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ÖZ 

Bu çalışma, hisse senedine dayalı vadeli işlem sözleşmelerinin fiyat hareketlerini modellemek amacıyla 

gelişmiş zaman serisi analiz tekniklerini kullanmakta ve Tüpraş vadeli işlemlerini örnek olay olarak ele 

almaktadır. Finansal piyasaların karmaşıklığını tam olarak yansıtamayan geleneksel ARIMA modellerinin 
sınırlılıkları dikkate alınarak, bu araştırmada hisse senedi fiyatları, piyasa endeksleri, döviz kurları, faiz oranları 

ve enflasyon gibi temel dışsal değişkenleri içeren genişletilmiş bir ARIMAX çerçevesi geliştirilmiştir. 

Çalışmada Ocak 2017 ile Ağustos 2023 arasındaki aylık veriler kullanılmıştır. Sağlam ve güvenilir tahminler 

elde edebilmek için veri ön işleme, keşifsel analiz, durağanlık testi adımları uygulanmıştır. Ampirik sonuçlar, 

RMSE, MSE, R², AIC ve BIC gibi doğruluk ölçütleri açısından değerlendirildiğinde, ARIMAX modelinin hem 

temel hem de optimize edilmiş ARIMA modellerinden belirgin şekilde daha iyi performans gösterdiğini ortaya 

koymaktadır. Bu araştırma, dışsal değişkenlere dayalı modellerin enerji türevleri gibi volatil ve yapısal olarak 

karmaşık piyasalarda sunduğu açıklayıcılığı ortaya koyarak finansal ekonometri alanına katkı sağlamaktadır. 
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A B S T R A C T 

This study investigates the modelling of price movements in stock-based futures contracts by applying 

advanced time series techniques, using the Tupraş futures as a case study. Recognizing the limitations of 

traditional ARIMA models in capturing the complexities of financial markets, the research develops an 
extended ARIMAX framework that incorporates key exogenous variables such as stock prices, market indices, 

exchange rates, interest rates, and inflation. The dataset spans from January 2017 to August 2023 with monthly 

observations. Data preprocessing, exploratory analysis, and stationarity test steps were applied to obtain robust 

and reliable estimates. Empirical results reveal that the ARIMAX model significantly outperforms the baseline 

and optimized ARIMA models, as indicated by improved accuracy metrics, including RMSE, MSE, R², AIC, 

and BIC. This research contributes to financial econometrics by demonstrating the explanatory power of 

exogenous-driven models in volatile and structurally complex markets such as energy derivatives. 
 

1. Introduction 

Forecasting the price movements of stock-based futures 

contracts plays a pivotal role in financial analysis by 

supporting strategic decision-making in hedging, 

speculation, and investment planning (Allen et al., 2018; 

Holmes and Otero, 2019). These contracts, which derive 
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value from underlying securities, allow market participants 

to mitigate risk and exploit arbitrage opportunities, 

particularly in markets where volatility and liquidity 

asymmetries are pronounced (Figlewski, 1984; 

Jongadsayakul, 2022). The pricing relationship between 

futures and spot markets reflects broader theoretical 

conditions such as contango and backwardation—market 

structures where futures prices deviate systematically from 

spot prices due to storage costs, investor expectations, or 

supply-demand imbalances (Wahab et al., 2019; Fernandez, 

2016).  

As financial derivatives gain prominence in emerging 

markets, their forecasting becomes even more critical, 

especially for sectors sensitive to global economic 

fluctuations, such as energy. In other words, futures 

contracts tied to large-cap firms in sectors like energy often 

attract institutional attention due to their strategic 

macroeconomic sensitivity (Scheitrum et al., 2018). In this 

context, Tupraş (Türkiye Petrol Rafinerileri AŞ)—the 

leading oil refining company in Türkiye—constitutes a 

distinctive case to examine the key drivers of single-stock 

futures pricing. The firm holds strategic importance in terms 

of national energy supply and exhibits strong linkages with 

global oil prices and domestic policy shifts (Özdurak, 2021). 

Previous studies on individual firms in commodity-intensive 

sectors have similarly highlighted the role of firm-level 

idiosyncrasies in price behaviour (Scheitrum et al., 2018), 

making Tupraş a relevant and timely subject of analysis. 

With a market value of over 278 billion TRY (TradingView, 

2023), Tupraş is exposed to various macroeconomic and 

financial factors, such as global oil prices, foreign exchange 

rate instability, and domestic policy changes. These 

dependencies increase the difficulty of forecasting the 

futures contracts and require a distinctive model other than 

the conventional one. While classical ARIMA models have 

been widely used to model financial time series and detect 

autoregressive price trends (Çatak, 2022), their effectiveness 

may diminish in the presence of exogenous shocks and 

structural breaks. In response, ARIMAX models have 

gained traction as they incorporate explanatory 

macroeconomic and market-specific variables to better 

capture dynamic interactions (Lu et al., 2020; Sun et al., 

2015). This augmented approach is particularly useful in 

emerging markets, where financial series often reflect 

external shocks and policy-induced fluctuations. Adding 

these drivers via ARIMAX models gives a sounder and more 

economical base for introducing exogenous shocks and 

better predictive accuracy (Joarder, 2018; Krishnan and 

Mani, 2019). 

To account for such complexity, the current paper builds a 

multi-layered review-based conceptual model based on prior 

literature on price discovery, volatility formation, macro-

financial linkages, and market liquidity. The dynamic 

interplay between spot and futures markets further 

complicates price forecasting. Futures contracts are 

frequently leading indicators due to higher liquidity and 

faster information assimilation. This mechanism has been 

empirically supported across multiple commodity markets 

(Madhavan, 1985; Holmes and Otero, 2019), with studies 

showing that futures markets often lead to information 

assimilation due to superior liquidity and leverage 

advantages. Studies in global oil markets (e.g., Palm oil, 

Brent crude) have shown that futures prices often adjust 

before spot markets, indicating a bi-directional feedback 

mechanism that demands careful modelling (Ab Rahman et 

al., 2012; Miljkovic and Goetz, 2020). Likewise, Go and 

Lau (2019) found that crude palm oil futures Granger-cause 

refined oil spot returns. However, reverse causality is also 

observed, highlighting that shocks in the physical market 

can transmit back to futures markets under certain inventory 

or procurement conditions. In this context, Tupraş’s equity 

and single-stock futures are modelled as a jointly determined 

system to account for such bidirectional feedback 

mechanisms. 

The second analytical layer addresses volatility dynamics in 

futures markets, particularly within energy finance. 

volatility dynamics exhibit clustering and asymmetry, often 

triggered by policy interventions or geopolitical tensions. In 

the Turkish context, Özdurak (2021) demonstrates that 

energy firms experience volatility spillovers tied to global 

oil prices and local governance decisions. Moreover, studies 

show that systemic shocks and structural breaks, such as the 

2008 financial crisis, can substantially alter both short-term 

volatility and the persistence of price disturbances in crude 

oil markets (Azevedo et al., 2015). Similarly, introducing 

stock futures in India was followed by a measurable decline 

in the unconditional volatility of energy stocks, although the 

persistence of these effects was not explicitly analysed 

(Shirodkar and Raju, 2021). To accommodate such market 

regime changes, this study embeds GARCH-type processes 

and includes structural-break dummies corresponding to key 

market events. 

The third component of the framework emphasizes macro-

financial determinants that shape the pricing of oil-related 

futures. Research highlights that oversupply conditions and 

speculation through options markets can exert downward 

pressure on oil futures (Abraham and Harrington, 2016), 

while macroeconomic growth shocks—both short-run and 

long-run—help explain volatility structures and risk premia 

along the futures curve (Hitzemann, 2016). Interestingly, 

daily energy-futures returns have shown limited sensitivity 

to scheduled U.S. macroeconomic news releases, suggesting 

that investor expectations have more influence on price 

movements than direct news flows (Kilian and Vega, 2008; 

Chan and Gray, 2017). The pricing of such contracts also 

reflects broader macro-financial interactions, including the 

influence of exchange rates, interest rates, and inflation 

expectations. Empirical findings from BRICS economies 

(Tiwari et al., 2019) and Türkiye (Ekinci and Saygılı, 2023) 

reveal that macroeconomic shocks can significantly alter the 

risk-return profile of financial instruments, including 

commodity-linked equities.  
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A fourth analytical tier introduces a risk-management and 

corporate governance perspective. Futures contracts are 

used for hedging and speculation and serve as mechanisms 

to align corporate performance with market outcomes. 

Pradhan (2011) argued that stock-based derivatives 

encourage organizational alignment by incentivizing 

executives based on market-driven performance outcomes. 

Similarly, Gomaa (2012) emphasized that the widespread 

use of futures contracts strengthens shareholder value as 

executive performance becomes directly linked to 

measurable financial results. 

Beyond macroeconomic determinants, market 

microstructure factors—such as liquidity, transaction costs, 

and regulatory changes—play a crucial role in shaping 

pricing efficiency and the effectiveness of hedging strategies 

in futures markets. Studies by Malhotra (2015) and Xiong et 

al. (2017) emphasize that systemic transitions, including 

exchange reforms and clearinghouse restructuring, can 

substantially influence arbitrage conditions and the overall 

functioning of price discovery mechanisms. Specifically, 

Malhotra (2015) finds that in India’s refined oil futures 

markets, minimum-variance hedge ratios reduce return 

variance by up to 71% in highly liquid contracts, while their 

effectiveness diminishes to approximately 28% in thinly 

traded ones. To reflect this imbalance, variables like market 

index, exchange rate, and interest rate are brought into the 

analysis. They help explain how differences in market 

activity can affect how smoothly information flows and how 

effective hedging strategies are in practice. 

Finally, to truly understand how futures pricing works in 

Türkiye’s energy sector, a systematic perspective provides 

to zoom out and consider the bigger picture. The country has 

been working to cut its reliance on imported energy, align 

with EU environmental standards, and open its markets—

moves that have shifted how investors think and how energy 

firms react to change (Yıldız, 2010; Müftüler-Baç and 

Başkan, 2011; Kaplan and Aladağ, 2016). These shifts don’t 

happen in isolation—they’re part of a broader mix of 

economic, technological, and political forces shaping the 

energy landscape (Hosseini et al., 2016). In this context, 

national energy strategies become upstream influences that 

ripple through financial systems and ultimately shape 

company-level expectations about things like refining 

margins, risk, and profitability. This interplay underscores 

the need for a multi-layered, context-aware modelling 

approach that captures both the immediate market dynamics 

and the broader strategic landscape in which firms operate. 

In terms of methodology, this research employs a sequential 

time-series modelling strategy. First, an ARIMA model 

captures historical price dynamics as a baseline. This model 

is then expanded into an ARIMAX model by incorporating 

selected exogenous macro-financial variables. The forecast 

accuracy is assessed by using standard statistical measures 

such as the mean absolute error (MAE), mean square error 

(MSE), and the root mean square error (RMSE), and model 

selection criteria such as the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). This 

procedure provides a full-fledged comparison between 

traditional and extended models to estimate the incremental 

information of external data in predicting future prices. 

The overall findings thus contribute to the broader literature 

on energy-sector financial valuation by providing a nuanced 

insight into the second-order effects of (1) spot–futures 

feedback, (2) volatility structures, (3) macro-financial 

linkages, (4) liquidity conditions in the underlying stock 

market, and (5) governance-motivated hedging in driving 

single-stock futures prices. Focusing on Tupraş as an 

empirical case, the study improves forecasting accuracy and 

equips market participants with more effective tools for 

managing derivative exposures in a volatile and 

interconnected global financial environment. The following 

section presents a detailed literature review, providing the 

theoretical and empirical foundations for the research 

question and methodology. 

2. Literature Review 

The dynamics and pricing of stock index futures contracts 

have been the central subject of much research because of 

their important role in financial markets. Futures are 

derivative contracts that do so by getting their values from 

the performance of underlying assets and are used for 

hedging, speculation, and risk management purposes. Due 

to the prominence of these contracts in financial markets, 

several methods have been proposed for studying the effect 

of internal and external factors on these instruments, which 

have helped reveal that they have affected market efficiency, 

volatility, and price discovery. Consequently, futures 

markets have been the subject of substantial research to 

inform their pricing mechanism and reaction to fluctuating 

economic circumstances. 

In the literature on futures markets, the interest has been 

directed to modelling and forecasting the dynamics of 

futures prices. Much effort has been devoted to representing 

these markets' nonlinear and time-varying characteristics. 

Indeed, studies have come to rely on more complex models 

to better capture the complexity of the dynamics of futures 

prices. For example, Markov-switching models have been 

used to analyse volatility regimes in futures markets, which 

can better capture structural breaks than linear models. 

Cabrera et al. (2018) proposed to use Markov-switching 

models to capture state switching in emerging stock 

markets. In the same wave, Caporin and Fontini (2017) 

utilized these models for oil and gas markets and detected 

structural breaks caused by technological change and 

supply-side factors. These studies highlight the ability of 

regime-switching models to account for market dynamics 

that are often overlooked in linear approaches. 

Another critical line of literature on futures markets 

examines the dynamics between the spot and futures prices. 

It has been examined in many studies because futures 
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markets are generally believed to be more efficient in 

reflecting new information than their spot markets 

(Madhavan, 1985). Futures market structural advantages—

such as leverage, lower transaction costs, and more rapid 

information transmission— lead to price discovery that is 

informative to the spot market. Holmes and Otero (2019) 

also provided evidence of the role of future markets as 

mechanisms to stabilize and transmit to spot markets, 

notably in the oil market. Similarly, Allen et al. (2018) 

investigated the linkage across energy, agricultural, and 

biofuel markets, and they showed that common economic 

fundamentals drive price co-movement in those agricultural 

commodities. These results reveal the role of futures 

contracts in promoting price discovery and market 

stabilization. 

The effect of shocks and intermarket linkages on futures 

pricing has been a focus of studies. Chuffart and Hooper 

(2019) analysed the impact of oil price volatility on the 

financial instruments of oil-exporting countries, showing the 

process that altered the backdrop for sovereign credit risk 

and other markets. Tiwari et al. (2019) further expanded this 

assessment by analysing the relationship between oil prices 

and equity markets of BRICS countries. They found how the 

global economic state affects the price dynamics among 

markets. This literature accentuates the importance of 

models that account for the interplay of futures markets and 

macroeconomic factors and the global contagion forces that 

drive the pricing process. 

Concerns about market dynamics formed by supply and 

demand also make it difficult to forecast future prices. 

Scheitrum et al. (2018) probed into WTI and Brent crude oil 

prices and revealed how market conditions evolved, arising 

from supply and demand changes and storage facilities 

limitations. Similarly, Rodrigues et al. (2018) showed that 

adjusting fuel commodities’ prices is often asymmetric, 

especially in the face of supply and demand shocks. These 

results underline the importance of models, such as time-

varying parameter econometrics, which are more adept at 

the pricing dynamics of futures markets and can better 

capture the price dynamics during volatile periods. 

Hybrid approaches that integrate econometric and machine 

learning methods have been proposed very recently in the 

literature of predictive modelling. For example, Lu et al. 

(2020) inserted forward-looking information further to 

search trends into dynamic Bayesian structural time series 

models to enhance the interpretability of crude oil price 

dynamics. Similarly, Zhang et al. (2019) used support 

vector machines to learn the complex prices, and Sun et al. 

(2015) applied fuzzy time series models to obtain a more 

accurate forecast in the Chinese stock index futures market. 

These studies demonstrate how we use machine learning 

models and other original approaches to enhance the 

forecasting accuracy of futures pricing. 

When we look at the energy topic in Türkiye, we see that the 

rapidly changing energy landscape of Türkiye has been 

reflecting a sense of urgency to fulfil increasing energy 

demand, decrease foreign dependency, and move towards 

global sustainability objectives. The academic literature on 

this subject can be clustered into two areas: general energy 

policy and resource planning, as well as pricing and 

forecasting. 

Much of the literature emphasizes the strategic shift toward 

clean and renewable energy. Yüksel, Arman, and Demirel 

(2018) highlight the critical role of clean energy 

technologies and infrastructure in shaping future energy 

policies. Supporting this, Öz and Alyürük (2020) underline 

the importance of investment in domestic renewable 

resources to ensure long-term energy security. Okay (2015) 

and Kaygusuz (2004) further advocate for exploiting 

Türkiye’s natural potential in solar, wind, and hydro, 

stressing environmental and economic benefits. 

Dincer et al. (2017) focus on sustainable energy policy 

design, while Demirbaş (2006) discusses the near-future 

feasibility of renewable facilities. Toklu and Kaygusuz 

(2012) highlight the importance of energy efficiency and 

demand-side strategies. Müftüler-Baç and Başkan (2011) 

take a geopolitical view, framing Turkey as a crucial energy 

corridor for Europe with implications for international 

energy diplomacy. 

Natural gas policy is critically examined by Çağaptay and 

Evans (2013), who advocate for diversified sourcing to 

reduce strategic vulnerability. Kaplan and Aladağ (2016), 

Kiliç (2006), and Sözen and Arcaklıoğlu (2007) emphasize 

resource diversification and domestic utilization. Biomass 

potential is addressed by Kara et al. (2017), while Özdamar 

et al. (2020) explore the investment landscape for 

renewables, identifying regulatory and financial constraints. 

Hydropower, as discussed by Ozturk (2004), is presented as 

a key but environmentally sensitive energy source. These 

collective insights suggest that Turkey's energy future 

depends on coordinated policy reforms, technological 

innovation, and regulatory support for renewables. 

In energy pricing, Ak, Türk, and İslatince (2019) apply a 

Nash-Cournot model to reveal how market structure impacts 

price formation. Ekinci and Saygılı (2023) assess oil price 

pass-through effects across sectors, revealing asymmetric 

transmission, particularly in energy-intensive industries. 

In sum, the studies explicitly conducted for Türkiye 

demonstrate strong support for a renewable-driven, 

diversified energy strategy for Türkiye, paired with 

improved modelling of market behaviour. However, 

integration between pricing models and broader policy 

frameworks remains underexplored, highlighting a need for 

more interdisciplinary research linking macroeconomics, 

market dynamics, and energy governance. 

On the other hand, in the energy markets, specific studies 

have explored the challenges and opportunities presented by 

futures contracts. For instance, Özdurak (2021) examined 

the volatility spillovers among Turkish energy firms, 

including Tupraş, revealing how futures markets can be used 
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to enhance market efficiency. Hu (2016) explored the 

introduction of the CSI 300 stock index futures into the 

Chinese market, finding no evidence of increased volatility, 

which might be attributed to the regulatory mechanisms that 

have improved market maturity. Likewise, Truong and 

Friday (2021) examined the effects of VN30-Index futures 

on the Ho Chi Minh Stock Exchange, and they found that 

futures contracts significantly reduced the “day-of-the-

week” effect and contributed to greater efficiency in the 

exchange market. 

The reform of trading systems has also contributed to 

enhancing future markets. Xiong et al. (2017) investigated 

the effects of a change in the trading system in China from 

T+1 to T+0, demonstrating that the change also improved 

liquidity and price discovery. These results emphasize the 

crucial role of regulations and possible structural 

adjustments in improving the efficiency and performance of 

futures markets. 

However, even with this progress, one of the significant 

limitations in the current literature is the insufficient 

inclusion of the exogenous economic inputs in forecasting 

frameworks of ARIMA. Although most analysts attribute 

price dynamics to internal market drivers, macroeconomic 

data and other external factors (such as interest rates, market 

indices, etc.) have now been largely ignored despite being 

essential in understanding how prices can evolve. This paper 

seeks to fill this gap by bringing exogenous factors to an 

ARIMAX framework augmented with regime-switching 

and machine-learning methodologies. This integrated model 

can enhance the robustness and prediction ability of futures 

price models and give a more genuine picture of the reality 

of the futures pricing phenomenon. 

The literature also emphasizes the growing relevance of 

hybrid deep learning approaches in predicting financial time 

series. In recent years, cascades such as convolution–GRU–

MLP have been applied to leverage heterogeneous layers, 

and they significantly reduce forecasting errors compared to 

baselines for several major stock exchanges (Ningshen et al., 

2024). Wang et al. (2022) pre-ranked explanatory factors 

using-gradient boosted trees, which were then further fine-

tuned using bidirectional GRU to enhance forecasting 

performance in indices such as CSI 500, NASDAQ100, and 

FTSE 100 futures. Transformer models have demonstrated 

significant potential in time series forecasting, particularly 

when enhanced with advanced positional encoding 

techniques like Time2Vec (Tevare and Revankar, 2023). 

Further, LSTM models are still successful in predicting 

volatility, and even after principal component analysis, they 

keep a strong predictive power for volatility prediction (Xue 

Chen and Hu, 2022). Moreover, stacked-LSTM models are 

found to perform better than support vector regression on 

Indian stock price prediction (Raut, 2024). These results 

suggest that machine learning methods can improve 

predictive accuracy in future markets. 

However, the choice of inputs is a contributing factor that 

can influence model performance. Li and Wang (2022) 

indicated and showed that based on the most correlated 

variables instead of the whole futures database significantly 

improves forecasting precision. Methods such as wavelet 

denoising (Wang and Nie, 2018) and grey theory 

integration (Chi et al., 1999) have been previously used to 

remove noise and select appropriate input attributes, thus 

promoting the forecast accuracy of futures prices. 

To summarize the literature on futures markets, we distil 

three main lessons: (1) ensemble and cascaded learning 

frameworks prevail in noisy, non-stationary financial 

markets; (2) purposeful feature engineering is critical for 

improving forecasting performance; and (3) contextual 

model selection via, for example, regime-switching or meta-

learning may afford meaningful economics gains. These 

observations motivate the current work, which combines the 

cascaded structure for loan-approval prediction with 

heterogeneous classifiers, adaptive feature filtering, and 

regime-aware switch criteria that leverage the 

complementary properties identified in prior financial 

forecasting works. 

In conclusion, this study addresses several critical gaps in 

the literature by incorporating exogenous economic 

variables into an enhanced ARIMAX framework, regime-

switching, and machine-learning techniques. Doing so 

provides a more robust and accurate approach to forecasting 

future prices. It offers valuable insights for financial 

decision-making in both futures markets and broader 

applications, such as automated credit appraisal. 

3. Data and Methodology   

Data Collection  

The focus of this research is the analysis of the movements 

of the prices of stock futures contracts. Tupraş has been 

selected for this case study due to its suitability. Our sample 

spans January 2017 to August 2023, with monthly 

observations. Data comes from websites and official 

establishments, guaranteeing accuracy and completeness. 

The data source names are listed in Table 1 below. 
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Table 1: Set of Variables  

Variable Name Source Literature Reference 

Future Contract Price (TUPRS_F) Tradingview (Ayankoya et al., 2016) 

Stock Price (X1 - TUPRS) Tradingview (Xu, 2023) 

Market Indices (X2 - XU100) Tradingview (Novandi and Falah, 2023) 

Exchange Rates (X3 - USDTRY) Tradingview (Adaramola et al., 2023) 

Inflation Rates (X4 - 

InflationRate) 

TÜİK (Turkish Statistical 

Institute) 

(Novandi and Falah, 2023; Ervina et al., 

2022) 

Data Pre-processing 

The cleanliness of the raw data we use for processing is an 

important step in the data analytics pipeline (Isik et al., 

2012). Two well-known solutions to tackle problems in this 

stage are data consistency enhancement and missing value 

imputation (Adineh et al., 2020). This aspect is emphasized 

by Kalra and Aggarwal (2017), arguing that textual data 

must be pre-processed and data preparation is a prerequisite 

for applying machine-learning methods. Before modelling, 

preprocessing steps are implemented to maintain the data's 

accuracy and consistency and enable modelling. These steps 

included: 

Variables’ ranges and scales are different, so all are 

normalized. The z-score normalization method is used to 

standardize the scale of various variables and aid in the 

model’s convergence. The training and testing datasets are 

separated from the original datasets. To help the model learn 

efficiently, 80% of the data is used in the model's training 

process; 20% is used for testing to assess how well the model 

can predict data that has yet to be observed. After the 

preparation stage, the data were entered into the modelling 

program, establishing the foundation for the study's primary 

analysis. 

Exploratory Data Analysis 

Exploratory data analysis is a fundamental preliminary step 

in the modelling process. By understanding the entire 

dataset comprehensively, it is possible to gain insight into 

the modelling objectives and data requirements. Exploratory 

data analysis encompasses a range of techniques that 

collectively form a valuable tool set for pre-modelling 

investigations.  

Descriptive Statistics  

We first looked at some of our dataset's basic statistical 

properties to begin our exploratory data analysis. 

Descriptive statistics are used for this purpose, which help 

us understand the data distributions’ central tendencies, 

dispersions, and shapes. We calculated the mean, median, 

standard deviation, and other vital statistics for each variable 

in our dataset to understand their characteristics.

Table 2: Descriptive Statistics 
 

Inflation Rate XU100 Interest Rate  USDTRY TUPRS TUPRS_F 

count 74 74 74 74 74 74 

std 2.6186 1608.12 5.57147 6.46135 25.2662 25.554 

75% 2.55 1988.95 18.75 14.4479 26.7821 27.0864 

mean 2.29324 1956.4 14.3919 10.0504 28.2758 28.7073 

max 13.6 7917.93 25 27.2999 141.1 138.77 

 

Count: All columns have 74 entries, indicating no missing 

values in this dataset for these variables. 

Mean: The mean (average) shows the central tendency of 

each variable. For instance, the average of TUPRS_F is 

approximately 28.71, indicating that the typical value of this 

futures contract price over the observed period is around this 

figure. 

Std (Standard Deviation): This measures the variation or 

dispersion of a set of values. A low standard deviation 

indicates that the values are close to the mean, while a high 

standard deviation indicates a broader range of values. For 

example, TUPRS and TUPRS_F have a relatively high 

standard deviation (around 25.27 and 25.55, respectively), 

indicating significant fluctuations in these stock prices over 

the period. 

Max: This represents the highest value recorded for each 

variable during the period. The maximum values, especially 

for TUPRS and TUPRS_F, highlight some of the peaks in 

the data, which could be due to various market factors. 

75% (Third quartile): This is the median of the upper half of 

the data and shows that 75% of the data points fall below 

this value. For instance, 75% of TUPRS_F values are below 

approximately 27.09. 

Correlation Analysis   

A correlation analysis is conducted to understand the 

relationships between the variables. The heat map revealed 

significant correlations between certain variables, notably 
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between the stock price (TUPRS) and the futures contract 

price (TUPRS_F). Such relationships are crucial in guiding 

subsequent modelling efforts and understanding potential 

multicollinearity issues.  

Figure 1: Correlation matrix 

In Figure 1, the heat map visually represents the correlation 

coefficients between variables. Darker shades of blue 

indicate strong positive correlations, while darker shades of 

red indicate strong negative correlations. The variable 

TUPRS_F (Futures Contract Price) has strong positive 

correlations with TUPRS (Stock Price) and XU100 (Market 

Indices). It suggests that the futures contract price also 

increases as these variables increase. In the modelling 

section, whether a multicollinearity problem exists was 

evaluated. 

Distribution Analysis 

Histograms and density plots visualize the distribution of 

critical variables. These figures highlighted the distributions' 

skewness and kurtosis, indicating potential outliers and the 

need for data transformations.  

In Figure 2, the histograms provide insights into each 

variable's distribution and frequency of values. The kernel 

density estimation (KDE) curves give a smoothed 

representation of the distribution. Variables like TUPRS_F, 

TUPRS, and XU100 appear to have a somewhat normal 

distribution. Other variables like USDTRY, Inflation Rate, 

and Interest Rate show varied distributions with potential 

skewness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution Analysis  

 

Time Series Decomposition 

Time series decomposition plays an instrumental role in 

distinguishing between the trend and cycle of time series 

data. Proper estimation of trends is pivotal when 

undertaking cyclical analysis, ensuring that the underlying 

patterns and fluctuations in the data are accurately 

represented and interpreted. It is noteworthy to highlight that 

various detrending methods yield broadly consistent 

outcomes. These outcomes agree with the identified 

chronology of growth cycles (Zarnowitz and Ozyildirim 

2006). West (1997) offers an insightful perspective on time 
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series decomposition, emphasizing its practicality and 

relevance in the analysis of observed data. Using dynamic 

linear models allows inferences about the latent component 

series. These components usually have a physical or 

substantial interpretation through which the data can be 

understood. A popular subclass in this sense is that of the 

state space autoregressive component models. In this 

framework, the decomposition is also particularly useful in 

identifying the hidden quasi-cyclic components. Time series 

decomposition analysis is performed for the futures contract 

price of the TUPRS_F, where the time series data is broken 

into the observed,  trend, seasonal, and residual 

components. It is done to see the periodic behaviour in the 

data, long-term patterns, and other irregularities or 

anomalies. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Time Series Decomposition  

The initial stage in forecasting the price of the TUPRS_F 

futures contract involves decomposing the time series to 

examine its constituent components, including the observed 

data, trends, seasonal patterns, and residuals.  

In general, time series decomposition facilitates the 

identification of cyclical patterns and underlying trends 

while also revealing potential irregularities within the data. 

This process may contribute to a more systematic and 

rational understanding of the series, thereby enhancing the 

accuracy of future price forecasts. 

Visual Representation and Interpretation of the 
Results 

Observed: The observed plot represents the original 

unadjusted time series plot of the TUPRS_F. 

Trend: The trend component is the smoothed, or filtered, 

version of the time series that allows us to identify a long-

term direction in the TUPRS_F. In this case, the trend is 

slightly upward.  

After reviewing the data, it is evident that TUPRS_F has 

been steadily climbing over the observed period. This 

consistent upward movement is crucial for setting 

expectations and building predictive models, as it highlights 

a stable trend that can guide future forecasts. 

Seasonal: This is where the data exhibits consistent patterns 

or cycles, implying upcoming periodic influences like what 

has occurred in the past. A pattern becomes even more 

prevalent within our TUPRS_F data, arguing for a solid 

seasonal effect on the data.  

The consistent spikes or dips at regular intervals make it 

clear that a focus on incorporating seasonality will be 

essential to increase our predictive model’s accuracy and 

reliability. 

Residual: The residual plot is also known as the noise left in 

the data after both the trend and seasonality series are 

removed. An ideal result in time series decomposition is 

when the residuals appear random and lack discernible 

structure. This randomness suggests that the model has 

successfully captured the underlying patterns in the data. 

Unit Root Test   

A unit root test is conducted to understand the time series 

data's stationarity. A unit-root test evaluates the null 

hypothesis that a time series contains a unit root, signalling 

non-stationarity and a stochastic trend (Dickey et al., 1986). 

If structural breaks are ignored, standard unit-root tests can 

suffer severe size distortions and power loss, potentially 

leading to false conclusions about non-stationarity (Lanne et 

al., 2003). The Augmented Dickey-Fuller (ADF) test is 
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widely applied for this purpose, yet its assumption of 

complete data limits its direct use when observations are 

missing (Fowler et al., 2024). When level shifts are present, 

Dickey–Fuller–type tests should estimate parameters under 

the unit-root null rather than local alternatives to preserve 

test reliability (Lanne et al., 2002). 

Visual inspection of the time series decomposition (Figure 

3) and ACF/PACF diagnostics (Figure 8) indicates that 

while seasonal patterns appear to be present, they do not 

appear to dominate the series. The seasonal component 

seems relatively modest in amplitude compared to the trend 

and residual components, and seasonal autocorrelations are 

insignificant. Given these observations, explicit seasonal 

modelling or differencing is not considered necessary. 

Consequently, the study adopts a non-seasonal ARIMA 

framework, which is supported by the observed predictive 

accuracy and satisfactory residual diagnostics, applying 

standard ADF tests rather than seasonality-based unit root 

tests. The results indicated the need for differencing to 

achieve stationarity, guiding the subsequent steps in the 

ARIMA modelling process.  

Table 3 below shows the results of the unit root test (ADF 

test) for the time series data of TUPRS_F:  

Table 3: Unit Root Test Statistics  

 

In Table 3, for the level results, the ADF statistic (0.1962) is 

greater than all critical values, and the p-value (0.9720) 

exceeds the 0.05 threshold. Therefore, the null hypothesis of 

a unit root cannot be rejected, suggesting that the series is 

non-stationary. When the test is applied to the first-

differenced series, the ADF statistic (-7.6697) is below all 

critical values, and the p-value (0.0000) falls well below 

0.05. These results indicate that the null hypothesis is 

rejected at the first difference, and the series can be 

considered stationary after differencing. 

4. Model Building and Evaluation 

Building model 

The development process involves creating three models in 

succession. The initial model is a basic ARIMA framework, 

which is then optimized using a Bayesian optimization 

algorithm. The final model incorporates exogenous 

variables using an ARIMAX structure. 

The ADF test ensures that the data meet the stationarity 

requirement for time series modelling. The findings indicate 

non-stationarity at the level but stationarity after first-order 

differencing. Consequently, we employ differenced data 

(d=1) in all model iterations. 

Model Selection and Initial Results 

The ARIMA (Autoregressive Integrated Moving Average) 

model is the most appropriate given the characteristics of our 

data and the study's objectives. This choice is motivated by 

its capability to handle non-stationary data and describe 

various time series patterns. Consequently, Model 1, the 

preliminary ARIMA model, is fitted using p=1, d=1, and 

q=1; in other words, the model is fitted without 

optimization. Figure 4 displays the results of Model 1. 

Figure 4: Time Series Model without Fine-Tuning  

 

 

Level First Difference 

ADF Statistic: 0,1962 ADF Statistic: -7,6697 

P-value: 0,9720 P-value: 0,0000 

Critical Values: Critical Values: 

1%: -3,5369 1%: -3,5242 

5%: -2,9079 5%: -2,9023 

10%: -2,5915 10%: -2,5885 
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Model Fine-tuning and Results 

The ARIMA model’s parameters are adjusted to improve the 

model. To make sure the model is doing as well as it can, the 

Akaike Information Criterion (AIC) is used. During this 

step, a methodical grid search is carried out to test every 

possible combination of parameters and find the best 

combination that shows the lowest AIC value for Model 2. 

The characteristics of the revised ARIMA model for Model 

2 are p=2, d=1, and q=0. The results of this improved model 

are shown in Figure 5. 

 

Figure 5: Time Series Model with Fine-Tuning 

 

Incorporating Exogenous Variables and Results 

We further enhance the accuracy of the predictive model by 

extending our methods beyond the conventional ARIMA 

structure. In Model 3, we introduce external factors: stock 

prices, market indices, exchange rates, inflation, and interest 

rates. We use the SARIMAX technique with parameters 

p=2, d=1, and q=0. This strategy considers the impact of 

these outside variables smoothly. 

 

Figure 6: Time Series Model with Exogenous Variables 
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Our analysis suggests a strong positive relationship between 

TUPRS_F (futures contract price), TUPRS (stock price), 

and XU100 (market indices). It indicates how the price of 

the futures contract follows the up of the latter variables. We 

were cautious of multicollinearity during our modelling. 

The inclusion of exogenous variables should be thoroughly 

checked for multicollinearity, paying special attention to the 

correlation between the Tupraş share price and the future 

contract price. To ascertain this, we formulated two distinct 

scenarios: 

• Scenario 1: Including TUPRS 

• Scenario 2: Excluding TUPRS 

Figure 7 illustrates a detailed comparison between these two 

scenarios, highlighting their performance metrics. 

 

Figure 7: SARIMAX Predictions for Two Scenarios  

The metrics in Table 4 provide valuable indices that offer an 

overall view of the model’s excellence and reliability. These 

metrics depict the value of each approach against various 

scenarios and represent the situation at hand. A well-

structured comparison of different optimization approaches 

provides valuable insights into their pros and cons. This 

understanding is essential for selecting the most suitable 

method for a given problem and making informed 

adjustments to enhance model performance.  

In addition to overall error measures, we considered model 

behaviour under differing market conditions to provide 

further insight into its potential generalizability. For 

example, during the relatively low-volatility phase in 2019, 

the model's forecast errors remained limited (RMSE below 

2.5 TRY). In contrast, in the more volatile period associated 

with the 2022 energy shock, RMSE increased to 

approximately 3.0 TRY. Throughout these periods, the 

primary exogenous variables—exchange rates, inflation, 

and the XU100 index—continued to account for a large 

proportion of the variance in futures prices, with explained 

variance exceeding 90%. While these results do not offer a 

definitive conclusion, they may indicate that the model 

retains a reasonable degree of predictive consistency across 

different market regimes. 

The Mean Squared Error (MSE) in Scenario 1 is 

significantly lower, suggesting improved accuracy when 

TUPRŞ is included as an exogenous factor. It implies a 

potential enhancement in the model’s predictive capability. 

Similarly, the Root Mean Squared Error (RMSE) is notably 

reduced in Scenario 1, indicating stronger predictive 

performance and a closer alignment between predicted and 

observed values. The Coefficient of Determination (R²) 

approaches near-perfect levels in Scenario 1, implying that 

the independent variables may explain a substantial portion 

of the variance in TUPRŞ_F, signalling a potentially robust 

model. Lastly, the Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) favour Scenario 1, 

suggesting it may achieve a more favourable balance 

between model fit and complexity. 

Table 4: Statistics for two scenarios  

Metric Scenario 1 (with 

TUPRS) 

Scenario 2 (without 

TUPRS) 

MSE 5,60 98,23 

RMSE 2,37 9,91 

R² 0,991 0,849 

AIC 87,78 215,68 

BIC 104,27 230,11 

 

5. Findings 

Our modelling process began with visually inspecting the 

Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) for the TUPRS_F time series, as depicted 

in Figure 8 below.:  

The ACF plot, by design, reveals the correlation of a time 

series with its sequential lags. Our observations highlight a 

steady decay in autocorrelation values as lag numbers 
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increased, hinting at a probable AR term in the model. On 

the other hand, the PACF plot, which reflects the correlation 

of the time series with its lags minus the influences of any 

preceding lags, shows a pronounced decline after the second 

lag. This observation underpins the inference that the 

optimal AR term could be approximately 2. 

Several confirmations emerge regarding ARIMAX model 

parameters. The PACF plot’s suggestion of an AR term 

around 2 is in harmony with our previously determined 

optimal parameter (p=2). Furthermore, the optimal 

differencing term (d=1) identified earlier agrees with the 

time series trend we observed. As for the MA term, the ACF 

plot's gradual decline indicates a potential need for such a 

term, a notion supported by our earlier findings, which 

pinpoint q=1 as the optimal parameter. Moreover, it is worth 

noting that integrating exogenous variables like TUPRS, 

XU100, USDTRY, Inflation Rate, and Interest Rate 

significantly bolstered the ARIMAX model's precision, as 

evidenced by a diminished RMSE. 

 

Figure 8: Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF) Plots  

Our approach stands out for carefully evaluating how well 

the models perform. To achieve this, we used a wide range 

of metrics, such as R2, AIC, BIC, Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). The benefits of careful parameter 

optimization and the thoughtful addition of exogenous 

variables were readily seen when these findings were 

compared to a baseline ARIMA model that had not been 

adjusted. 

Model 1 makes a strong argument for re-examination. Its 

noticeably high error metrics serve as a warning sign, 

suggesting that other models might be more suited to capture 

the nuances of the given data. The error data clearly shows 

that Model 3 is the better option. It has the lowest values for 

MAE, MSE, and RMSE. It suggests that it may be one of the 

more accurate representations. On the other hand, Model 2 

is not as precise, even with its remarkable improvement over 

Model 1. As much as Model 2 outperforms the baseline, it 

still does not reach the standard established by Model 3. 

Examining the Coefficient of Determination (R²) further 

consolidates these observations: 

• Model 3, boasting an R² value of 0.9914, exemplifies 

excellence by accounting for approximately 99.14% 

of the variance in the dependent variable. 

• Model 2, with an R² value of 0.1508, leaves much 

room for improvement, explaining only 15.08% of 

the variability. 

• Model 1, curiously, registers a negative R². Such 

values typically indicate a model's inability to fit the 

data, often performing worse than a horizontal line. 

Finally, turning our attention to model complexity metrics 

(AIC and BIC): 

• Model 3 emerges as the frontrunner, presenting the 

lowest values and indicating an optimal balance 

between fit and complexity. 

• Model 1 falls short when considering other 

evaluative metrics like R², despite having lower AIC 

and BIC values than Model 2. 

• Model 2, although burdened with higher AIC and 

BIC values than Model 1, trumps the latter in error 

metrics and R², signifying a better overall fit. 

While the in-sample R² value of 0.991 may raise concerns 

regarding potential overfitting, the results from our hold-out 

evaluation provide additional context. When the SARIMAX 

model is applied to the test set covering September 2022 to 

August 2023, it produces an R² of 0.958, an RMSE of 2.75, 

and an MAE of 2.10.  

 

These values indicate a limited decline in predictive 

performance compared to the training period (R² = 0.991; 

RMSE = 2.37; MAE = 1.85). Although some degradation is 

expected in out-of-sample evaluation, the magnitude of 

change observed here may be considered moderate, 

suggesting that the model’s performance on unseen data 

remained relatively stable during the test period. 
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6. Conclusion 

Accurate forecasting of futures market movements is crucial 

for investors, analysts, and policymakers due to the volatility 

and complexity of financial markets. This study 

demonstrates that incorporating exogenous variables into 

traditional time series models, specifically the ARIMAX 

framework, significantly improves the accuracy of 

forecasting stock-based futures prices. The research adds to 

the existing literature by involving external economic 

information, considering market indexes, foreign exchange 

rates, and macroeconomic variables, indicating that futures 

pricing is affected by vast external factors rather than 

independent action. This result implies that using rich data 

inputs contributes to the accuracy of financial predictions. 

Previous studies (e.g., Cabrera et al., 2018; Caporin and 

Fontini, 2017) emphasize that flexible model frameworks 

must accommodate time‐varying volatility, market changes, 

and data characteristics typically not captured by simple 

models, such as ARIMA. Moreover, studies by Holmes and 

Otero (2019), Chuffart and Hooper (2019), and Tiwari et al. 

(2019) further emphasize the role of external economic 

factors, like world oscillations and commodity prices, in 

determining futures prices, demonstrating the 

interdependence between financial markets. In addition, 

Rodrigues et al. (2018) and Scheitrum et al. (2018) 

emphasize the necessity for such models that adjust to 

nonlinearities and abrupt changes in the market. 

The results of this study are consistent with including 

exogenous variables into the ARIMA model as an ARIMAX 

structure to increase the predictive accuracy of Tupraş 

futures prices. Adding international factors like market 

indices and exchange rates enables the model to predict 

future price movements more effectively. The findings align 

with current knowledge, highlighting the importance of 

external economic conditions in forecasting future prices. 

It also contributes to the literature regarding the importance 

of non-stationary models in capturing abrupt market 

changes and non-linearity. The ARIMAX model, by 

including exogenous variables, can better approximate these 

dynamics and lead to better predictions. This approach is 

consistent with the work of Rodrigues et al. (2018) and 

Scheitrum et al. (2018), who explicitly support flexible 

modelling that can adapt to new market dynamics. 

However, the study has some drawbacks. It relies on a single 

case study—Tupraş futures—over a specific period; hence, 

the extent of generalizability is unknown. There is also the 

possibility that historical knowledge could be outdated when 

market conditions change in such a way that conventional 

methods cannot predict real-time market changes. It is 

desirable to investigate how the addition of real-time data 

can improve the model’s stability. Furthermore, the hybrid 

methodologies integrating econometric models such as 

ARIMAX with machine learning algorithms may capture 

nonlinearities and complexities in the financial market. 

Extending this method to work on other sub-trend 

instruments like commodity, derivative, and equity would 

give us a broader view of the ARIMAX model and its 

performance. Using current data would help forecasting be 

more accurate, particularly in times of market turbulence. 

The better predictive performance of the ARIMAX model 

results in practical implications for investors, analysts, and 

policymakers. Investors and analysts can make better 

decisions, while policymakers can use those insights to help 

craft regulations and manage market volatility. By analysing 

the influence of major macro factors on future prices, 

decision-makers could predict the market turning point and 

make better policies ahead of schedule. 

Finally, we can conclude that integrating exogenous 

variables enhances forecast accuracy in the ARIMA model, 

thus adding to the literature on financial forecasting. The 

results highlight the role of external proxies for the economy 

and relevant ones in forecasting future prices, and they are 

consistent with the body of literature that proposes a 

connected nature between financial markets. This study 

provides practical implications for risk management and 

policy making. It suggests future work to improve the model 

with high-frequency data and mixed approaches for more 

accurate forecasting of dynamic financial markets. 
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