ε > 0 and m≤ m0 there is at least one to such that when t > t0,{
∑
k

amkk−s
[

f
(

q((λ t −λ
0)∆rx0

k+n)
)]pk

} 1
M

<
ε

2

is obtained. From this last equation and (3.2) for every m and ε > 0, when t > t0,{
∑
k

amkk−s
[

f
(

q((λ t −λ
0)∆rx0

k+n)
)]pk

} 1
M

<
ε

2

is obtain, from which

sup
m

{
∑
k

amkk−s
[

f
(

q((λ t −λ
0)∆rx0

k+n)
)]pk

} 1
M

→ 0(t→ ∞)

is obviously seen. It is seen that the second part in (3.1) also approaches to zero. Thus, G is a paranorm function, (w0(∆
r, Â, p, f ,q,s),G) is a

paranormed space. When the definitions of f and q are taken into consideration, it can also be seen that G paranorm is not total.

Theorem 3.6. The inclusion

w(∆r, Â, p,q,s)⊂ w(∆r, Â, p, f ,q,s)

is valid, for the infinite matrix A = (amk) has a non-negative regular matrix and in f pk > 0.

Proof. Let us assume that in f pk = h > 0, x ∈ w(∆r, Â, p,q,s) and 0 < ε < 1. First, take the case 0≤ u≤ δ for every u, When f (u)< ε we
can choose 0 < δ < 1. Therefore, by the basic rule

∑
k

amk

ks { f [q(∆rxk+n− l)]}pk = ∑
[q(∆rxk+n−l)]≤δ

amk

ks { f [q(∆rxk+n− l)]}pk

+ ∑
[q(∆rxk+n−l)]>δ

amk

ks { f [q(∆rxk+n− l)]}pk

≤ ∑
k

amk

ks [ε]pk +∑
k

amk

ks

[
2 f (1)

δ
q(∆rxk+n− l)

]pk

≤ ε
H

∑
k

amk

ks +max(d1,d2)∑
k

amk

ks [q(∆rxk+n− l)]

where d1 =
[

2 f (1)
δ

]h
and d2 =

[
2 f (1)

δ

]H
. Letting m→ ∞ in the last inequality, we have desired result.

Definition 3.7. Let q1 and q2 be two seminorm on X . q1 is stronger than q2 if and only if there exists a constant M such that

q2(u)≤Mq1(u)

for all u.

Theorem 3.8. The following inclusion relations

(i) If s > 1, then w(∆r, Â, p, f ,q,s)⊂ w(∆r, Â, p, f ◦ f1,q,s),
(ii) w(∆r, Â, p, f1,q,s)∩w(∆r, Â, p, f2,q,s)⊂ w(∆r, Â, p, f1 + f2,q,s),

(iii) w(∆r, Â, p, f ,q1,s)∩w(∆r, Â, p, f ,q2,s)⊂ w(∆r, Â, p, f ,q1 +q2,s),
(iv) If q1 stronger than q2 then w(∆r, Â, p, f ,q1,s)⊂ w(∆r, Â, p, f ,q2,s),
(v) If limsupt→∞

f1(t)
f2(t)

< ∞ then w∞(∆
r, Â, p, f2(t),q,s)⊂ w∞(∆

r, Â, p, f1(t),q,s),

(vi) If s1 ≤ s2 then w(∆r, Â, p, f ,q,s1)⊂ w(∆r, Â, p, f ,q,s2).
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are valid, for the infinite matrix A = (amk) has a non-negative regular matrix, the modulus functions f , f1, f2, the seminorm functions
q,q1,q2 and the real numbers s,s1,s2 ≥ 0.

Proof. (i) We can write the general choices analogous to the above, i.e., first, take the choose δ such that 0 < δ < 1 and f (t) < ε with
0≤ t ≤ δ for all ε > 0 Now, let us suppose that s > 1 and x ∈ w(∆r, Â, p, f ,q,s), therefore it is seen that from Lemma 3.1

f [ f1(q(∆rxk+n))]≤
2 f (1)

δ
f1[q(∆rxk+n− l)]

for f1[q(∆rxk+n− l)]> δ . In that case, we have

∑
k

amkk−s[ f ◦ f1(q(∆rxk+n))]
pk ≤ ∑

k
amkk−s[ε]pk +∑

k
amkk−s

{
2 f (1)

δ
f1[q(∆rxk+n− l)]

}pk

≤ ε
H

∑
k

amkk−s +max(d1,d2)∑
k

amkk−s[ f1(q(∆rxk+n))]
pk

< ∞.

where d1 =
[

2 f (1)
δ

]h
and d2 =

[
2 f (1)

δ

]H
. This, in fact, concludes the proof.

(ii)When the following simple calculations derived from Lemma 3.1 are considered, the correctness of the inclusion is understandable.

amk

ks {( f1 + f2)[q(∆rxk+n− l)]}pk <C
amk

ks { f1[q(∆rxk+n− l)]}pk +C
amk

ks { f2[q(∆rxk+n− l)]}pk

from Lemma 3.1.
(iii) We have already proven in (ii), therefore, to prove this part of the theorem, it would be enough to examine the following inequality

amk

ks { f [(q1 +q2)(∆
rxk+n− l)]}pk <C

amk

ks { f [q1(∆
rxk+n− l)]}pk +C

amk

ks { f [q2(∆
rxk+n− l)]}pk

from Lemma 3.1. Since (iv), (v) and (vi) may be easily established we omit the detail.

Corollary 3.9. Let the infinite non-negative a non-negative matrix A = (amk) be a regular matrix. We have that

(i) If s > 1, then w(∆r, Â, p,q,s)⊂ w(∆r, Â, p, f ,q,s),
(ii) If q1 ≡ q2, then w(∆r, Â, p, f ,q1,s)≡ w(∆r, Â, p, f ,q2,s),

(iii) w(∆r, Â, p, f ,q)⊂ w(∆r, Â, p, f ,q,s),
(iv) w(∆r, Â, p,q)⊂ w(∆r, Â, p,q,s),
(v) w(∆r, Â, f ,q)⊂ w(∆r, Â, f ,q,s).

for f modulus functions, q1,q2 seminorm functions and s≥ 0.

Theorem 3.10. When; arbitrary regular infinite matrix A = (amk) of positive real numbers, f ∈ `∞, and any real numbers s > 0; The series,
∑k akxk convergent necessary and sufficiency condition ak ∈Φ.

Proof. Only a small fraction of this proof is sufficiency of it, because the convergence of the series ∑k akxk is extremely clear from the
definition of Φ. For obtaining the necessity, first we begin in connection with a /∈Φ and then introduce a function and show that convergence
of the series defined above for this function is not possible. Under this assumption, we know that there can be a strictly increasing (mk)
sequence such that mk ∈ Z+ for all k ∈ N, in the same sense m1 < m2 < · · · and also |amk |> 0. Now we need to define a function as follows

yk =

{
u

quamk
, k = mk,

Θ , k 6= mk,

for u ∈ X and q(u)> 0. Due to the fact that the infinite non-negative matrix A = (amk) is regular, f ∈ `∞ and the real number s > 0, we get

lim
m→∞

∑
k

amkk−s[ f (q(∆ryk+n))] = 0

hence y ∈ w0(∆
r, Â, p, f ,q,s) but ∑k akyk = ∞. This is a contradiction to ∑k akyk convergent. So the aim is achieved for part of the proof.

Corollary 3.11. Let the infinite matrix A = (amk) be any regular matrix such that amk ∈ R+, s > 0, f ∈ `∞. Then, the following

[w0(∆
r, Â, p, f ,q,s)]β = Φ.

is valid.

Definition 3.12. The space M[E] is defined as follows,

M[E] = {α = (αk) : (αkxk) ∈ E for every x ∈ E}

for all non-empty subset E of S(X).

Theorem 3.13. Let the infinite matrix A = (amk) be any regular matrix such that amk ∈R+, and the function f be a modulus and 0 < pk ≤ 1.
If x ∈ w∞(Â, p, f ,q,s), then

`∞ ⊂M[w∞(∆
r, Â, p, f ,q,s)].
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Proof. Let a = (ak) ∈ `∞. Therefore, we can find a positive integer K as |ak| ≤ K. Since q is a seminorm and the function f is a modulus, it
is not difficult, the following calculations can be made

amkk−s { f [q(∆rak+nxk+n)]}pk = amkk−s

{
f

[
q

(
r

∑
v=0

(−1)v
(

r
v

)
ak+n+vxk+n+v

)]}pk

≤ amkk−s

{
K

r

∑
v=0

(
r
v

)
f [q(xk+n+v)]

}pk

≤ CKH
(

r
v

)H r

∑
v=0

amkk−s[ f (q(xk+n+v))]
pk .

From k = 1 to ∞ we replace k onto the last inequality, the desired result `∞ ⊂M[w∞(∆
r, Â, p, f ,q,s)] is obtained.

Theorem 3.14. If 0 < pk ≤ rk < ∞, then

w0(∆
r, Â, p, f ,q,s)⊂ w0(∆

r, Â,r, f ,q,s).

Proof. Let x ∈ w0(∆
r, Â, p, f ,q,s) and 0 < pk ≤ rk < ∞, for all k ∈ N. Under these assumptions, we can choose m0 ∈ N for all 0 < ε < 1

such that

∑
k

amkk−s[ f (q(∆rxk+n))]
pk < ε < 1

for all m > m0. By using the definitions of parameters, we get

amkk−s[ f (q(∆rxk+n))]
pk < ε < 1

and

amkk−s[ f (q(∆rxk+n))]
rk ≤ amkk−s[ f (q(∆rxk+n))]

pk < ε < 1

for all m > m0. Again, adding after applying the last inequality from k = 1 to ∞, letting m→ ∞, this implies the desired result.
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[40] A Şahiner, Some new paranormed space defined by modulus function, Indian J. Pure Appl. Math. 33(12)(2002), 1877–1888.


	Fundamental Facts
	Difference Sequence Spaces
	The Sequence Spaces w0(r,,p,f,q,s), w(r,,p,f,q,s) and w(r,,p,f,q,s)

