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ABSTRACT

Modern welding procedures are intricate, requiring a variety of variables and occasionally lacking a
complete understanding of their underlying mechanics. Despite the adoption of intelligent welding
processes in a few applications, there are still several obstacles. By combining advanced search,
combinatorial optimisation, geometric reasoning techniques, and comprehensive Artificial Intelligence
(AI) modelling cognitive capabilities, the proposed research aims to build intelligent welding. The three
main scientific foci of the research are feature correlation to forecast process performance and facilitate
corrective actions, feature extraction utilising intense signal analysis, and the use of simulated or supplied
data for analysis. Previous research led to the development of an intelligent Tungsten Inert Gas (TIG)
welding platform for materials made of aluminium. On the other hand, TIG welding is susceptible to
fluctuations in the root gap, which affect the quality of the weld and could result in electrode contamination.
Common welding errors include excessive heat-affected zone width, fusion width, bead height, and
inadequate penetration. These errors directly affect the strength and load-bearing capacity of the joint while
also making it more susceptible to stress and fracture propagation. The proposed Al-powered welding tool
is made to overcome common weld imperfections. Therefore, the research's objective is to develop a hybrid
deep learning-powered platform for TIG welding. Convolutional Neural Networks (CNNs) will be
employed to extract discrete visual characteristics linked to each type of weld defect, establish correlations
between these features, and give weld images to identify the types of defects or their absence. The objective
of the research is to create a neural network model that can determine whether a given weld image is good
or bad due to contamination, burn-through, or lack of fusion. These findings will make precise weld quality

monitoring and process improvement possible.

Introduction

Tungsten Inert Gas (TIG) welding is a crucial process in
the industrial sector that calls for qualified and experienced
welders, which entails high costs and potential health
concerns [1]. However, with the introduction of big data
and Industry 4.0, efforts have been made to discover weld
flaws in several other welding procedures in addition to TIG
welding [2]. Therefore, this research has the potential to
ease problems related to using human labour in the TIG
welding process if weld automation when successfully
implemented. The ability of a worker to make intelligent
decisions based on cursory investigations is crucial for
welding. Making these choices is essential for figuring out
and altering process parameters to meet requirements. The
choice of these parameters directly affects product quality,
underscoring the significance of this decision.

However, the introduction of machine learning algorithms
that can mimic human cognitive capacities offers a potential
substitute by reproducing abilities like learning, image

classification, and feature identification. The ResNet-50
and ResNet-18 networks are examined and compared in
this research as they have shown potential in the past such
as [3], [4], [5]. These neural networks are trained to
correlate characteristics from a verification dataset after
extracting them from a training dataset [6]. The objective is
to categorise a given weld image as either a good weld or a
particular type of defective weld, taking into account
common TIG weld faults [7] [8] [9]. Therefore, the main
goal is to create a neural network that can categorise post-
weld images of TIG welds into different groups, such as
weld quality, burn-through, contamination, lack of fusion,
misalignment, and lack of penetration. However, data
accessibility determines this research's scope. The TIG
welding process on 5083 aluminium will be represented in
the ResNet model exclusively as post-weld images taken
with High Dynamic Range (HDR) camera. It's crucial to
remember that numerous weld flaws can exist in a single
piece in real-world applications. However, occurrences
containing many flaws in a single sample will not be taken
into consideration in this research due to the limits of the
training data [7]. Therefore, the main contributions of this
paper are as follows:
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Development of an Intelligent TIG Welding Platform

The research contributes to the field of welding technology
by developing an intelligent TIG welding platform. This
platform is designed to enhance the welding process for
materials made of aluminum, which is known to be
particularly challenging due to its susceptibility to common
welding errors [9] [10] [11]. The development of this
platform showcases the application of advanced search,
combinatorial ~ optimization, = geometric  reasoning
techniques, and comprehensive Al modeling cognitive
capabilities to address real-world welding challenges.

Hybrid Deep Learning-Powered Welding Tool

The research introduces a novel approach by leveraging
CNNs to extract discrete visual characteristics associated
with various types of weld defects. By establishing
correlations between these features and using weld images
as input, a hybrid deep learning-powered platform is
developed. This platform has the ability to identify common
weld imperfections such as contamination, burn-through, or
lack of fusion. This contribution holds significant promise
for precise weld quality monitoring and process
improvement, ultimately leading to enhanced weld quality
and reliability.

Advancements in Welding Defect Detection

The research significantly advances the capabilities of
defect detection in welding processes [12]. By training a
neural network model to analyze weld images and
determine whether a given weld is of good or bad quality,
the study introduces a new level of automation and accuracy
to the inspection and assessment of welds. This contribution
not only enables real-time quality control but also facilitates
rapid corrective actions in response to welding errors,
thereby improving the overall efficiency and reliability of
welding operations in various industries.

These contributions collectively represent a substantial step
forward in the integration of Al and deep learning
techniques into the welding domain, addressing critical
issues related to weld quality and performance prediction
while paving the way for more intelligent and efficient
welding processes.

Background

The common welding method known as TIG creates
welds of excellent quality. This process employs a non-
consumable tungsten electrode, Argon shielding gas, and an
electric arc as the heat source to melt the weld pool. The
accuracy and superior quality of the welds produced are
enhanced by the intense and small size of the arc. The
quality of the welded connection is significantly influenced
by the operator's control of crucial welding parameters such
as arc current, arc voltage, travel speed, and gas flow rate
[8]. Numerous weld faults may develop when any of these
variables depart from their ideal ranges, endangering the
connection's structural integrity. One such issue that
develops when there is insufficient penetration into the base
metal is “burn-through”. This issue is frequently brought on
by an excessively high arc current or voltage and/or a slow

enough travel speed, which produces too much extra heat in
comparison to what is needed for melting and fusing. A key
factor in understanding this phenomenon is the specific heat
input, which may be calculated using Equation (1) [9].
These factors highlight the complexity and importance of
precise control over welding settings in preserving the
quality and integrity of TIG welding.

Specific Heat Input =(Voltage * Amperage)/(Travel
speed*mass) (1)

In welding, “contamination” is the presence of foreign
particles in or close to the weld zone. On the surface of base
metals, these particles—which can be anything from dust to
oil to metal shavings—are frequently observed.
Contamination can be efficiently reduced during pre-
welding procedures by wiping, chemical cleaning, or
mechanical cleaning techniques. Whereas, “lack of fusion”
in welding describes an inadequate bond between the weld
and the base metals. This occurrence is commonly
attributed to insufficient heat input, which happens when
there is not enough energy given to allow for proper melting
and fusing. When welding, low voltage or current, as well
as an incredibly fast travel speed, can all result in
insufficient heat input. The link between these parameters
is seen in Equation (1). Fusion failure can also happen in
circumstances when the surface isn't properly prepared
before welding. When two base metals are not precisely
aligned in their appropriate dimensions (“misalignment”),
the necessary degree of interaction between them cannot be
maintained. However, when the welding process fails to fill
the target connection, this is known as a “lack of
penetration”. This results from improper management or
inadequate control of welding parameters including arc
current, voltage, or travel speed. As a result, the joint is
weaker than necessary, raising the possibility of structural
issues.

Related Works

The goal of this research is to integrate Al into welding
systems. Although numerous studies examine Al and
welding sciences individually such as [13], [14], [15], there
is a noteworthy dearth of research on the development of
intelligent welding systems. Robots have achieved
significant gains in several production processes [18], [19],
including machining [16], [17], thanks to the quick
development of intelligent systems. The welding industry,
particularly in the field of process automation, has been
hesitant to adopt new technological advancements. Critical
TIG welding process variables including current, voltage,
welding speed, and gas flow rate directly affect the shape of
the weld bead and, consequently, the joint's Ultimate
Tensile Strength (UTS). The UTS of AISI 4340 low alloy
steel underwent a considerable 57MPa change as a result of
changing production conditions [12], [20]. Even though
there has been advancement in automating process
parameter determination, it is still limited to online
programming and large batch sizes. Robotic welding arms'
actuation and control systems have been shown to work
such as[21], [22], [23], but sophisticated sensing and
decision-making systems still need to be improved.
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The ability of Al to make decisions is still significantly
lacking, despite attempts to replicate human brain cognitive
processes. Humans are better than machines at making the
appropriate decisions at the right time while exhibiting
ingenuity and resourcefulness in problem-solving [24],
[25]. The strength of AL on the other hand, is in its capacity
to perform lower-level human judgements with outstanding
speed, efficiency, and cost-effectiveness. Each of the
divisions of Al has its collection of algorithms created to
solve particular problem sets. Notably, GoogleNet and
ResNet-50 have proven effective at classifying images,
identifying objects, recognising faces, and classifying
objects [26]. Layers may be disregarded if they do not bring
value to the network thanks to ResNet-50's addition of
residual blocks. Utilising inception modules, GoogleNet's
convolutional operations are affordable and free from the
risk of overfitting. Despite the dearth of research on Al-
based welding systems, significant advancements have
been made. Notably, this research gathers visual data with
an emphasis on either weld feature extraction or weld
problem identification for intelligent systems to handle. A
weld geometric feature monitoring system is developed in
[27] to assist welders in selecting the best welding settings
by calculating the bead width that will be produced based
on input data. Another study i.e. [28] predicts welding
parameters based on desired weld penetration and vice
versa, showing prediction accuracies reached with different
approaches. Another critical step in the welding process is
non-destructive testing for weld defect detection and image-
based defect sensing devices that have been proposed and
put into use by [29]. For instance, researchers employed
ResNet with 18 convolutional layers for image
classification to accurately identify a variety of weld flaws
[30]. Another study in the same spirit emphasises the
potential benefit of CNNs for image classification [31].

Emiprical study
Dataset

The enormous amount of data required for successfully
training a CNN is a key factor in this endeavour. The
difficulty, though, is that substantial testing and data
collection are difficult due to the inherent limitations of the
available internal resources. To address this, it was
determined that the necessary data would be obtained from
outside sources, mainly online archives, ensuring a large
and varied dataset suitable for training and validation. The
requirement for a dataset that precisely replicates the wide
range of real-world welding circumstances, a prerequisite
for training and verifying the CNN model, led to the choice
to obtain data externally. The goal was to gather a dataset
that would include various welding circumstances and
faults, which made access to a variety of images necessary.
Leveraging other sources became a practical strategy to
alleviate resource shortages given the enormous volume
required. Given its depth and clear connection with the
research's goals, the TIG Aluminium 5083 dataset from
Kaggle was specifically chosen as the fundamental corpus
for training the CNN. This effort was greatly helped by the
dataset, a treasure trove of 33,254 images painstakingly
categorised into separate classifications. The collection is

intelligently divided into several groups that correspond to
important welding circumstances and flaws. The following
subcategories are included in this list: "Good Weld", "Burn
Through", "Contamination", "Lack of Fusion",
"Misalignment", and "Lack of Penetration". This dataset's
extensiveness offered a solid foundation for training the
CNN and attaining the research's objectives. The
provenance of the dataset adds to its legitimacy. The
Department of Metallurgy and Materials at the University
of Birmingham in the UK and TWI Ltd in Abington,
Cambridge, were the organisations responsible for taking
the images in this collection. These organisations captured
images using cutting-edge technology, particularly HDR
cameras. The dataset's diversity and quality were greatly
increased by the HDR cameras' high-fidelity capture of
welding settings.

The dataset is then organised into designated subfolders,
which is an essential step for speeding up data processing.
Then, image augmentation is carried out to increase dataset
diversity and efficiency. The ResNet-50 and ResNet-18
models are then imported and adjusted as necessary to meet
the research's specifications. The main stage in the process
is to train these modified ResNet models using the collected
TIG Aluminium 5083 dataset, which is essential for the
models. The models' ability to recognise welding conditions
and flaws accurately depends on this training step.
Following training, the effectiveness of the models in
identifying and categorising welding instances is evaluated
in detail by utilising confusion matrices and Grad-CAM to
examine network performance. With the use of these
analytical tools, models may be thoroughly evaluated,
directing future model improvements and optimisations for
better performance.

Dataset Preprocessing

As they pass through several convolutional layers, filters,
and the neural network in this research, the images undergo
significant processing. Red, Green, or Blue (RGB) channels
correspond to the dimensions of each image's three-
dimensional array [13]. Each component of a dimension
corresponds to a pixel in the image and has a value between
0 and 255 that represents the brightness of the
corresponding pixel. Neural network training is a
computationally demanding process that uses a lot of
memory, especially on the GPU. As a result, the processing
time varies greatly depending on the image resolution.
Image sizes are minimised to the greatest extent possible to
speed up processing and lower computational load. The
images in the dataset are initially cropped from their
original size of 1280*1024 pixels to 800*974 pixels to
remove extraneous black pixels. The images are then
changed to grayscale, which further shrinks them to an array
of 800*974*1 pixels each. The dataset is, however,
extended and altered to meet this criterion for compatibility
with the ResNet-50 model, which analyses RGB images
with 224 pixels in height and 224 pixels in width. For the
network to perform better with unseen images, gained by
augmentation, the dataset must be diverse. Each image is
given a 50% probability of being either vertically mirrored
or rotated by 20 degrees in either a clockwise or
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anticlockwise direction during the augmentation process.
The data must be arranged in a specified folder structure
with a subfolder for each class of image to enable effective
training with the MATLAB network training tool. The
initial dataset, though, did not follow this structure. A
Python script was used to properly reorganise the dataset.
By comparing image names to a JSON file that comprised
image names and their corresponding classifications, this
script iterated over each file in the folder, transferred images
to the appropriate subfolder, and assured accurate labelling
for supervised learning. By carefully processing the data, it
is ensured that the dataset is formatted and enhanced to
fulfil the needs for effective training and validation of the
Al-based welding system.

Model architecture

The layer count and its ramifications are the most
important factors to take into account when choosing a
suitable CNN architecture. In this decision-making process,
we place special emphasis on the convolutional layers
because they extract features from the input images. In the
TIG dataset, these layers are crucial for identifying the
digital properties connected to each unique weld class. The
CNN's earliest layers are tasked with identifying basic
features including the borders of the weld zone and colour
gradients coming from the Heat-Affected Zone (HAZ). The
network can distinguish increasingly complicated traits as
the information moves through succeeding layers. It has
been demonstrated that an architecture with more layers can
find complex and sophisticated features in the dataset.
While improving feature extraction capabilities, this
increase in layer count does present some questions. When
dealing with deep architectures that have a high layer count,
the overfitting issue must be taken into account. When a
model is overturned to the complexities of the training data,
it captures highly specific features, even subtleties like
scratches on the base metal used in the training dataset. As
a result, the model predicts the training data with
remarkable accuracy but fails when attempting to predict
the unknown data. Finding the right number of layers to
avoid overfitting and guaranteeing the network's
generalizability presents a complex task in this case. The
risk of overfitting in large networks reduces the model's
capacity to generalise effectively to new data.

Finding the ideal balance between the number of layers
is a difficult undertaking that calls for a practical strategy
incorporating testing. To find the ideal configuration that
strikes the ideal balance between complexity and
generalisation ability, it is essential to experiment and
assess the model's performance with a range of layer counts.
Given this, we incorporate the ResNet-18 architecture into
our experimental framework to compare its performance to
that of the ResNet-50 model. This methodical comparison
will show how an 18-layer deep network compares to its 50-
layer counterpart in terms of effectiveness and efficiency
for our particular goals. As we move from the domain of
network parameters to the domain of training the ResNet-
50 model on the dataset, it becomes clear that careful
changes and fine-tuning are required. These variables have
a significant impact on the network's learning dynamics,

successfully guiding it in the direction of optimal
convergence and reliable predictions. The output layer's
number of neurons is a crucial parameter to configure, to
start. The model's ability to accurately describe the classes
found in the dataset depends on this parameter.

To guarantee that the model can recognise the varied
welding circumstances and faults in the dataset, the proper
balance must be struck here. The learning rate, which
affects how big of a step to take throughout the optimisation
process, is another key component. The network's capacity
to settle into an ideal solution and the speed at which it
converges are both greatly impacted by the learning rate. To
promote effective training and avoid problems like
overshooting or slow convergence, a well-calibrated
learning rate is essential. Another important component of
the network parameters is momentum, which can be written
as a constant. During optimisation, it affects how the
weights are updated. Smoother convergence and escape
from local minima can result from proper tuning of the
momentum constant. Another crucial setting to choose is
the maximum number of iterations, which determines how
many times the algorithm will run through the full dataset
during training. This parameter affects how long the model
is trained for and how much of the dataset it is exposed to
as a result. The bias value, which affects the model's
adaptability and capacity to precisely capture the
underlying patterns in the dataset, is the final crucial
parameter to adjust. Table I lists the hyperparameter that has
been used.

Table 1. Hyperparameters value.

Hyperparameter Value
Momentum 0.9
Initial learning rate 0.001
Learning rate drop factor 0.1
Learning rate drop period 10
Gradient Threshold method ‘12norm’
Gradient threshold Inf
Maximum epochs 30

Mini batch size 32
Verbose 1
Verbose frequency 50
Validation frequency 50
Sequence padding direction ‘right’
Sequence padding value 0

Batch normalisation statistics ‘Population’

Experiments

Fig. 1 shows a large dataset sample and highlights the
notable differences in appearance between images within
each class. It should be noted that the "contamination" class
exhibits substantial variability, making it difficult to
pinpoint a typical image for feature extraction. As a result,
an individual technique is required, in which unique
features are extracted from each image within a class. This
guarantees that each class is accurately characterised by the
CNN by capturing all pertinent information related to that
class. The goal of network training is to create a network
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capable of using convolutional layers to extract distinctive
properties for each class. The CNN should then compare
these characteristics to any given image and determine
which class it belongs to. Although deeper networks are
capable of extracting more complex characteristics, they
run a higher risk of overfitting the training set.

The performance of the ResNet-50 model is contrasted
with that of the shallower ResNet-18 model to establish the
ideal depth of the network. Both models go through training
on 1000 images from each class, followed by validation on
200 images from each class. The ResNet-50 model was
trained for 257 minutes and 30 seconds, with a validation
accuracy of 99.75% and a validation loss of 0.0144 at the
end. While the ResNet-18 model took 106 minutes and 49
seconds to train, it finished with a validation accuracy of
99.67% and a loss of 0.0081. ResNet-18 was more effective
in terms of training time and loss value, despite the ResNet-
50 model showing a 0.8% greater prediction accuracy.
Because of its 18 layers and quicker training time, the
ResNet-18 model is recommended for training. It also has a
lower loss value. It is clear from examining Figs. 2 and 3's
training progression that both prediction accuracy and loss
have peaked. The training procedure should have been
finished after 1000 iterations, but it took 5610 instead. Both
networks are ready to classify the test dataset after the
training is finished, and a variety of analytical methods are
used to assess their performance. Figs. 4 and 5 shows that
ResNet-50 almost precisely predicts the classes of images
in the test dataset, except for one misclassification in which
an image tagged as "good weld" is wrongly predicted as
"lack of penetration". Despite the excellent forecast
accuracy, this misclassification calls for further inquiry.

The Grad-CAM algorithm is applied to investigate the
prediction process of the network and maybe to
comprehend the misclassification. Fig. 6 shows the Grad-
CAM visualisation for each class of images. There aren't
many distinguishing characteristics in the images from the
"good weld" and "lack of fusion" classes, which could
confuse these classes. Grad-CAM heat maps show that the
network is highlighting features on the left and right sides
instead of the "good weld" class, which is an improper focus
for the network. Other classes like "lack of fusion" and
"misalignment" also show this pattern. Instead of
concentrating on the basic weld aspects that are essential for
classification, the majority of images from each class come
from the same experiment and share some experiment-
specific data that the model employs for identification. As a
result, the model is outstanding at categorising images from
this particular dataset but less effective for more general
industrial applications. This shows overfitting to the
training data. Surprisingly, the ResNet-18 model's
prediction accuracy with the test dataset matches that of
ResNet-50 with only one misclassification: an image tagged
"contamination" was projected mistakenly to be "lack of
penetration". The Grad-CAM visualisations for each image
class using ResNet-18 are shown in Fig. 6. It becomes clear
that due to their visual resemblance, classifications like
"contamination" and "lack of fusion" could be mistaken for
one another. According to the Grad-CAM explanation, the

network concentrates on comparable areas of the images
(upper right corner), which have nothing to do with the weld
quality itself. The ResNet-18 model also demonstrates a
propensity to focus on characteristics unrelated to weld
quality, as observed in the ResNet-50 model. This indicates
that overfitting is still an issue in both 50-layer and 18-layer
deep CNNs. The models, ResNet-50 and ResNet-18,
exhibit great prediction accuracy but also show evidence of
overfitting, making them most useful on this particular
dataset.

Good Weld

Bum through Contamination  Lack of Fusion Lack of Penetration  Misalignment

Figure 1. Dataset sample. [15, 18]

T £ £ w w

Figure 2. ResNet-18 accuracy vs loss.

Figure 3. ResNet-50 accuracy vs loss.
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Weld classification using ResNet-50

burn_through 00

contaminaticn
a good_weld : 1
a
)
= lack_efl_fusion 00

lack_of_penetration 00
misalignment 0
0 o .;@b el e o
j.i‘&)q \@wﬁ- ESANS g,d‘“a
NSRS S
»rr
Predicted Class
Figure 4. Confusion matrix chart- ResNet-50.
Weld classification using ResNet-18
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Figure 5. Confusion matrix chart- ResNet-18.
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Figure 6. Grad-CAM ResNet-50 and ResNet-18. [15, 18]

Result analysis

The effectiveness of both models in extracting distinctive
properties for each class is evaluated through a thorough
examination. A comparison research is also done to see how
these features may be defined digitally manually as opposed
to automatically using a neural network. On a scale of 0 to
1, the heat map serves as a crucial tool for highlighting the
importance of the features that CNN used to digitally
designate each class. A score of 1 denotes the most
prominence, whereas a score of 0 denotes the least
significance in terms of feature representation.

Good weld

An important finding from the heat map is that the ResNet-
50 model's emphasis is too narrow. It shows that the
ResNet-50 model is highlighting aspects of the image that
have nothing to do with the weldment. These components
may include base metal-specific patterns or gradients that
the deeper network wrongly -classified as defining
characteristics of the "good weld" class. On the other hand,
the heat map's prominent focus on the weldment area shows
that the ResNet-18 model has acquired characteristics
associated with a good weld. In real-world terms, this
means that the ResNet-50 model is expected to produce
extremely precise predictions only for the photos in this
dataset. In contrast, the ResNet-18 model is anticipated to
produce precise predictions for both images within and
outside of this dataset. If we were to describe these features
digitally, we would use a 5*5 filter to flatten colour
gradients by averaging the pixel values. The image would
therefore be labelled as having a "good weld" if there is a
rectangular area of pixels that is lighter (pixels with lower
values) between two darker (base metal-representing) areas.

Burn through

A noteworthy finding is highlighted by the heat map
analysis of the burn-through class: neither the ResNet-50
model nor the ResNet-18 model was able to successfully
learn the characteristics of this class. The heat map shows
that contrary to what was initially thought, the ResNet-50
model emphasises a specific area at the burn-through's
middle rather than its outskirts. On the other hand, the
ResNet-18 model did not learn any specific aspects of the
image, as seen by the green mask over its heat map (green
corresponds to a value of 0). Although the models learned
false features for this class, their burn-through prediction
accuracy topped 98%. This implies that the models perform
exceptionally well in predicting images of this class inside
this dataset but may fail to predict images of this class
precisely from additional datasets. If this class were to be
defined digitally, the procedure would entail averaging the
pixel values with a 5*5 filter to balance out the colour
gradients. A darker rectangular section of pixels (pixels
with higher values) of the same value is present between
two lighter portions (indicating the base metal), and the
image is afterwards categorised as "burn through" if this is
the case.
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Contamination

The green mask on the heat map shows that, like the "burn
through" class, the ResNet-18 model has trouble
distinguishing the distinctive characteristics of the
"contamination" class. On the other hand, the heat map for
the ResNet-50 model provides information: the light red
zones covering the weld area show that specific areas of the
actual weld are receiving focus. However, a dark red area in
the heat map's corner implies that the deeper model is
picking up elements that are both connected to and
unconnected from the actual weld. This suggests that the
ResNet-50 model might outperform the shallower 18-layer
model in terms of image prediction from outside the dataset.
Identifying foreign particles based on their pixel values may
be necessary to define this class. Contamination is when a
group of pixels considerably differs (by more than 50%)
from the pixels around it. Additionally, if more than 20% of
the image's pixels comprise foreign particles, the image
may be labelled as "contaminated".

Misalignment

The heatmaps unmistakably show that both models are
emphasising the bottom half of the image, which has little
to do with the weld's specifics. Surprisingly, this is the only
situation in which the shallower and deeper networks
concentrate on the same image regions. Despite both
models' remarkable prediction accuracy within this dataset,
they are unlikely to correctly categorise images belonging
to this class outside of it. A procedure utilising pixel value
averaging with a 2*2 filter and finding vertical lines of
higher pixel values might be used to manually establish this
image class. The image might be correctly categorised as
"misalignment" if it has several misaligned lines running
vertically across the middle of it.

Lack of penetration

The deeper design of the ResNet-50 model demonstrates
that it is more effective at extracting the distinguishing
characteristics of this particular class. The heatmap
demonstrates that although the 18-layer CNN tends to
emphasise information around the weld, the 50-layer CNN
nearly entirely concentrates on the fine weld details. This
distinction strongly implies that the ResNet-50 model is
likely to show a better prediction accuracy for this particular
image class than it did on the training dataset. A method that
uses a 5*5 filter size to average all pixel values can be used
for digital classification. The core of the image, where the
weld bead should be, should show a gradient shift; if it
doesn't, the image can be correctly categorised as having a
"lack of penetration".

Lack of Fusion

Both models fail to accurately capture particular
characteristics of the "lack of fusion" class, as seen by the
green mask overlaid on the images. Therefore, it seems that
CNN's performance in this situation may not be primarily
influenced by the depth of the network. To ensure that both
networks can correctly categorise images of this class
outside the boundaries of this dataset, changes to other CNN
parameters are likely needed. In a digital setting, defining

the characteristics of this class requires a vertical scan
through the image. If a vertical matrix of pixels in the centre
of the image is discovered to be 50% darker than the
surrounding pixels, the weld can be safely categorised as
having a "lack of fusion".

Discussion

Carefully separating the dataset into training and validation
images is a crucial step in starting the model training and
evaluation phase. This division is necessary to ensure a
complete assessment of the model's performance.
Additionally, it is crucial to estimate the volume of data
used for training with caution; given the size of the TIG
Aluminium 5083 dataset. When the model is too suited to
the training data, overfitting can lead to overfitting, which
weakens the model's generalisation skills. During the
training phase, the network is intensively trained and
features are retrieved using the designated training images.
The performance of the model is then scrutinised using the
validation images. This evaluation consists of guessing the
class to which each wvalidation image belongs and
contrasting those predictions with the actual labels attached
to each image. Such a comparison research offers valuable
insight into the accuracy and effectiveness of the model.
The training and validation data are meticulously plotted in
various ways to thoroughly examine the network's
performance as shown in Section 6. Critical performance
measures are represented graphically, which aids in
understanding the behaviour of the model. This thorough
analysis points up potential areas for enhancement and
optimisation, opening the door to well-informed decisions
on how to improve the model's performance and accuracy
in locating and classifying welding errors in the dataset. To
achieve the goals of using Al for better welding defect
identification and categorization, this ongoing process of
training, evaluating, and refining is essential. The prediction
accuracy is evaluated graphically and quantitatively (as a
percentage) to give a thorough analysis of the neural
network's performance as shown in Section 6. This
comprehensive graphic allows for a quick assessment of
incorrect classifications and offers important insights into
both correct and incorrect image classifications. If a
particular class is regularly misclassified, a thorough
investigation is necessary to ascertain the underlying
causes. However, it takes a lot of work to manually go
through the output of each convolutional layer and find the
crucial traits that the model thought were important. In this
case, automated algorithms save the day by providing a
clear and comprehensive explanation of the model's
decision-making process. One such incredible algorithm is
the directed Gradient-Class Activation Mapping (Grad-
CAM). Grad-CAM generates a heat map that successfully
highlights the portions of the image that the network
considers crucial for prediction. By shedding light on the
model's inner workings, assisting in the identification of
crucial components, and permitting potential model
alterations, this representation enhances understanding.
Grad-CAM is employed in this way to add a crucial layer
of interpretability and transparency to the model, improving
the evaluation procedure and ultimately increasing the
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model's expected accuracy and efficiency in identifying and
categorising welding defects in the dataset.

Conclusion and future works

To create the framework for the later development of a
specific Al deep learning system, this research started with
an examination of Al applications in the welding industry.
The major objective was to develop an algorithm capable of
correctly determining if a weld image represented a "good
weld", "burn through", "contamination", "lack of fusion",
"lack of penetration", or "misalignment". The successful
installation and alterations of the ResNet-50 and ResNet-18
CNN models were among this research's accomplishments.
The acquisition and improvement of a TIG on the
Aluminium 5083 dataset, which was necessary for
effectively training the models, was a significant
component. Through the training process, both models
showed exceptional prediction accuracy, reaching 98%.
Despite the excellent forecast accuracy, a further
investigation utilising the Grad-CAM approach identified a
significant issue. It was shown that, in most situations,
neither model was able to adequately extract the critical
characteristics that distinguished each type of weld. More
study is needed to address the risk of overfitting, which was
cited as the cause of this disadvantage. Potential methods
for reducing overfitting include using a more varied dataset
to expose the models to a wider variety of features,
modifying the learning rate to encourage -efficient
convergence during training, and investigating different
CNN architectures that might enhance feature extraction
and generalisation. Future iterations of this Al deep learning
algorithm are anticipated to produce predictions that are
even more accurate by resolving these shortcomings, and as
a result, will be more widely used in the sector.
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