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 ABSTRACT 

The convective heat transfer and entropy generation characteristics of Ag-MgO/water hybrid nanofluid flow through rectangular 

minichannel were numerically investigated. The Reynolds number was in the range of 200 to 2000 and different nanoparticle 

volume fractions were varied between  = 0.005 and 0.02. In addition, Artificial Neural Network was used to create a model for 

estimating of entropy generation of Ag-MgO/water hybrid nanofluid flow. As a result, it was found that the convective heat transfer 

coefficient for  = 0.02 Ag-MgO/water hybrid nanofluid is 21.29% higher than that of pure water, at Re=2000. Total entropy 

generation of Ag-MgO/water hybrid nanofluid increased with increasing nanoparticle volume fraction. The results obtained by 

ANN showed good agreement with the numerical results obtained in this study.  

Keywords: Artificial neural network, convective heat transfer, entropy generation, hybrid nanofluid.  

Dikdörtgen Kesitli Minikanalda Ag-MgO/Su Hibrit 

Nanoakışkan Akışının Entropi Üretiminin Yapay Sinir 

Ağları Kullanılarak Tahmin Edilmesi 

ÖZ 

Dikdörtgen kesitli minikanalda Ag-MgO/su hibrit nanoakışkan akışının taşınımla ısı transferi ve entropi üretimi karakteristikleri 

sayısal olarak incelenmiştir. Reynolds sayısı 200 ile 2000 aralığındadır ve nanopartikül hacimsel oranı ise  = 0.005 ve 0.02 

aralığında değiştirilmiştir. İlave olarak, Ag-MgO/su hibrit nanoakışkan akışının entropi üretiminin tahmin edilmesi için Yapay 

Sinir Ağları kullanılmıştır. Sonuç olarak, Re = 2000’de,   = 0.02 sahip Ag-MgO/su hibrit nanoakışkanının ısı taşınım katsayısının 

saf suyunkine kıyasla % 21.29 daha fazla olduğu bulunmuştur. Ag-MgO/su hibrit nanoakışkanının toplam entropi üretimi 

nanopartikül hacimsel oranının artmasıyla artmaktadır. Yapay sinir ağları ile elde edilen sonuçlar bu çalışmada elde edilen sayısal 

analizden elde edilen sonuçlar ile iyi bir uyum göstermektedir.  

Anahtar Kelimeler: Yapay sinir ağları, taşınımla ısı transferi, entropi üretimi, hibrit nanoakışkanlar. 

1. INTRODUCTION 

The idea based on solid particle addition to working 

fluids to enhance their thermophysical properties was 

firstly proposed by Maxwell in 1881 [1]. However, this 

idea has not been put into practice because of that solid 

particles having millimeter-sized caused to aggregation, 

sedimentation, clogging and abrasion problems in piping 

systems. In last decade, rapidly developing in 

nanotechnology made solid particles having nanometer-

sized possible. By this means, the “nanofluid” concept 

was developed. The nanofluid term was firstly introduced 

by Choi and Eastman in 1995 [2] and it was prepared with 

metallic or non-metallic nanoparticle addition to 

conventional working fluids such as water, ethylene 

glycol or lubricants. 

In last decade, several studies have been performed on 

nanofluid to determine their thermophysical properties 

such as viscosity [3-9] and thermal conductivity 

coefficient [7-13] and to determine their convective heat 

transfer [14-23] and fluid flow characteristics [14, 21-

23]. The idea for obtaining better heat transfer and fluid 

flow characteristics compared to individual nanofluids 

led to developing of hybrid nanofluids. Hybrid 

nanofluids are prepared either by dispersing dissimilar 

nanoparticles as individual constituents or by dispersing 

nanocomposite particles in the base fluid [24]. The 

determination of thermophysical properties and heat 

transfer and fluid flow characteristics of hybrid 

nanofluids became important due to their better 

properties such as thermophysical properties, chemical 

stability, physical strength and mechanical resistance 

compared to individual nanofluids.  *Sorumlu yazar (Corresponding Author) 
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A few study have been performed on determination of 

thermophysical properties and heat transfer and fluid 

flow characteristics of individual and hybrid nanofluids 

by using artificial neural network.  

Atashrouz et al. [25] developed a hybrid self-organizing 

polynomial neural network to evaluate viscosity values 

of nine nanofluids based on water, ethylene glycol and 

propylene glycol. Their results showed good agreement 

when compared to theoretical and empirical correlations. 

High regression coefficient of R=0.9978 was obtained. 

Longo et al. [26] predicted the dynamic viscosity of oxide 

nanoparticle suspensions based on water and ethylene 

glycol with artificial neural network. The model showed 

good agreement with the experimental data. The mean 

absolute percentage error was obtained to be 4.15%. 

Longo et al. [27] used a 3-input and a 4-input artificial 

neural network model to predict the thermal conductivity 

coefficient of oxide-water nanofluids. They reported that 

both models showed good agreement with experimental 

data. Esfe et al. [28] used artificial neural network in the 

prediction of viscosity and thermal conductivity of 

ferromagnetic nanofluids by using input experimental 

data, which are temperature, diameter of particles and 

nanoparticle volume fraction. They found that the 

maximum errors in predicting thermal conductivity and 

dynamic viscosity are 2% and 2.5%, respectively. Esfe et 

al. [29] investigated the change of thermal conductivity 

of Cu/TiO2-water/ethylene glycol hybrid nanofluid with 

nanoparticle volume fraction and temperature. They 

proposed a correlation via artificial neural network by 

using these data based on experimental results. They 

reported that proposed correlation showed good 

agreement with experimental data. 

Santra et al. [30] predicted the laminar natural convection 

of Cu/water nanofluid in a differentially heated square 

cavity by using Artificial Neural Network. They showed 

that ANN gives reliable results within the given range of 

training data.  Tafarroj et al. [31] predicted the heat 

transfer coefficient and Nusselt number of TiO2/water 

nanofluid flow through a microchannel heat sink with 

artificial neural network. They reported that the average 

relative errors in the prediction of Nusselt number and 

heat transfer coefficients are 0.3% and 0.2%, 

respectively. Ghahdarijani et al. [32] experimentally 

investigated the effect of water based Al2O3 and CuO 

nanofluids on the cooling performance and pressure drop 

of a jacket reactor. In addition, they used artificial neural 

networks based on two optimal models via feed-forward 

back-propagation multilayer perceptron. They obtained 

good agreement between the results of artificial neural 

networks and experiments for convective heat transfer 

and pressure drop. Safikhani et al. [33] investigated the 

heat transfer coefficient and pressure drop of Al2O3/water 

nanofluid flow through flat tubes by using computational 

fluid dynamics, artificial neural networks and Non-

dominated Sorting Genetic Algorithms. Tomy et al. [34] 

simulated the silver/water nanofluid flow for flat plate 

solar collector by using Artificial Neural Networks. They 

found that the results obtained by using ANN show good 

agreement with the experimental data with the deviation 

less than  2%. 

To the best knowledge of authors, there is only a study, 

which is published by Bahiraei and Majd [35], for 

estimation of entropy generation of nanofluid flow by 

using artificial neural network. Bahiraei and Maid [35] 

numerically investigated the entropy generation of 

Al2O3/water nanofluid flow through triangular 

minichannel for some parameters such as Reynolds 

number, nanoparticle diameter, nanoparticle volume 

fraction etc. In addition, an artificial neural network 

model is created to estimate the entropy generation of 

Al2O3/water nanofluid flow in their study. They reported 

that the ANN model used in the study predicts the 

thermal, frictional and total entropy generations rates 

with mean absolute error (MAE) of 4.36 10-7, 3.36 10-

9, 4.33 10-7 and with mean square error (MSE) of 2.43

 10-13, 2.01 10-17, 2.37 10-13, respectively. 

In this study, convective heat transfer and entropy 

generation of Ag-MgO/water hybrid nanofluid through 

rectangular minichannel under constant heat flux are 

numerically investigated. The effects of Reynolds 

number and nanoparticle volume fraction are evaluated. 

In addition, an Artificial Neural Network model is 

created for the estimation of entropy generation. To the 

best knowledge of authors, this is the first survey for 

convective heat transfer and entropy generation of Ag-

MgO/water hybrid nanofluid and the one of limited 

studies that uses artificial neural network for entropy 

generation of nanofluids.  

 

2. MODEL DESCRIPTION and GOVERNING 

EQUATIONS 

The hydraulic diameter of a channel is calculated by 

using Dh = 4Ac/P formula, where Ac is cross-section area 

and P is perimeter. If hydraulic diameter obtained for a 

channel is between 200 m  and 3 mm, the channel is 

called as minichannel [36]. The geometry considered in 

this study is a rectangular minichannel having width of 

3mm, height of 5 mm and length of 1m. 

The flow is modeled as single-phase flow. It is due to that 

the fluid flow contains infinitesimal solid particles less 

than 100 nm [37]. Moreover, the flow is considered under 

three-dimensional, steady-state, incompressible flow 

conditions. The governing equations can be written with 

negligible buoyancy effect, viscous dissipation and 

radiation heat transfer as follows: 

( ) 0div V                                                                                    (1) 

( ) ( )div VV grad P div gradV                           (2) 

( ) ( )div CpVT div k grad T                                           (3) 

where  , Cp , k and   are the density, specific heat, 

thermal conductivity coefficient and dynamic viscosity 

of fluid, respectively. In addition, T and P represent 

temperature and pressure, respectively.  
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As can be seen from Eqs. 1-3, the governing equations 

are including thermophysical properties of working fluid. 

Therefore, the thermophysical properties should be 

defined for Ag-MgO/water hybrid nanofluid 

2.1. Thermophysical properties of Ag-MgO/water 

hybrid nanofluid 

In this study, Ag-MgO/water hybrid nanofluid with 

nanoparticle volume fraction ranged between  = 0.005 

and 0.02 is used as working fluid. The density and 

specific heat of Ag-MgO hybrid nanoparticle can be 

calculated by the following equations, respectively. 

Ag Ag MgO MgO

Ag MgO

Ag MgO

( W ) ( W )

(W W )

 
 





             (4) 

Ag Ag MgO MgO

Ag MgO

Ag MgO

(Cp W ) (Cp W )
Cp

(W W )






            (5) 

where W  is weight. For this study, the volumetric 

fractions of Ag and MgO nanoparticles in the content of 

Ag-MgO hybrid nanoparticle is assumed to be 50% and 

50%, respectively [38]. The weight of each nanoparticle 

is calculated by using W g   formula (where   is 

volume and g  is gravitation) for a defined volume value 

of nanoparticle.  

The density and specific heat of Ag-MgO/water 

nanofluid is defined by using the following equations, 

respectively. 

(1 )nf np bf                       (6) 

(1 )nf np bfCp Cp Cp                     (7) 

where   is nanoparticle volume fraction and the nf, np 

and bf subscripts denote nanofluid, nanoparticle and base 

fluid, respectively. The thermal conductivity coefficient 

and dynamic viscosity of Ag-MgO/water hybrid 

nanofluid is presented by Esfe et al. [38] as an empirical 

correlation in the function of nanoparticle volume 

concentration. For this study, these empirical correlations 

proposed by Esfe et al. [38] are used to calculate thermal 

conductivity coefficient and dynamic viscosity of Ag-

MgO/water hybrid nanofluid. 

5

nf bf5 6 7 2 8 3

0.1747 10
k k

0.1747 10 0.1498 10 0.1117 10 0.1997 10



  

  
  

       
(8) 

 2 3 8 4

nf bf1 32.795 7214 714600 0.1941 10                   (9) 

The experiments to obtain empirical correlations 

mentioned above are realized for nanoparticle volume 

fraction range of 0   0.02 for Ag-MgO/water hybrid 

nanofluid by Esfe et al. [38]. Therefore, these 

correlations are valid in the range of 0   0.02.  

2.2. Boundary conditions 

At the minichannel inlet, the uniform temperature and 

velocity profiles are adopted. The inlet temperature of 

Ag-MgO/water hybrid nanofluid is assumed to be 303 K; 

whereas, the inlet velocity of Ag-MgO/water hybrid 

nanofluid is calculated by using Reynolds number 

formula, which is hV ( Re) / ( D )  , for a defined 

Reynolds number. In this study, the Reynolds number is 

in the range of 200   Re    2000. At the minichannel 

outlet, the pressure outlet boundary condition is applied. 

At the minichannel walls, no-slip condition is valid. 

Constant heat flux of 100 W/m2 is applied to bottom wall 

of minichannel. The remained walls of minichannel are 

assumed to be insulated.  

 

3. ENTROPY GENERATION 

Entropy is defined as the measure of molecular disorder 

and randomness. Entropy generation analysis informs the 

designer about the irreversibility due to flow friction and 

heat transfer through a finite temperature difference, 

mixing, chemical reactions etc. [39]. For internal flow, 

the entropy generation per unit length can be expressed 

as follows [39].  

gen,total gen,heat transfer gen, fluid frictionS' S' S'               (10) 

where the first term on right side of Eqs. 10 is entropy 

generation due to heat transfer per unit length and it is 

written as follows: 

2 2

h

gen,heat transfer 2

b

q" D
S'

kT Nu


                (11) 

where q"  is heat flux. bT  is bulk temperature and it is 

defined as  b in outT T T / 2  . The Nusselt number (Nu) 

is calculated by using following equation. 

hhD
Nu

k
                    (12) 

where h  is the convective heat transfer coefficient and it 

is given by following equation: 

w bA

1 q"
h dA

A (T T )


                (13) 

where wT  and bT  are wall temperature and bulk 

temperature, respectively. 

The second term on right side of Eqs. 10 is entropy 

generation due to fluid friction per unit length and it is 

expressed as follows:  

3

gen, fluid friction 2 2 5

b

8m f
S'

T D 
                            (14) 

where m  is the mass flow rate and it is defined as 

m AV . f  is the Darcy friction factor and it can be 

calculated with following equation: 

2

D P
f 2

L V




                 (15) 

where P  is pressure drop. 

By this way, Eqs. 10 is rewritten as follows: 

2 2 3

h

gen,total 2 2 2 5

b b h

q'' D 8m f
S'

kT Nu T D



 
                (16) 
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The Bejan number can be written in the context of 

thermodynamics as follows: 

gen,heat transfer

gen,heat transfer gen, fluid friction

S'
Be

S' S'



              (17) 

The Bejan number is defined as the ratio of heat transfer 

irreversibility to total irreversibility due to heat transfer 

and fluid friction. 

 

4. NUMERICAL METHOD 

The simulations are conducted with Finite Volume 

Method (FVM). In the coupling of pressure and velocity 

terms, Semi-Implicit Method for Pressure Linked 

Equation (SIMPLE) algorithm is applied [40]. To 

discretize the convection and diffusion terms, second 

order upwind scheme is utilized. The residual 

convergence criterion is selected 10-6 in numerical tests 

for governing equations. 

Hexagonal meshes are used in the modeling of 

minichannel. To obtain detailed and accurate results for 

boundary layer, finer meshes are used in the regions close 

to minichannel walls and corners. For mesh 

independency test, the different mesh numbers are used. 

As a consequence of grid independency test, the mesh 

structure consisting of 30 nodes on width, 50 nodes on 

height and 500 nodes of length is selected as the best 

mesh structure. 

 

5. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network consisting of inputs by users 

and an output reflecting the information kept in 

connections during training is a nonlinear system 

involving neurons and weighted connection links. A 

multilayer artificial neural network involves at least three 

layer, namely, input, hidden and output layers 

demonstrated in Fig. 1. The referred learning or training 

is reached by decreasing the sum of square error between 

the predicted output of ANN and the actual output from 

training data, by continuously adjusting and lastly 

defining the weights that connects neurons in conjunctive 

layers. 

 
Figure 1. Artificial neural network structure 

ANN analyses are performed for 
gen,thS' , 

gen,hdS' , 

gen,totalS'  and Be  values in 50 numerical results that are 

10 results for nanoparticle volume fraction. Reynold 

number and nanoparticle volume fraction are entered as 

independent parameters (inputs) and 
gen,thS' , 

gen,hdS' , 

gen,totalS' and Be  values are entered as dependent 

parameter (output) in ANN software program. 10 

numerical results are chosen for testing (confirmation) 

and rest of 40 results are used as training data in 

MATLAB software program. The most appropriate 

topology is determined as 2-10-4 after many trial-errors 

with ANN (Fig.1). It is stated that Levenberg–Marquardt 

algorithm is used due to the fastest method and one level 

hidden layer with 10 neurons has been chosen. As a 

result, N1, N2, N3, N4, N5, N6, N7, N8, N9, N10 and 

N11, N12, N13, N14 neurons are determined as hidden 

layer and output layer, respectively. 

The weights of each neurons have been specified in 

training result and average deviation value has been 

calculated from ANN output values and experimental 

results. Output neurons developed for estimated 
gen,thS' , 

gen,hdS' , 
gen,totalS' and Be  have been calculated by using 

Fermi transfer function. 

 n

i ii

i11 14
4 w N 0.5

1
E

1 e


 






                (18) 

Here, n  and iw  show the number of neurons used in 

hidden layer and weights of neurons, respectively. iN  is 

the effect on 
gen,thS' , 

gen,hdS' , 
gen,totalS' and Be of each 

neuron used in hidden layer. According to input 

parameters in ANN model; 

 i 1i 2iE 4 c VF c Re 0.5                  (19) 

i
i E

1
N

1 e





                  (20) 

are defined. Cij constants show the weight of each neuron 

used in hidden layer after the result of data training set in 

MATLAB software. While Cij values have 10 constants 

in hidden layer those have been given in Table 1. 

Table 1. Weights of each neurons for 
gen,thS' , 

gen,hdS' , 

gen,totalS' and Be  

i C1i C2i 

1 3.2023 1.2084 

2 1.6103 3.2745 

3 0.25359 -2.0317 

4 -4.0298 1.6172 

5 -4.5109 1.215 

6 1.6045 1.7605 

7 -4.0538 1.7741 

8 -2.9469 -2.4593 

9 4.0887 1.6186 

10 2.1825 4.3813 
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5.1. K-Fold Cross validation 

Cross-validation is a measurement of assessing the 

performance of a predictive model, and statistical 

analysis will generalize to an independent dataset. There 

are many types of cross-validation, such as repeated 

random sub-sampling validation, K-fold cross validation 

(Figure 2), K x 2 cross-validations, leave-one-out cross-

validation and so on (Figure 3). 

 

 
Figure 2. Diagram of cross validation techniques types [41]. 

 

 
Figure 3. Flowchart of the K-fold cross-validation [41]. 

 

In this study, we pick up 5-fold cross-validation for 

selecting parameters of model. The K-fold cross-

validation is a technique of dividing the original sample 

randomly into K subsamples. Then, a single sub-sample 

is regarded as the validation data for testing the model, 

and the remaining K-1 sub-samples are used as training 

data. These processes are repeated K times and each of 

the K sub-samples used exactly one as the validation 

data. The K results from the folds can then be averaged 

(or otherwise combined) to produce a single estimation. 

The ANN model (test results) showed in this study has 

the lowest error among 5 subsamples. 

5.2. Performance evaluation criteria 

In the final stage of this study, reliability of mathematical 

model is assessed with various error control methods in 

order to demonstrate the suitability of model. Due to fact 

that training and testing procedure in ANN is performed 

by considering an error value (e), average of the sum of 

these error values is needed to be minimized. This 

minimized value is the mean squared error (MSE) that is 

a criteria determining the ANN performance. Root-

mean-squared (RMS), coefficient of determination (R2), 

mean absolute percentage error (MAPE) has been taken 

into consideration as criteria in similarity between 

experimental and ANN results. 

 

 
22

i i ii i

1 1
MSE e t o

p p
                  (21) 

 
22

i i ii i

1 1
RMS MSE e t o

p p
               (22) 

 
2

i i2 i

2

ii

t o
R 1

o

 
  
 
 




               (23) 

i i

i
i

t o1
MAPE 100

p t

  
  

 
                            (24) 

 

In Eqs. 21-24, p, ti, oi and ei show the sample simulation 

number, output value from simulations, output value 

from ANN and error value, respectively. The 

applicability of developed model increases when R2 

value approaches to 1. 

 

6. RESULTS and DISCUSSION 

The convective heat transfer and entropy generation of 

Ag-MgO/water hybrid nanofluid flow through 

rectangular minichannel are numerically investigated for 

different Reynolds number and nanoparticle volume 

fractions. The flow is considered as laminar flow and the 

Reynolds number is in the range of 200 and 2000. The 

nanoparticle volume fraction ( ) of Ag-MgO/water 

hybrid nanofluid is varied between 0.005 and 0.02. 

Constant heat flux of 100 W/m2 is applied at the bottom 

surface of minichannel. 

The variation of convective heat transfer coefficient of 

Ag-MgO/water hybrid nanofluid with the Reynolds 

number for different nanoparticle volume fractions is 

shown in Fig. 4.  

As can be seen from Fig. 4., the convective heat transfer 

coefficient of Ag-MgO/water hybrid nanofluid flow 

increases with increase in both the Reynolds number and 

nanoparticle volume fraction. The maximum convective 

heat transfer coefficients are obtained for Ag-MgO/water 

hybrid nanofluid having nanoparticle volume fraction of 

 =0.02 at Re=2000. At Re=2000, the convective heat 

transfer coefficient obtained for  =0.02 Ag-MgO/water 

hybrid nanofluid is 21.29% higher compared to that of 

pure water.  
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Figure 4. Convective heat transfer coefficient 

 

As can be seen from Fig. 4., the convective heat transfer 

coefficient of Ag-MgO/water hybrid nanofluid flow 

increases with increase in both the Reynolds number and 

nanoparticle volume fraction. The maximum convective 

heat transfer coefficients are obtained for Ag-MgO/water 

hybrid nanofluid having nanoparticle volume fraction of 

 =0.02 at Re=2000. At Re=2000, the convective heat 

transfer coefficient obtained for  =0.02 Ag-MgO/water 

hybrid nanofluid is 21.29% higher compared to that of 

pure water.  

The change of Nusselt number of Ag-MgO/water hybrid 

nanofluid with the Reynolds number for different 

nanoparticle volume fractions is illustrated in Fig. 5. 

 

 
Figure 5. The Nusselt number 

 

It is clear that the Nusselt number of Ag-MgO/water 

hybrid nanofluid flow increases with increasing in both 

the Reynolds number and nanoparticle volume fraction. 

The Nusselt number values obtained for  =0.02 Ag-

MgO/water hybrid nanofluid at Re=200 and at Re=2000 

are Nu=2.84 and Nu=5.68, respectively. At Re=2000, the 

Nusselt number value for  =0.02 Ag-MgO/water hybrid 

nanofluid is 4.76% higher than that of pure water. The 

lower enhancement in the Nusselt number compared to 

pure water is due to the fact that the nanoparticle addition 

to working fluid simultaneously increases the convective 

and conductive heat transfer coefficients. For this study, 

higher increment obtained for convective heat transfer 

coefficient compared to conductive heat transfer caused 

to increment in the Nusselt number. 

The variation of Darcy friction factor of Ag-MgO/water 

hybrid nanofluid with the Reynolds number for different 

nanoparticle volume fractions is illustrated in Fig. 6. 

 

 

Figure 6. The Darcy friction factor 

The Darcy friction factor of Ag-MgO/water hybrid 

nanofluid decreases with increasing the Reynolds 

number. However, it is not affected by nanoparticle 

volume fraction. Nanoparticle addition to working fluid 

causes to an increment in pressure drop; however, does 

not affect dimensionless pressure drop. Therefore, the 

Darcy friction factor does not change for different 

nanoparticle volume fractions. 

The change of entropy generation due to heat transfer per 

unit length of Ag-MgO/water hybrid nanofluid with the 

Reynolds number for different nanoparticle volume 

fractions is illustrated in Fig. 7. 

As can be seen from Fig. 7, the entropy generation due to 

heat transfer per unit length decreases with decrease in 

both the Reynolds number and nanoparticle volume 

fraction. At Re=2000, the entropy generation due to heat 

transfer per unit length obtained for  =0.02 Ag-

MgO/water hybrid nanofluid is 1.18 10-6 W/mK, while 

it is 1.44 10-6 W/mK for pure water at same Reynolds 

number value. The reason of reduction in entropy 

generation due to heat transfer arising from nanoparticle 

addition is that convective heat transfer coefficient 

increases with increase in nanoparticle volume fraction. 
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Figure 7. Entropy generation due to heat transfer per unit length 

 

The variation of entropy generation due to fluid friction 

per unit length of Ag-MgO/water hybrid nanofluid with 

the Reynolds number for different nanoparticle volume 

fractions is shown in Fig. 8. 

 

 
Figure 8. Entropy generation due to fluid friction per unit 

length 

 

The entropy generation due to fluid friction per unit 

length of Ag-MgO/water hybrid nanofluid increases with 

increase in both the Reynolds number and nanoparticle 

volume fraction. The highest entropy generation values 

due to fluid friction per unit length are obtained for 

=0.02 Ag-MgO/water hybrid nanofluid. At Re=2000, the 

entropy generation value due to fluid friction for pure 

water is 3.31 10-5 W/mK, while it is 6.73 10-5 W/mK 

for  =0.02 Ag-MgO/water hybrid nanofluid. For this 

study, the analyses are realized for fixed Reynolds 

numbers. To obtain the defined Reynolds number, the 

velocity value of flow increases with nanoparticle 

addition to working fluid. In addition, the density and 

bulk temperature of flow increases with increase in 

nanoparticle volume fraction of Ag-MgO/water hybrid 

nanofluid. These increments in velocity and density and 

decrement in bulk temperature of the flow with 

nanoparticle addition cause to increase in entropy 

generation due to fluid friction of flow. 

The variation of total entropy generation per unit length 

of Ag-MgO/water hybrid nanofluid with the Reynolds 

number for different nanoparticle volume fractions is 

shown in Fig. 9. 

 

 
Figure 9. Total entropy generation per unit length  

 

As can be seen from Fig. 9, the total entropy generation 

increases with increase in both the Reynolds number and 

nanoparticle volume fraction. The results obtained for 

total entropy generation and for entropy generation due 

to fluid friction are almost same. This situation shows 

that the fluid friction is dominant factor for total entropy 

generation of flow. This is due to that the minichannel 

considered in this study has very small hydraulic 

diameter. 

The variation of the Bejan number of Ag-MgO/water 

hybrid nanofluid with the Reynolds number for different 

nanoparticle volume fractions is illustrated in Fig. 10. 

As expected, the Bejan number of Ag-MgO/water hybrid 

nanofluid flow decreases with increase both in the 

Reynolds number and nanoparticle volume fraction. 

Bejan number expresses the domination of heat transfer 

on the total entropy generation of flow. As mentioned 

above, the entropy generation due to fluid friction is 

dominant for this study, and it increases with increase in 

nanoparticle volume fraction. Therefore, the Bejan 

number decreases with increasing nanoparticle volume 

fraction. At Re=200, the Bejan number values obtained 

for pure water and  =0.02 Ag-MgO/water hybrid 

nanofluid are 0.9085 and 0.8028, respectively. Whereas, 

at Re=2000, pure water and  =0.02 Ag-MgO/water 

hybrid nanofluid has a Bejan number of 0.0417 and 

0.0174, respectively. 
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Figure 10. The Bejan number 

 

In this study, 5-fold cross validation was performed and 

the test results having the lowest error were used for this 

ANN analysis. Table 2-5 shows that mean absolute 

percentage errors for 
gen,thS' , 

gen,hdS' , 
gen,totalS' and Be

have been calculated as 0.80013, 4.08908, 2.48949, 

4.253272% in training results while it is 1.38476, 

7.41604, 2.54823, 8.595395 % in testing results. The 

calculation of all R2 values above 99% shows the higher 

reliability of ANN model for 
gen,thS' , 

gen,hdS' , 
gen,totalS'

and Be . The comparison of 
gen,thS' , 

gen,hdS' , 
gen,totalS' and 

Be obtained from experimental and ANN results has 

been illustrated in Fig. 11-14. It is clearly seen that the 

output values for both experimental and ANN are very 

close to each other. In addition, it is confirmed that this 

ANN model is high accurate and applicable in future 

studies. 

 

Figure 11. ANN performance for 
gen,thS'  

 

 

 

 

Table 2. The statistical error values for 
gen,thS'  

 RMS MSE R² MAPE 

ANN Training 

Data 0,03227 

0,00104 

0,99967 0,80013 

ANN Test Data 0,03289 0,00108 0,99967 1,38476 

ANN- Total 0,95763 0,91706 0,99967 0,91706 

 

Table 3. The statistical error values for 
gen,hdS'  

 RMS MSE R² MAPE 

ANN Training 

Data 0,92758 

0,860404 

0,99846 4,08908 

ANN Test Data 1,44230 2,0802 0,99670 7,41604 

ANN- Total 2,18048 4,7545 0,99807 4,75447 

 

Table 4. The statistical error values for 
gen,totalS'  

 RMS MSE R² MAPE 

ANN Training 

Data 0,83922 

0,7043 

0,99886 2,48949 

ANN Test Data 1,16831 1,36495 0,99829 2,54823 

ANN- Total 1,58153 2,50124 0,99872 2,50124 

 

Table 5. The statistical error values for Be  

 RMS MSE R² MAPE 

ANN Training 

Data 0,014537 

0,000211 

0,998354 4,253272 

ANN Test Data 0,016840 0,000284 0,997970 8,595395 

ANN- Total 2,263117 5,1217 0,998272 5,121697 
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Figure 12. ANN performance for 
gen,hdS'  

 

 

Figure 13. ANN performance for 
gen,totalS'  

 

Figure 14. ANN performance for Be . 

 

7. CONCLUSIONS 

In this study, convective heat transfer and entropy 

generation of Ag-MgO/water hybrid nanofluid flow 

through rectangular minichannel were numerically 

investigated. A constant heat flux was applied to the 

bottom wall of minichannel and flow was considered 

under laminar flow conditions. The Reynolds number 

ranged between Re=200 and Re=2000 and nanoparticle 

volume fraction was in the range of  =0.005 and 0.02. 

Results showed that the convective heat transfer 

enhancement is obtained with Ag-MgO hybrid 

nanoparticle addition to pure water. Increase in 

nanoparticle volume fraction of Ag-MgO hybrid 

nanoparticle caused to decrease in entropy generation 

due to heat transfer; however, caused to increase in 

entropy generation due to fluid friction. For this study, it 

was observed that the fluid friction is dominant parameter 

in the total entropy generation. It is due to that the 

minichannel considered in this study has a very small 

hydraulic diameter. In this study, an ANN model was 

created to estimate the entropy generation of Ag-MgO 

hybrid nanofluid. The results obtained by ANN model 

showed good agreement with the numerical results. It 

was confirmed that this ANN model has high accuracy 

for estimation of entropy generation and applicable in 

future studies. 
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