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Abstract

In this article, it is shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve a certain
system of fractional PDEs and a variety of Lamb - Bateman singular integral equation. The Lamb - Bateman singular integral equation was
introduced to study the solitary wave diffraction. It may be concluded that the integral transforms and exponential operators are effective
methods for solving integral equations and fractional linear equations with non-constant coefficients.
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1. Introduction and Notations

There are many methods for solving the local fractional differential equations, such as, integral transform method, fractional exponential
operators, the variational iteration method and so on [10]. The classical Laplace transform is a powerful method for solving fractional
differential equations and fractional partial differential equations. More recently, the local fractional Yang - Laplace transform method
introduced in [9, 11] has been successfully applied in solving the local fractional differential equations. In this work, we present a general
method of operational nature to obtain the exact solution for several types of partial differential equations. Let us recall some important
properties of the Laplace transform, useful Lemmas, that will be considered in the next part of this article.

Definition 1.1. Laplace transform of function f (t) is defined as follows [3,4]

L { f (t)}=
∫

∞

0
e−st f (t)dt := F(s). (1.1)

If L { f (t)}= F(s), then L −1{F(s)}, is given by

f (t) =
1

2πi

∫ c+i∞

c−i∞
estF(s)ds, (1.2)

where F(s), is analytic in the region Re(s)> c.

Example 1.1. By using an appropriate integral representation for the modified Bessel’s functions of the second kind of order one, K1(s),
show that

L −1{K1(s)}=
t√

t2−1
. (1.3)

Solution. Upon taking the inverse Laplace transform of the given K1(s), we obtain

f (t) =
1

2πi

∫ c+i∞

c−i∞
estK1(s)ds, (1.4)
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at this point, using the following integral representation for K1(s)

K1(s) =
∫

∞

0 e−s
√

t2+1dt. (1.5)

By setting relation (1.5) in (1.4), we arrive at

f (t) =
1

2πi

∫ c+i∞

c−i∞
est(

∫
∞

0
e−s
√

r2+1dr)ds, (1.6)

let us change the order of integration in relation (1.6), we get

f (t) =
∫

∞

0
(

1
2πi

∫ c+i∞

c−i∞
es(t−

√
r2+1)ds)dr,

the value of the inner integral is δ (t−
√

r2 +1), therefore

f (t) =
∫

∞

0
(δ (t−

√
r2 +1)dr,

after making a change of variable t−
√

r2 +1 = u, and considerable algebra and elimination process, we obtain

f (t) =−
∫ −∞

t−1
δ (u)

t−u√
(t−u)2−1

du =
t√

t2−1
.

Note. By theorem of convolution, we get the following result

L −1{K2
1 (s)}=

t√
t2−1

∗ t√
t2−1

=
∫ t

0

ξ√
ξ 2−1

(t−ξ )√
(t−ξ )2−1

dξ .

Definition 1.2. If the function Φ(t), belongs to C[a,b], and a < t < b, the left Riemann - Liouville fractional integral of order α > 0, is
defined as[8]

IRL,α
a {Φ(t)}= 1

Γ(α)

∫ t

a

Φ(ξ )

(t−ξ )1−α
dξ .

Definition 1.3. The left Riemann-Liouville fractional derivative of order α > 0, is defined as following [8]

DRL,α
a φ(x) = 1

Γ(1−α)
d
dx

∫ x
a

φ(ξ )
(x−ξ )α dξ ,

it follows that DRL,α
a φ(x), exists for all φ(x), belongs to C[a,b] , and a < x < b.

Remark 1.1. A very useful fact about the R. L operators is that, they satisfy semi group properties of fractional integrals.The special case of
fractional derivative when α = 0.5, is called semi - derivative.

Definition 1.4. The left Caputo fractional derivative of order α (0 < α < 1) of φ(t), is defined as

Dc,α
a φ(t) = 1

Γ(1−α)

∫ t
a

1
(t−ξ )α φ ′(ξ )dξ .

Let us recall some important properties of the Laplace transform, useful Lemmas, that will be considered in the next part of this article.
Lemma 1.1. Let L { f (t)}= F(s), then, the following identities hold true.

1. e−ωsβ

= 1
π

∫
∞

0 e−rβ (ω cosβπ)sin(ωrβ sinβπ)(
∫

∞

0 e−sτ−rτ dτ)dr,
2. L −1(F(sα )) = 1

π

∫
∞

0 f (u)
∫

∞

0 e−tr−urα cosαπ sin(urα sinαπ)drdu,

3. L −1(F(
√

s) = 1
2t
√

πt

∫
∞

0 ue−
u2
4t f (u)du,

4. L −1(
∫+∞

0 J0(2
√

su)F(u)du) = 1
t f ( 1

t ),
5. L −1{ 1

s sin( a
s )}= bei(2

√
at).

Proof. See [1,2,3].
Lemma 1.2. The following exponential identities hold true .

1. exp(±λ
d
dt )Φ(t) = Φ(t±λ ),

2. exp(λq(t) d
dt )Φ(t) = Φ(Q(F(t)+λ )),

3. exp(λ cosh2 t d
dt )Φ(t) = Φ(tanh−1(λ + tanh t)).

Where F(t), is the primitive function of (q(t))−1, and Q(t), is the inverse function of F(t).
Proof. For part 3, by using part 2 and taking q(t) = cosh2 t, then we obtain F(t) = tanh t, consequently Q(t) = tanh−1 t, [6, 7].

We show that the solution to a variety of Lamb - Bateman integral equation can be obtained using an operational method involving
fractional derivatives.
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Theorem 1.1.( Generalized Lamb - Bateman integral equation)
Let us consider the following singular integral equation∫

∞

0 ξ νme−λξ m
g(x−ξ m)dξ = φ(x), 0≤ ν < 0.5,m≥ 2,

the above integral equation has the following formal solution

g(x) = msin(ν+ 1
m )π

π

∫+∞

0 e−λξ ξ
−(ν+ 1

m )(λφ(x−ξ )+φ ′(x−ξ ))dξ .

Proof. Let us rewrite the left hand side of the above equation as below

(
∫

∞

0 ξ νme−ξ m(λ+∂x)dξ )g(x) = φ(x),

and treating the derivative operator as a constant, the evaluation of the integral yields

1
m Γ(ν + 1

m )(λ +∂x)
−(ν+ 1

m )g(x) = φ(x),

we get the solution as below

g(x) = m
Γ(ν+ 1

m )
(λ +∂x)

(ν+ 1
m )

φ(x),

at this point, in order to find the result of the action of operator on the function, we can re- write the right hand side as below

g(x) = m
Γ(ν+ 1

m )
(λ +∂x)((λ +∂x)

−(1−(ν+ 1
m ))

φ(x)),

therefore, we get the following

g(x) = m
Γ(ν+ 1

m )
1

Γ(1−(ν+ 1
m ))

(λ +∂x)
∫+∞

0 ξ
−(ν+ 1

m )(e−ξ (λ+∂x)φ(x))dξ ,

in view of part one, Lemma 1.2, we get the formal solution to singular integral equation as below

g(x) = m
Γ(ν+ 1

m )
1

Γ(1−(ν+ 1
m ))

∫+∞

0 e−λξ ξ
−(ν+ 1

m )(λφ(x−ξ )+φ ′(x−ξ ))dξ ,

by using Euler formula Γ(u)Γ(1−u) = π

sin(πu) , after simplifying, we arrive at the following

g(x) = msin(ν+ 1
m )π

π

∫+∞

0 e−λξ ξ
−(ν+ 1

m )(λφ(x−ξ )+φ ′(x−ξ ))dξ .

Let us consider the following special cases
1. ν = λ = 0,m = 2, we get the well - known Lamb-Bateman singular integral equation proposed by Lamb [5] in his analysis of the
differaction of solitary wave∫

∞

0 g(x−ξ 2)dξ = φ(x),

with the solution as follows

g(x) = 2
π

∫+∞

0 ξ
−( 1

2 )φ ′(x−ξ )dξ , (1.7)

by making a change of variable x−ξ =−η in the above integral (1.7), we obtain the solution [5 ]

g(x) = 2
π

∫+∞

−x
φ ′(−η)√

x+η
dη .

2. ν = λ = 0, we get the generalized Lamb-Bateman singular integral equation as below

g(x) = msin( π

m )
π

∫+∞

0 ξ
− 1

m φ ′(x−ξ )dξ , (1.8)

by making a change of variable x−ξ =−η in the above integral (1.8), we obtain the solution [5 ]

g(x) = msin( π

m )
π

∫+∞

−x
φ ′(−η)
m√x+η

dη .

The most important use of the Caputo fractional derivative is treated in initial value problems where the initial conditions are expressed in
terms of integer order derivatives. In this respect, it is interesting to know the Laplace transform of this type of derivatives, and in general [8]

L {Dc,α
a f (t)}= sα−1F(s)−∑

k=m−1−k
k=0 sα−1−k f k(0+),m−1 < α < m

in special case, when 0 < α < 1.

L {Dc,α
a f (t)}= sF(s)− f (0+),0 < α < 1.

The Laplace transform provides a useful technique for the solution of fractional singular integro-differential equations.

Example 1.2. Let us solve the following fractional Volterra equation of convolution type.

λ
∫ t

0 I0(2
√

aξ )DC,α ψ(t−ξ )dξ = ( t
b )

1+µ

2 J1+µ (2
√

bt), ψ(0) = 0.
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Solution. Upon taking the Laplace transform of the given integral equation, we get the following

sα Ψ(s) λe
a
s

s = e−
b
s

s2+µ ,

solving the above equation, leads to

Ψ(s) = e−
a+b

s

(λ )s1+α+µ ,

at this point, taking the inverse Laplace transform term wise, after simplifying we arrive at

ψ(t) = 1
λ
( t

a+b )
α+µ

2 Iα+µ (2
√

(a+b)t).

Where Iη (.), stands for the modified Bessel’s function of the first kind of order η .

Example 1.3. Let us solve the following impulsive fractional differential equation.

DR.L,α y(t)+λy(t) = tmδ (β t−ξ ),0 < α < 1.

Solution.The above fractional differential equation can be written as follows

y(t) = 1
λ+DR.L,α tmδ (β t−ξ ),

let us recall the following welll-known identity from the Laplace transform of exponential function

1
λ+sα =

∫+∞

0 e−λu−sα udu,

by choosing s = Dt , and using integral representation for exponential fraction, we get

y(t) =
∫+∞

0 du(e−λu−uDα
t tmδ (β t−ξ )),

at this point, in order to obtain the result of the action of exponential operator on Dirac delta function, we may use part 2 of the Lemma 1.1,
to obtain

y(t) =
∫+∞

0 e−λu 1
π

∫
∞

0 e−rα (ucosαπ)sin(urα sinαπ)(
∫

∞

0 e−rτ−τDt tmδ (β t−ξ ))dτ)dr)du,

after simplifying the inner integral, we arrive at

y(t) = ξ m

πβ m+1

∫+∞

0 e−λu(
∫

∞

0 e−r(t− ξ

β
)−rα (ucosαπ) sin(urα sinαπ)dr)du.

Let us consider the special case α = 0.5, the result after simplifying is

y(t) = ξ m

πβ m+1

∫+∞

0 e−λu(
∫

∞

0 e−r(t− ξ

β
) sin(u

√
r)dr)du,

by changing the order of integration, we have

y(t) = ξ m

πβ m+1

∫+∞

0

√
re
−(t− ξ

β
)r

r+λ 2 dr.

Example 1.4. The following integral identity holds true.

∫+∞

0
1
t sin( λ

t )dt = π

2 .

Solution. In view of part 4, of the Lemma 1.1, by choosing f (t) = sin(λ t) we obtain F(s) = λ

s2+λ 2 , we arrive at

L −1(
∫+∞

0 J0(2
√

su) λ

u2+λ 2 du) = 1
t sin( λ

t ),

or, equivalently∫+∞

0 J0(2
√

su) λ

u2+λ 2 du =
∫+∞

0 e−st 1
t sin( λ

t )dt.

By setting s = 0, on both sides of the above relation, we get the following

∫+∞

0
λ

u2+λ 2 du =
∫+∞

0
1
t sin( λ

t )dt.

After evaluation of the integral on the left hand side, we arrive at

∫+∞

0
1
t sin( λ

t )dt = π

2 .
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Example 1.5. By using an appropriate integral representation for the Bessel’s functions of the first kind of order zero, J0(ξ ), show that

L −1{1
s

J0(
1
s
)}= 2

π

∫
∞

0
bei(2

√
ξ coshφ)dφ .

Solution. using the following integral representation for J0(ξ )

J0(ξ ) =
2
π

∫
∞

1
sinξ u√

u2−1
du.

Upon taking the inverse Laplace transform of the given 1
s J0(

1
s ) , we obtain

L −1{1
s

J0(
1
s
)}= L −1{ 2

π

∫
∞

1

1√
u2−1

(
1
s

sin(
u
s
))du},

and, therefore, we can write

L −1{1
s

J0(
1
s
)}= 2

π

∫
∞

1

1√
u2−1

(L −1{1
s

sin(
u
s
)})du,

in view of part 5 of the Lemma 1.1, we arrive at

L −1{1
s

J0(
1
s
)}= 2

π

∫
∞

1

bei(2
√

ξ u)√
u2−1

du,

by making the change of variable, u = coshφ , we get

L −1{1
s

J0(
1
s
)}= 2

π

∫
∞

0
bei(2

√
ξ coshφ)dφ .

2. Solution to Time Fractional Sub - Ballistic Equation

In this section, theorems and the results which has been introduced are used to solve a certain time fractional system of equations. The author
implemented the joint Laplace - Fourier transform technique for solving time fractional partial differential equations, where the fractional
semi-derivative is in the Caputo sense.
Problem 2.1. Let us consider the following time fractional PDE, with the given initial condition

∂ 0.5u(x, t)
∂ t0.5 + k

∂u(x, t)
∂x

=−λu(x, t), (2.1)

where −∞ < x < ∞ , t > 0 and subject to the initial condition u(x,0) = ψ(x).
Note: Fractional derivative is in the Caputo sense.
Solution: Let us define the joint Laplace - Fourier transform as following

F{L {u(x, t)}= ( 1√
2π

)
∫+∞

−∞
eiωx ∫ ∞

0 e−stu(x, t)dt)dx :=U(ω,s),

application of the joint Laplace - Fourier transform to (3.1) leads to the transformed problem

U(ω,s) = s−0.5Ψ(ω)
s0.5+ikω+λ

,

upon inverting the joint Laplace - Fourier transform leads to

F−1{L −1{u(x, t)}= ( 1√
2π

)
∫+∞

−∞
e−iωx(

∫ c+i∞
c−i∞

s−0.5Ψ(ω)est

s0.5+ikω+λ
ds)dω := u(x, t),

or, equivalently

u(x, t) = ( 1√
2π

)
∫+∞

−∞
e−iωxΨ(ω)(

∫ c+i∞
c−i∞

est
√

s(
√

s+ikω+λ )
ds)dω,

after calculation of inner integral we get the following formal solution

u(x, t) = ( e−λ2t
√

2π
)
∫+∞

−∞
e−iωx+2iλωkt−k2ω2tEr f c((λ + ikω)

√
t)Ψ(ω)dω,

obviously, we have

u(x,0) = ( 1√
2π

)
∫+∞

−∞
e−iωxΨ(ω)dω = ψ(x).
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3. Main Results

Fractional calculus has been used to model physical and engineering processes which are found to be best described by fractional differential
equations. It is worth noting that the standard mathematical models of integer order derivatives, including non – linear models do not work
adequately in many cases. In this section, the author implemented the exponential operational method for solving certain systems of space
fractional partial differential equations with non-constant coefficients. At the end, we express how we may choose the operational method as
a powerful tool for solving a system of partial fractional differential equation in the Riemann - Liouville sense.
Problem3.1. Let us solve the following coupled space fractional PDE with non- constant coefficients, where fractional derivative is in the
Riemann-Liouville sense

t−ν ∂u(x, t)
∂ t

−β tkv(x, t)+λ (ν +1)
∂ α u(x, t)

∂xα
= ηtmu(x, t), (3.1)

t−ν ∂v(x, t)
∂ t

+β tku(x, t)+λ (ν +1)
∂ α v(x, t)

∂xα
= ηtmv(x, t), (3.2)

where −∞ < x < ∞ , t > 0 and subject to the boundary conditions and the initial condition

u(x,0) = φ(x),v(x,0) = ψ(x),−∞ < x < ∞.

Solution: Let us define the function w(x, t) = u(x, t)+ iv(x, t) and initial condition w(x,0) = θ(x) we get the following space fractional
partial differential equation

t−ν ∂w(x, t)
∂ t

+ itk
βw(x, t)+λ (ν +1)

∂ α w(x, t)
∂xα

= ηtmw(x, t), (3.3)

with the initial condition w(x,0) = θ(x). At this point, in order to solve the above linear space fractional PDE, we may rewrite the equation
in the following exponential operator form

∂w(x, t)
∂ t

=−(iβ tν+k +ηtm+ν +λ (ν +1)tν ∂ α

∂xα
)w(x, t). (3.4)

In order to obtain a solution for the equation (3.4), first by solving the first order PDE with respect to t, and applying the initial condition, we
get the following

w(x, t) = exp(− iβ tν+k+1

ν+k+1 + ηtν+m+1

ν+m+1 )exp(−λ tν+1 ∂ α

∂xα )θ(x),

by virtue of the Lemma 1.1, we get

w(x, t) = exp(− iβ tν+k+1

ν+k+1 + ηtν+m+1

ν+m+1 )
∫

∞

0 e−rα (λ tb+1 cosαπ) sin(λ tb+1rα sinαπ)..

...(
∫

∞

0 (e−rτ−τDx θ(x))dτ)dr,

finally, we obtain the solution to the system of equations as below

w(x, t) = exp(− iβ tν+k+1

ν+k+1 + ηtν+m+1

ν+m+1 )
∫

∞

0 e−rα λ tb+1 cosαπ sin(λ tb+1rα sinαπ)..

(...
∫

∞

0 e−rτ θ(x− τ))dτ)dr,

from which we obtain

u(x, t) = exp(ηtν+m+1

ν+m+1 )cos( β tb+k+1

b+k+1 )
1
π

∫
∞

0 e−rα λ tb+1 cosαπ sin(λ tb+1rα sinαπ)(
∫

∞

0 e−rτ φ(x− τ))dτ)dr+

exp(ηtν+m+1

ν+m+1 )sin( β tb+k+1

b+k+1 )
1
π

∫
∞

0 e−rα λ tb+1 cosαπ sin(λ tb+1rα sinαπ)(
∫

∞

0 e−rτ ψ(x− τ))dτ)dr,

and

v(x, t) = exp(ηtν+m+1

ν+m+1 )cos( β tb+k+1

b+k+1 )
1
π

∫
∞

0 e−rα λ tb+1 cosαπ sin(λ tb+1rα sinαπ)(
∫

∞

0 e−rτ ψ(x− τ))dτ)dr−

exp(ηtν+m+1

ν+m+1 )sin( β tb+k+1

b+k+1 )
1
π

∫
∞

0 e−rα λ tb+1 cosαπ sin(λ tb+1rα sinαπ)(
∫

∞

0 e−rτ φ(x− τ))dτ)dr.

Note: It is easy to verify that u(x,0+) = φ(x) , v(x,0+) = ψ(x).

4. Conclusions

The integral transform technique is one of the most useful tools of applied mathematics employed in many branches of sciences and
engineering. The paper is devoted to study the Laplace transform, exponential operators and their applications in solving certain systems of
boundary value problems and a variety of Lamb - Bateman singular integral equation. It is interesting to point out that the procedure outlined
here can be extended to the study of the more complicated fractional systems.
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