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Introduction 

Tungsten Inert Gas (TIG) welding is a crucial process in 

the industrial sector that calls for qualified and experienced 

welders, which entails high costs and potential health 

concerns [1]. However, with the introduction of big data 

and Industry 4.0, efforts have been made to discover weld 

flaws in several other welding procedures in addition to TIG 

welding [2]. Therefore, this research has the potential to 

ease problems related to using human labour in the TIG 

welding process if weld automation when successfully 

implemented. The ability of a worker to make intelligent 

decisions based on cursory investigations is crucial for 

welding. Making these choices is essential for figuring out 

and altering process parameters to meet requirements. The 

choice of these parameters directly affects product quality, 

underscoring the significance of this decision. 

However, the introduction of machine learning algorithms 

that can mimic human cognitive capacities offers a potential 

substitute by reproducing abilities like learning, image  

 

 

 

 

classification, and feature identification. The ResNet-50  

and ResNet-18  networks are examined and compared in 

this research as they have shown potential in the past such 

as [3], [4], [5]. These neural networks are trained to 

correlate characteristics from a verification dataset after 

extracting them from a training dataset [6]. The objective is 

to categorise a given weld image as either a good weld or a 

particular type of defective weld, taking into account 

common TIG weld faults [7] [8] [9]. Therefore, the main 

goal is to create a neural network that can categorise post-

weld images of TIG welds into different groups, such as 

weld quality, burn-through, contamination, lack of fusion, 

misalignment, and lack of penetration. However, data 

accessibility determines this research's scope. The TIG 

welding process on 5083 aluminium will be represented in 

the ResNet model exclusively as post-weld images taken 

with High Dynamic Range (HDR) camera. It's crucial to 

remember that numerous weld flaws can exist in a single 

piece in real-world applications. However, occurrences 

containing many flaws in a single sample will not be taken 

into consideration in this research due to the limits of the 

training data [7]. Therefore, the main contributions of this 

paper are as follows: 
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ABSTRACT 

 
Modern welding procedures are intricate, requiring a variety of variables and occasionally lacking a 

complete understanding of their underlying mechanics. Despite the adoption of intelligent welding 
processes in a few applications, there are still several obstacles. By combining advanced search, 

combinatorial optimisation, geometric reasoning techniques, and comprehensive Artificial Intelligence 

(AI) modelling cognitive capabilities, the proposed research aims to build intelligent welding. The three 
main scientific foci of the research are feature correlation to forecast process performance and facilitate 

corrective actions, feature extraction utilising intense signal analysis, and the use of simulated or supplied 

data for analysis. Previous research led to the development of an intelligent Tungsten Inert Gas (TIG) 
welding platform for materials made of aluminium. On the other hand, TIG welding is susceptible to 

fluctuations in the root gap, which affect the quality of the weld and could result in electrode contamination. 

Common welding errors include excessive heat-affected zone width, fusion width, bead height, and 
inadequate penetration. These errors directly affect the strength and load-bearing capacity of the joint while 

also making it more susceptible to stress and fracture propagation. The proposed AI-powered welding tool 
is made to overcome common weld imperfections. Therefore, the research's objective is to develop a hybrid 

deep learning-powered platform for TIG welding. Convolutional Neural Networks (CNNs) will be 

employed to extract discrete visual characteristics linked to each type of weld defect, establish correlations 
between these features, and give weld images to identify the types of defects or their absence. The objective 

of the research is to create a neural network model that can determine whether a given weld image is good 

or bad due to contamination, burn-through, or lack of fusion. These findings will make precise weld quality 
monitoring and process improvement possible. 
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Development of an Intelligent TIG Welding Platform 

The research contributes to the field of welding technology 

by developing an intelligent TIG welding platform. This 

platform is designed to enhance the welding process for 

materials made of aluminum, which is known to be 

particularly challenging due to its susceptibility to common 

welding errors [9] [10] [11]. The development of this 

platform showcases the application of advanced search, 

combinatorial optimization, geometric reasoning 

techniques, and comprehensive AI modeling cognitive 

capabilities to address real-world welding challenges.  

Hybrid Deep Learning-Powered Welding Tool 

The research introduces a novel approach by leveraging 

CNNs to extract discrete visual characteristics associated 

with various types of weld defects. By establishing 

correlations between these features and using weld images 

as input, a hybrid deep learning-powered platform is 

developed. This platform has the ability to identify common 

weld imperfections such as contamination, burn-through, or 

lack of fusion. This contribution holds significant promise 

for precise weld quality monitoring and process 

improvement, ultimately leading to enhanced weld quality 

and reliability.  

Advancements in Welding Defect Detection  

The research significantly advances the capabilities of 

defect detection in welding processes [12]. By training a 

neural network model to analyze weld images and 

determine whether a given weld is of good or bad quality, 

the study introduces a new level of automation and accuracy 

to the inspection and assessment of welds. This contribution 

not only enables real-time quality control but also facilitates 

rapid corrective actions in response to welding errors, 

thereby improving the overall efficiency and reliability of 

welding operations in various industries. 

These contributions collectively represent a substantial step 

forward in the integration of AI and deep learning 

techniques into the welding domain, addressing critical 

issues related to weld quality and performance prediction 

while paving the way for more intelligent and efficient 

welding processes. 

Background 

The common welding method known as TIG creates 

welds of excellent quality. This process employs a non-

consumable tungsten electrode, Argon shielding gas, and an 

electric arc as the heat source to melt the weld pool. The 

accuracy and superior quality of the welds produced are 

enhanced by the intense and small size of the arc. The 

quality of the welded connection is significantly influenced 

by the operator's control of crucial welding parameters such 

as arc current, arc voltage, travel speed, and gas flow rate 

[8]. Numerous weld faults may develop when any of these 

variables depart from their ideal ranges, endangering the 

connection's structural integrity. One such issue that 

develops when there is insufficient penetration into the base 

metal is “burn-through”. This issue is frequently brought on 

by an excessively high arc current or voltage and/or a slow 

enough travel speed, which produces too much extra heat in 

comparison to what is needed for melting and fusing. A key 

factor in understanding this phenomenon is the specific heat 

input, which may be calculated using Equation (1) [9]. 

These factors highlight the complexity and importance of 

precise control over welding settings in preserving the 

quality and integrity of TIG welding. 

Specific Heat Input =(Voltage * Amperage)/(Travel 

speed*mass)              (1)

 In welding, “contamination” is the presence of foreign 

particles in or close to the weld zone. On the surface of base 

metals, these particles—which can be anything from dust to 

oil to metal shavings—are frequently observed. 

Contamination can be efficiently reduced during pre-

welding procedures by wiping, chemical cleaning, or 

mechanical cleaning techniques. Whereas, “lack of fusion” 

in welding describes an inadequate bond between the weld 

and the base metals. This occurrence is commonly 

attributed to insufficient heat input, which happens when 

there is not enough energy given to allow for proper melting 

and fusing. When welding, low voltage or current, as well 

as an incredibly fast travel speed, can all result in 

insufficient heat input. The link between these parameters 

is seen in Equation (1). Fusion failure can also happen in 

circumstances when the surface isn't properly prepared 

before welding. When two base metals are not precisely 

aligned in their appropriate dimensions (“misalignment”), 

the necessary degree of interaction between them cannot be 

maintained. However, when the welding process fails to fill 

the target connection, this is known as a “lack of 

penetration”. This results from improper management or 

inadequate control of welding parameters including arc 

current, voltage, or travel speed. As a result, the joint is 

weaker than necessary, raising the possibility of structural 

issues. 

Related Works 

The goal of this research is to integrate AI into welding 

systems. Although numerous studies examine AI and 

welding sciences individually such as [13], [14], [15], there 

is a noteworthy dearth of research on the development of 

intelligent welding systems. Robots have achieved 

significant gains in several production processes [18], [19], 

including machining [16], [17], thanks to the quick 

development of intelligent systems. The welding industry, 

particularly in the field of process automation, has been 

hesitant to adopt new technological advancements. Critical 

TIG welding process variables including current, voltage, 

welding speed, and gas flow rate directly affect the shape of 

the weld bead and, consequently, the joint's Ultimate 

Tensile Strength (UTS). The UTS of AISI 4340 low alloy 

steel underwent a considerable 57MPa change as a result of 

changing production conditions [12], [20]. Even though 

there has been advancement in automating process 

parameter determination, it is still limited to online 

programming and large batch sizes. Robotic welding arms' 

actuation and control systems have been shown to work 

such as[21], [22], [23], but sophisticated sensing and 

decision-making systems still need to be improved.  
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The ability of AI to make decisions is still significantly 

lacking, despite attempts to replicate human brain cognitive 

processes. Humans are better than machines at making the 

appropriate decisions at the right time while exhibiting 

ingenuity and resourcefulness in problem-solving [24], 

[25]. The strength of AI, on the other hand, is in its capacity 

to perform lower-level human judgements with outstanding 

speed, efficiency, and cost-effectiveness. Each of the 

divisions of AI has its collection of algorithms created to 

solve particular problem sets. Notably, GoogleNet  and 

ResNet-50 have proven effective at classifying images, 

identifying objects, recognising faces, and classifying 

objects [26]. Layers may be disregarded if they do not bring 

value to the network thanks to ResNet-50's addition of 

residual blocks. Utilising inception modules, GoogleNet's 

convolutional operations are affordable and free from the 

risk of overfitting. Despite the dearth of research on AI-

based welding systems, significant advancements have 

been made. Notably, this research gathers visual data with 

an emphasis on either weld feature extraction or weld 

problem identification for intelligent systems to handle. A 

weld geometric feature monitoring system is developed in 

[27] to assist welders in selecting the best welding settings 

by calculating the bead width that will be produced based 

on input data. Another study i.e. [28] predicts welding 

parameters based on desired weld penetration and vice 

versa, showing prediction accuracies reached with different 

approaches. Another critical step in the welding process is 

non-destructive testing for weld defect detection and image-

based defect sensing devices that have been proposed and 

put into use by [29]. For instance, researchers employed 

ResNet with 18 convolutional layers for image 

classification to accurately identify a variety of weld flaws 

[30].  Another study in the same spirit emphasises the 

potential benefit of CNNs for image classification [31].  

Emiprical study 

Dataset 

The enormous amount of data required for successfully 

training a CNN is a key factor in this endeavour. The 

difficulty, though, is that substantial testing and data 

collection are difficult due to the inherent limitations of the 

available internal resources. To address this, it was 

determined that the necessary data would be obtained from 

outside sources, mainly online archives, ensuring a large 

and varied dataset suitable for training and validation. The 

requirement for a dataset that precisely replicates the wide 

range of real-world welding circumstances, a prerequisite 

for training and verifying the CNN model, led to the choice 

to obtain data externally. The goal was to gather a dataset 

that would include various welding circumstances and 

faults, which made access to a variety of images necessary. 

Leveraging other sources became a practical strategy to 

alleviate resource shortages given the enormous volume 

required. Given its depth and clear connection with the 

research's goals, the TIG Aluminium 5083  dataset from 

Kaggle was specifically chosen as the fundamental corpus 

for training the CNN. This effort was greatly helped by the 

dataset, a treasure trove of 33,254 images painstakingly 

categorised into separate classifications. The collection is 

intelligently divided into several groups that correspond to 

important welding circumstances and flaws. The following 

subcategories are included in this list: "Good Weld", "Burn 

Through", "Contamination", "Lack of Fusion", 

"Misalignment", and "Lack of Penetration". This dataset's 

extensiveness offered a solid foundation for training the 

CNN and attaining the research's objectives. The 

provenance of the dataset adds to its legitimacy. The 

Department of Metallurgy and Materials at the University 

of Birmingham in the UK and TWI Ltd in Abington, 

Cambridge, were the organisations responsible for taking 

the images in this collection. These organisations captured 

images using cutting-edge technology, particularly HDR 

cameras. The dataset's diversity and quality were greatly 

increased by the HDR cameras' high-fidelity capture of 

welding settings.  

The dataset is then organised into designated subfolders, 

which is an essential step for speeding up data processing. 

Then, image augmentation is carried out to increase dataset 

diversity and efficiency. The ResNet-50 and ResNet-18 

models are then imported and adjusted as necessary to meet 

the research's specifications. The main stage in the process 

is to train these modified ResNet models using the collected 

TIG Aluminium 5083 dataset, which is essential for the 

models. The models' ability to recognise welding conditions 

and flaws accurately depends on this training step. 

Following training, the effectiveness of the models in 

identifying and categorising welding instances is evaluated 

in detail by utilising confusion matrices and Grad-CAM to 

examine network performance. With the use of these 

analytical tools, models may be thoroughly evaluated, 

directing future model improvements and optimisations for 

better performance. 

Dataset Preprocessing 

As they pass through several convolutional layers, filters, 

and the neural network in this research, the images undergo 

significant processing. Red, Green, or Blue (RGB) channels 

correspond to the dimensions of each image's three-

dimensional array [13]. Each component of a dimension 

corresponds to a pixel in the image and has a value between 

0 and 255 that represents the brightness of the 

corresponding pixel. Neural network training is a 

computationally demanding process that uses a lot of 

memory, especially on the GPU. As a result, the processing 

time varies greatly depending on the image resolution. 

Image sizes are minimised to the greatest extent possible to 

speed up processing and lower computational load. The 

images in the dataset are initially cropped from their 

original size of 1280*1024 pixels to 800*974 pixels to 

remove extraneous black pixels. The images are then 

changed to grayscale, which further shrinks them to an array 

of 800*974*1 pixels each. The dataset is, however, 

extended and altered to meet this criterion for compatibility 

with the ResNet-50 model, which analyses RGB images 

with 224 pixels in height and 224 pixels in width. For the 

network to perform better with unseen images, gained by 

augmentation, the dataset must be diverse. Each image is 

given a 50% probability of being either vertically mirrored 

or rotated by 20 degrees in either a clockwise or 
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anticlockwise direction during the augmentation process. 

The data must be arranged in a specified folder structure 

with a subfolder for each class of image to enable effective 

training with the MATLAB network training tool. The 

initial dataset, though, did not follow this structure. A 

Python script was used to properly reorganise the dataset. 

By comparing image names to a JSON file that comprised 

image names and their corresponding classifications, this 

script iterated over each file in the folder, transferred images 

to the appropriate subfolder, and assured accurate labelling 

for supervised learning. By carefully processing the data, it 

is ensured that the dataset is formatted and enhanced to 

fulfil the needs for effective training and validation of the 

AI-based welding system. 

Model architecture 

The layer count and its ramifications are the most 

important factors to take into account when choosing a 

suitable CNN architecture. In this decision-making process, 

we place special emphasis on the convolutional layers 

because they extract features from the input images. In the 

TIG dataset, these layers are crucial for identifying the 

digital properties connected to each unique weld class. The 

CNN's earliest layers are tasked with identifying basic 

features including the borders of the weld zone and colour 

gradients coming from the Heat-Affected Zone (HAZ). The 

network can distinguish increasingly complicated traits as 

the information moves through succeeding layers. It has 

been demonstrated that an architecture with more layers can 

find complex and sophisticated features in the dataset. 

While improving feature extraction capabilities, this 

increase in layer count does present some questions. When 

dealing with deep architectures that have a high layer count, 

the overfitting issue must be taken into account. When a 

model is overturned to the complexities of the training data, 

it captures highly specific features, even subtleties like 

scratches on the base metal used in the training dataset. As 

a result, the model predicts the training data with 

remarkable accuracy but fails when attempting to predict 

the unknown data. Finding the right number of layers to 

avoid overfitting and guaranteeing the network's 

generalizability presents a complex task in this case. The 

risk of overfitting in large networks reduces the model's 

capacity to generalise effectively to new data.  

Finding the ideal balance between the number of layers 

is a difficult undertaking that calls for a practical strategy 

incorporating testing. To find the ideal configuration that 

strikes the ideal balance between complexity and 

generalisation ability, it is essential to experiment and 

assess the model's performance with a range of layer counts. 

Given this, we incorporate the ResNet-18 architecture into 

our experimental framework to compare its performance to 

that of the ResNet-50 model. This methodical comparison 

will show how an 18-layer deep network compares to its 50-

layer counterpart in terms of effectiveness and efficiency 

for our particular goals. As we move from the domain of 

network parameters to the domain of training the ResNet-

50 model on the dataset, it becomes clear that careful 

changes and fine-tuning are required. These variables have 

a significant impact on the network's learning dynamics, 

successfully guiding it in the direction of optimal 

convergence and reliable predictions. The output layer's 

number of neurons is a crucial parameter to configure, to 

start. The model's ability to accurately describe the classes 

found in the dataset depends on this parameter.  

To guarantee that the model can recognise the varied 

welding circumstances and faults in the dataset, the proper 

balance must be struck here. The learning rate, which 

affects how big of a step to take throughout the optimisation 

process, is another key component. The network's capacity 

to settle into an ideal solution and the speed at which it 

converges are both greatly impacted by the learning rate. To 

promote effective training and avoid problems like 

overshooting or slow convergence, a well-calibrated 

learning rate is essential. Another important component of 

the network parameters is momentum, which can be written 

as a constant. During optimisation, it affects how the 

weights are updated. Smoother convergence and escape 

from local minima can result from proper tuning of the 

momentum constant. Another crucial setting to choose is 

the maximum number of iterations, which determines how 

many times the algorithm will run through the full dataset 

during training. This parameter affects how long the model 

is trained for and how much of the dataset it is exposed to 

as a result. The bias value, which affects the model's 

adaptability and capacity to precisely capture the 

underlying patterns in the dataset, is the final crucial 

parameter to adjust. Table I lists the hyperparameter that has 

been used. 

Table 1. Hyperparameters value. 

Hyperparameter Value 

Momentum  0.9 

Initial learning rate 0.001 

Learning rate drop factor 0.1 

Learning rate drop period  10 

Gradient Threshold method  ‘12norm’ 

Gradient threshold  Inf 

Maximum epochs  30 

Mini batch size  32 

Verbose  1 

Verbose frequency  50 

Validation frequency  50 

Sequence padding direction  ‘right’ 

Sequence padding value  0 

Batch normalisation statistics  ‘Population’ 

Experiments 

Fig. 1 shows a large dataset sample and highlights the 

notable differences in appearance between images within 

each class. It should be noted that the "contamination" class 

exhibits substantial variability, making it difficult to 

pinpoint a typical image for feature extraction. As a result, 

an individual technique is required, in which unique 

features are extracted from each image within a class. This 

guarantees that each class is accurately characterised by the 

CNN by capturing all pertinent information related to that 

class. The goal of network training is to create a network 
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capable of using convolutional layers to extract distinctive 

properties for each class. The CNN should then compare 

these characteristics to any given image and determine 

which class it belongs to. Although deeper networks are 

capable of extracting more complex characteristics, they 

run a higher risk of overfitting the training set.  

The performance of the ResNet-50 model is contrasted 

with that of the shallower ResNet-18 model to establish the 

ideal depth of the network. Both models go through training 

on 1000 images from each class, followed by validation on 

200 images from each class. The ResNet-50 model was 

trained for 257 minutes and 30 seconds, with a validation 

accuracy of 99.75% and a validation loss of 0.0144 at the 

end. While the ResNet-18 model took 106 minutes and 49 

seconds to train, it finished with a validation accuracy of 

99.67% and a loss of 0.0081. ResNet-18 was more effective 

in terms of training time and loss value, despite the ResNet-

50 model showing a 0.8% greater prediction accuracy. 

Because of its 18 layers and quicker training time, the 

ResNet-18 model is recommended for training. It also has a 

lower loss value. It is clear from examining Figs. 2 and 3's 

training progression that both prediction accuracy and loss 

have peaked. The training procedure should have been 

finished after 1000 iterations, but it took 5610 instead. Both 

networks are ready to classify the test dataset after the 

training is finished, and a variety of analytical methods are 

used to assess their performance. Figs. 4 and 5 shows that 

ResNet-50 almost precisely predicts the classes of images 

in the test dataset, except for one misclassification in which 

an image tagged as "good weld" is wrongly predicted as 

"lack of penetration". Despite the excellent forecast 

accuracy, this misclassification calls for further inquiry.  

The Grad-CAM algorithm is applied to investigate the 

prediction process of the network and maybe to 

comprehend the misclassification. Fig. 6 shows the Grad-

CAM visualisation for each class of images. There aren't 

many distinguishing characteristics in the images from the 

"good weld" and "lack of fusion" classes, which could 

confuse these classes. Grad-CAM heat maps show that the 

network is highlighting features on the left and right sides 

instead of the "good weld" class, which is an improper focus 

for the network. Other classes like "lack of fusion" and 

"misalignment" also show this pattern. Instead of 

concentrating on the basic weld aspects that are essential for 

classification, the majority of images from each class come 

from the same experiment and share some experiment-

specific data that the model employs for identification. As a 

result, the model is outstanding at categorising images from 

this particular dataset but less effective for more general 

industrial applications. This shows overfitting to the 

training data. Surprisingly, the ResNet-18 model's 

prediction accuracy with the test dataset matches that of 

ResNet-50 with only one misclassification: an image tagged 

"contamination" was projected mistakenly to be "lack of 

penetration". The Grad-CAM visualisations for each image 

class using ResNet-18 are shown in Fig. 6. It becomes clear 

that due to their visual resemblance, classifications like 

"contamination" and "lack of fusion" could be mistaken for 

one another. According to the Grad-CAM explanation, the 

network concentrates on comparable areas of the images 

(upper right corner), which have nothing to do with the weld 

quality itself. The ResNet-18 model also demonstrates a 

propensity to focus on characteristics unrelated to weld 

quality, as observed in the ResNet-50 model. This indicates 

that overfitting is still an issue in both 50-layer and 18-layer 

deep CNNs. The models, ResNet-50 and ResNet-18, 

exhibit great prediction accuracy but also show evidence of 

overfitting, making them most useful on this particular 

dataset. 

 

Figure 1. Dataset sample. [15, 18] 

 

Figure 2. ResNet-18 accuracy vs loss. 

 

 

Figure 3. ResNet-50 accuracy vs loss. 
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Figure 4. Confusion matrix chart- ResNet-50. 

 

Figure 5. Confusion matrix chart- ResNet-18. 

 

Figure 6. Grad-CAM ResNet-50 and ResNet-18. [15, 18] 

 

Result analysis 

The effectiveness of both models in extracting distinctive 

properties for each class is evaluated through a thorough 

examination. A comparison research is also done to see how 

these features may be defined digitally manually as opposed 

to automatically using a neural network. On a scale of 0 to 

1, the heat map serves as a crucial tool for highlighting the 

importance of the features that CNN used to digitally 

designate each class. A score of 1 denotes the most 

prominence, whereas a score of 0 denotes the least 

significance in terms of feature representation. 

Good weld 

An important finding from the heat map is that the ResNet-

50 model's emphasis is too narrow. It shows that the 

ResNet-50 model is highlighting aspects of the image that 

have nothing to do with the weldment. These components 

may include base metal-specific patterns or gradients that 

the deeper network wrongly classified as defining 

characteristics of the "good weld" class. On the other hand, 

the heat map's prominent focus on the weldment area shows 

that the ResNet-18 model has acquired characteristics 

associated with a good weld. In real-world terms, this 

means that the ResNet-50 model is expected to produce 

extremely precise predictions only for the photos in this 

dataset. In contrast, the ResNet-18 model is anticipated to 

produce precise predictions for both images within and 

outside of this dataset. If we were to describe these features 

digitally, we would use a 5*5 filter to flatten colour 

gradients by averaging the pixel values. The image would 

therefore be labelled as having a "good weld" if there is a 

rectangular area of pixels that is lighter (pixels with lower 

values) between two darker (base metal-representing) areas. 

Burn through 

A noteworthy finding is highlighted by the heat map 

analysis of the burn-through class: neither the ResNet-50 

model nor the ResNet-18 model was able to successfully 

learn the characteristics of this class. The heat map shows 

that contrary to what was initially thought, the ResNet-50 

model emphasises a specific area at the burn-through's 

middle rather than its outskirts. On the other hand, the 

ResNet-18 model did not learn any specific aspects of the 

image, as seen by the green mask over its heat map (green 

corresponds to a value of 0). Although the models learned 

false features for this class, their burn-through prediction 

accuracy topped 98%. This implies that the models perform 

exceptionally well in predicting images of this class inside 

this dataset but may fail to predict images of this class 

precisely from additional datasets. If this class were to be 

defined digitally, the procedure would entail averaging the 

pixel values with a 5*5 filter to balance out the colour 

gradients. A darker rectangular section of pixels (pixels 

with higher values) of the same value is present between 

two lighter portions (indicating the base metal), and the 

image is afterwards categorised as "burn through" if this is 

the case. 
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Contamination 

The green mask on the heat map shows that, like the "burn 

through" class, the ResNet-18 model has trouble 

distinguishing the distinctive characteristics of the 

"contamination" class. On the other hand, the heat map for 

the ResNet-50 model provides information: the light red 

zones covering the weld area show that specific areas of the 

actual weld are receiving focus. However, a dark red area in 

the heat map's corner implies that the deeper model is 

picking up elements that are both connected to and 

unconnected from the actual weld. This suggests that the 

ResNet-50 model might outperform the shallower 18-layer 

model in terms of image prediction from outside the dataset. 

Identifying foreign particles based on their pixel values may 

be necessary to define this class. Contamination is when a 

group of pixels considerably differs (by more than 50%) 

from the pixels around it. Additionally, if more than 20% of 

the image's pixels comprise foreign particles, the image 

may be labelled as "contaminated". 

Misalignment 

The heatmaps unmistakably show that both models are 

emphasising the bottom half of the image, which has little 

to do with the weld's specifics. Surprisingly, this is the only 

situation in which the shallower and deeper networks 

concentrate on the same image regions. Despite both 

models' remarkable prediction accuracy within this dataset, 

they are unlikely to correctly categorise images belonging 

to this class outside of it. A procedure utilising pixel value 

averaging with a 2*2 filter and finding vertical lines of 

higher pixel values might be used to manually establish this 

image class. The image might be correctly categorised as 

"misalignment" if it has several misaligned lines running 

vertically across the middle of it. 

Lack of penetration 

The deeper design of the ResNet-50 model demonstrates 

that it is more effective at extracting the distinguishing 

characteristics of this particular class. The heatmap 

demonstrates that although the 18-layer CNN tends to 

emphasise information around the weld, the 50-layer CNN 

nearly entirely concentrates on the fine weld details. This 

distinction strongly implies that the ResNet-50 model is 

likely to show a better prediction accuracy for this particular 

image class than it did on the training dataset. A method that 

uses a 5*5 filter size to average all pixel values can be used 

for digital classification. The core of the image, where the 

weld bead should be, should show a gradient shift; if it 

doesn't, the image can be correctly categorised as having a 

"lack of penetration". 

Lack of Fusion 

Both models fail to accurately capture particular 

characteristics of the "lack of fusion" class, as seen by the 

green mask overlaid on the images. Therefore, it seems that 

CNN's performance in this situation may not be primarily 

influenced by the depth of the network. To ensure that both 

networks can correctly categorise images of this class 

outside the boundaries of this dataset, changes to other CNN 

parameters are likely needed. In a digital setting, defining 

the characteristics of this class requires a vertical scan 

through the image. If a vertical matrix of pixels in the centre 

of the image is discovered to be 50% darker than the 

surrounding pixels, the weld can be safely categorised as 

having a "lack of fusion". 

Discussion 

Carefully separating the dataset into training and validation 

images is a crucial step in starting the model training and 

evaluation phase. This division is necessary to ensure a 

complete assessment of the model's performance. 

Additionally, it is crucial to estimate the volume of data 

used for training with caution; given the size of the TIG 

Aluminium 5083 dataset. When the model is too suited to 

the training data, overfitting can lead to overfitting, which 

weakens the model's generalisation skills. During the 

training phase, the network is intensively trained and 

features are retrieved using the designated training images. 

The performance of the model is then scrutinised using the 

validation images. This evaluation consists of guessing the 

class to which each validation image belongs and 

contrasting those predictions with the actual labels attached 

to each image. Such a comparison research offers valuable 

insight into the accuracy and effectiveness of the model. 

The training and validation data are meticulously plotted in 

various ways to thoroughly examine the network's 

performance as shown in Section 6. Critical performance 

measures are represented graphically, which aids in 

understanding the behaviour of the model. This thorough 

analysis points up potential areas for enhancement and 

optimisation, opening the door to well-informed decisions 

on how to improve the model's performance and accuracy 

in locating and classifying welding errors in the dataset. To 

achieve the goals of using AI for better welding defect 

identification and categorization, this ongoing process of 

training, evaluating, and refining is essential. The prediction 

accuracy is evaluated graphically and quantitatively (as a 

percentage) to give a thorough analysis of the neural 

network's performance as shown in Section 6. This 

comprehensive graphic allows for a quick assessment of 

incorrect classifications and offers important insights into 

both correct and incorrect image classifications. If a 

particular class is regularly misclassified, a thorough 

investigation is necessary to ascertain the underlying 

causes. However, it takes a lot of work to manually go 

through the output of each convolutional layer and find the 

crucial traits that the model thought were important. In this 

case, automated algorithms save the day by providing a 

clear and comprehensive explanation of the model's 

decision-making process. One such incredible algorithm is 

the directed Gradient-Class Activation Mapping (Grad-

CAM). Grad-CAM generates a heat map that successfully 

highlights the portions of the image that the network 

considers crucial for prediction. By shedding light on the 

model's inner workings, assisting in the identification of 

crucial components, and permitting potential model 

alterations, this representation enhances understanding. 

Grad-CAM is employed in this way to add a crucial layer 

of interpretability and transparency to the model, improving 

the evaluation procedure and ultimately increasing the 
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model's expected accuracy and efficiency in identifying and 

categorising welding defects in the dataset. 

Conclusion and future works 

To create the framework for the later development of a 

specific AI deep learning system, this research started with 

an examination of AI applications in the welding industry. 

The major objective was to develop an algorithm capable of 

correctly determining if a weld image represented a "good 

weld", "burn through", "contamination", "lack of fusion", 

"lack of penetration", or "misalignment". The successful 

installation and alterations of the ResNet-50 and ResNet-18 

CNN models were among this research's accomplishments. 

The acquisition and improvement of a TIG on the 

Aluminium 5083 dataset, which was necessary for 

effectively training the models, was a significant 

component. Through the training process, both models 

showed exceptional prediction accuracy, reaching 98%. 

Despite the excellent forecast accuracy, a further 

investigation utilising the Grad-CAM approach identified a 

significant issue. It was shown that, in most situations, 

neither model was able to adequately extract the critical 

characteristics that distinguished each type of weld. More 

study is needed to address the risk of overfitting, which was 

cited as the cause of this disadvantage. Potential methods 

for reducing overfitting include using a more varied dataset 

to expose the models to a wider variety of features, 

modifying the learning rate to encourage efficient 

convergence during training, and investigating different 

CNN architectures that might enhance feature extraction 

and generalisation. Future iterations of this AI deep learning 

algorithm are anticipated to produce predictions that are 

even more accurate by resolving these shortcomings, and as 

a result, will be more widely used in the sector. 

References 

[1] A. W. Fande, R. V. Taiwade, and L. Raut, 

‘Development of activated tungsten inert gas welding 

and its current status: A review’, Jun. 11, 2022, Taylor 

& Francis. doi: 10.1080/10426914.2022.2039695. 

[2] E. A. Gyasi, H. Handroos, and P. Kah, ‘Survey on 

artificial intelligence (AI) applied in welding: A future 

scenario of the influence of AI on technological, 

economic, educational and social changes’, in Procedia 

Manufacturing, Elsevier, Jan. 2019, pp. 702–714. doi: 

10.1016/j.promfg.2020.01.095. 

[3] D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. 

Anggia, ‘Deep Learning in Image Classification using 

Residual Network (ResNet) Variants for Detection of 

Colorectal Cancer’, in Procedia Computer Science, 

Elsevier, Jan. 2021, pp. 423–431. doi: 

10.1016/j.procs.2021.01.025. 

[4] A. Sirco, A. Almisreb, N. M. Tahir, and J. Bakri, ‘Liver 

Tumour Segmentation based on ResNet Technique’, in 

ICCSCE 2022 - Proceedings: 2022 12th IEEE 

International Conference on Control System, 

Computing and Engineering, Institute of Electrical and 

Electronics Engineers Inc., 2022, pp. 203–208. doi: 

10.1109/ICCSCE54767.2022.9935636. 

[5] N. Saleem, J. Gao, M. Irfan, E. Verdu, and J. P. Fuente, 

‘E2E-V2SResNet: Deep residual convolutional neural 

networks for end-to-end video driven speech 

synthesis’, Image and Vision Computing, vol. 119, p. 

104389, Mar. 2022, doi: 

10.1016/j.imavis.2022.104389. 

[6] M. H. R. Sobuz, M. K. I. Kabbo, T. S. Alahmari, J. 

Ashraf, E. Gorgun, and M. M. H. Khan, 

‘Microstructural behavior and explainable machine 

learning aided mechanical strength prediction and 

optimization of recycled glass-based solid waste 

concrete’, Case Studies in Construction Materials, p. 

e04305, 2025. 

[7] A. Mayr, M. Weigelt, M. Masuch, M. Meiners, F. 

Hüttel, and J. Franke, ‘Application Scenarios of 

Artificial Intelligence in Electric Drives Production’, in 

Procedia Manufacturing, Elsevier, Jan. 2018, pp. 40–

47. doi: 10.1016/j.promfg.2018.06.006. 

[8] E. Gorgun, ‘Numerical analysis of inflow turbulence 

intensity impact on the stress and fatigue life of vertical 

axis hydrokinetic turbine’, Physics of Fluids, vol. 36, 

no. 1, 2024, Accessed: Mar. 06, 2024. [Online]. 

Available: 

https://pubs.aip.org/aip/pof/article/36/1/015111/29327

52. 

[9] E. Görgün, ‘Çoklu Yükleme Koşulları Altında Yük 

Vagonu Şasisinin Topoloji Optimizasyonu’, Karadeniz 

Fen Bilimleri Dergisi, vol. 12, no. 2, pp. 593–604, Dec. 

2022, doi: 10.31466/kfbd.1078425. 

[10] E. Görgün, ‘Ultrasonik Muayene Prob Çaplarının 

Darbe Yankı Değerine Etkisinin Araştırılması’, 

Karadeniz Fen Bilimleri Dergisi, vol. 12, no. 1, pp. 

381–389, 2022. 

[11] E. Görgün, ‘Investigation of The Effect of SMAW 

Parameters On Properties of AH36 Joints and The 

Chemical Composition of Seawater’, International 

Journal of Innovative Engineering Applications, vol. 8, 

no. 1, pp. 28–36, 2024. 

[12] E. Gorgun, ‘Ultrasonic testing and surface 

conditioning techniques for enhanced thermoplastic 

adhesive bonds’, J Mech Sci Technol, vol. 38, no. 3, pp. 

1227–1236, Mar. 2024, doi: 10.1007/s12206-024-

0218-6. 

[13] E. Gorgun, A. Ali, and Md. S. Islam, ‘Biocomposites 

of Poly(Lactic Acid) and Microcrystalline Cellulose: 

Influence of the Coupling Agent on Thermomechanical 

and Absorption Characteristics’, ACS Omega, vol. 9, 

no. 10, pp. 11523–11533, Mar. 2024, doi: 

10.1021/acsomega.3c08448.. 
[14] D. Vijayan and V. Seshagiri Rao, ‘Process Parameter 

Optimization in TIG Welding of AISI 4340 Low Alloy 

Steel Welds by Genetic Algorithm’, in IOP Conference 

Series: Materials Science and Engineering, IOP 

Publishing, Jul. 2018, p. 012066. doi: 10.1088/1757-

899X/390/1/012066. 

[15] TWI, ‘What is Tungsten Inert Gas (GTAW or TIG) 

Welding?’, Job Knowledge 6. Accessed: Sep. 28, 2023. 

[Online]. Available: https://www.twi-

global.com/technical-knowledge/job-

knowledge/tungsten-inert-gas-tig-or-gta-welding-006 



DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 677-685 

 

685 
 

[16] Z. Abbasi et al., ‘The Detection of Burn-Through 

Weld Defects Using Noncontact Ultrasonics’, 

Materials 2018, Vol. 11, Page 128, vol. 11, no. 1, p. 

128, Jan. 2018, doi: 10.3390/MA11010128. 

[17] B. Wang, S. J. Hu, L. Sun, and T. Freiheit, ‘Intelligent 

welding system technologies: State-of-the-art review 

and perspectives’, Jul. 01, 2020, Elsevier. doi: 

10.1016/j.jmsy.2020.06.020. 

[18] R. Tsuzuki, ‘Development of automation and artificial 

intelligence technology for welding and inspection 

process in aircraft industry’, Jan. 01, 2022, Springer 

Science and Business Media Deutschland GmbH. doi: 

10.1007/s40194-021-01210-3. 

[19] M. A. Kesse, E. Buah, H. Handroos, and G. K. Ayetor, 

‘Development of an artificial intelligence powered tig 

welding algorithm for the prediction of bead geometry 

for tig welding processes using hybrid deep learning’, 

Metals, vol. 10, no. 4, p. 451, Mar. 2020, doi: 

10.3390/met10040451. 

[20] S. Wazir, G. S. Kashyap, and P. Saxena, ‘MLOps: A 

Review’, Aug. 2023. 

[21] N. Marwah, V. K. Singh, G. S. Kashyap, and S. Wazir, 

‘An analysis of the robustness of UAV agriculture field 

coverage using multi-agent reinforcement learning’, 

International Journal of Information Technology 

(Singapore), vol. 15, no. 4, pp. 2317–2327, May 2023, 

doi: 10.1007/s41870-023-01264-0. 

[22] W. Ji and L. Wang, ‘Industrial robotic machining: a 

review’, International Journal of Advanced 

Manufacturing Technology, vol. 103, no. 1–4, pp. 

1239–1255, Apr. 2019, doi: 10.1007/s00170-019-

03403-z. 

[23] S. H. Kim et al., ‘Robotic Machining: A Review of 

Recent Progress’, International Journal of Precision 

Engineering and Manufacturing, vol. 20, no. 9, pp. 

1629–1642, Sep. 2019, doi: 10.1007/S12541-019-

00187-W/FIGURES/12. 

 

 

 

 

 

 

 

 

 

 

 

 

[24] M. H. M. Ali and M. R. Atia, ‘A lead through 

approach for programming a welding arm robot using 

machine vision’, Robotica, vol. 40, no. 3, pp. 464–474, 

Mar. 2022, doi: 10.1017/S026357472100059X. 

[25] N. Oh and H. Rodrigue, ‘Toward the Development of 

Large-Scale Inflatable Robotic Arms Using Hot Air 

Welding’, Soft Robotics, vol. 10, no. 1, pp. 88–96, Feb. 

2023, doi: 10.1089/soro.2021.0134. 

[26] A. Ghosh, D. Chakraborty, and A. Law, ‘Artificial 

intelligence in Internet of things’, Dec. 01, 2018, The 

Institution of Engineering and Technology. doi: 

10.1049/trit.2018.1008. 

[27] G. S. Kashyap, K. Malik, S. Wazir, and R. Khan, 

‘Using Machine Learning to Quantify the Multimedia 

Risk Due to Fuzzing’, Multimedia Tools and 

Applications, vol. 81, no. 25, pp. 36685–36698, Oct. 

2022, doi: 10.1007/s11042-021-11558-9. 

[28] Z. Guo, Y. Sun, M. Jian, and X. Zhang, ‘Deep residual 

network with sparse feedback for image restoration’, 

Applied Sciences (Switzerland), vol. 8, no. 12, p. 2417, 

Nov. 2018, doi: 10.3390/app8122417. 

[29] D. Das, D. K. Pratihar, G. G. Roy, and A. R. Pal, 

‘Phenomenological model-based study on electron 

beam welding process, and input-output modeling 

using neural networks trained by back-propagation 

algorithm, genetic algorithms, particle swarm 

optimization algorithm and bat algorithm’, Applied 

Intelligence, vol. 48, no. 9, pp. 2698–2718, Sep. 2018, 

doi: 10.1007/s10489-017-1101-2. 

[30] C. Xia, Z. Pan, Z. Fei, S. Zhang, and H. Li, ‘Vision 

based defects detection for Keyhole TIG welding using 

deep learning with visual explanation’, Journal of 

Manufacturing Processes, vol. 56, pp. 845–855, Aug. 

2020, doi: 10.1016/j.jmapro.2020.05.033. 

[31] D. Bacioiu, G. Melton, M. Papaelias, and R. Shaw, 

‘Automated defect classification of Aluminium 5083 

TIG welding using HDR camera and neural networks’, 

Journal of Manufacturing Processes, vol. 45, pp. 603–

613, Sep. 2019, doi: 10.1016/j.jmapro.2019.07.020. 

 


