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Abstract

In [15], it has been recently defined a new graph Γ(SM) on monogenic semigroups SM (with zero) having elements {0,x,x2,x3, · · · ,xn}.
The vertices are the non-zero elements x,x2,x3, · · · ,xn and, for 1≤ i, j ≤ n, any two distinct vertices xi and x j are adjacent if xix j = 0 in SM .
As a continuing study of [3] and [15], in this paper it will be investigated some special parameters (such as covering number, accessible
number, independence number), first and second multiplicative Zagreb indices, and Narumi-Katayama index. Furthermore, it will be
presented Laplacian eigenvalue and Laplacian characteristic polynomial for Γ(SM).
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1. Introduction and Preliminaries

The history of studying zero-divisor graphs has began over commutative rings by the paper [8], and then it followed over commutative and
noncommutative rings by some of the joint paper written by Anderson (cf. [4, 5, 6]) and some other authors (see, for instance, [1]). After
that DeMeyer et al. and some other authors studied this special graphs over commutative and noncommutative semigroups ([16, 17, 39]).
Since then there are very huge number of studies have been added in the literature about zero-divisor graphs. In a recent study [15], the
graph Γ(SM) is defined by replacing the adjacent rule of vertices and not destroying the main idea. In detail, the authors first considered a
finite multiplicative monogenic semigroup with zero as the set

SM = {0,x,x2,x3, · · · ,xn} (1.1)

and then, by considering the definition given in [17], it has been obtained an undirected (zero-divisor) graph Γ(SM) associated to SM as
in the following. The vertices of the graph are labeled by the nonzero zero-divisors (in other words, all nonzero element) of SM , and any
two distinct vertices xi and x j, where (1≤ i, j ≤ n) are connected by an edge in case xix j = 0 with the rule xix j = xi+ j = 0 if and only if
i+ j ≥ n+1. The fundamental spectral properties such as the diameter, girth, maximum and minimum degree, chromatic number, clique
number, degree sequence, irregularity index and dominating number for this new graph are presented in [15]. Furthermore, in [3], it has been
studied first and second Zagreb indices, Randić index, geometric-arithmetic index and atom-bond connectivity index, Wiener index, Harary
index, first and second Zagreb eccentricity indices, eccentric connectivity index and the degree distance to indicate the importance of the
graph Γ(SM).
As a further study, in this paper, it will be investigated covering number, accessible number, independence number, first and second
multiplicative Zagreb indices, and finally Narumi-Katayama index over the graph Γ(SM). In addition, it will be investigated Laplacian
eigenvalue and Laplacian characteristic polynomial for Γ(SM). It is obvious that the reason for studying this subject is to give a great
opportunity to a deep characterization over the algebraic structure that studied on it.
Throughout this paper G = (V,E) will always denote a simple connected graph such that V = V (G) represents the set of vertices and
E = E(G) represents the set of edges. In addition, for a real number r, we will denote by brc the greatest integer ≤ r, and by dre the least
integer ≥ r in our results.

2. Some special numbers over Γ(SM)

In this section we will mainly deal with the special parameters, namely covering, independence and accessible numbers over the graph
Γ(SM) associated with SM as given in (1.1). At this point we remind that such these properties can be obtained by calculating the distance
between any two vertices or the total number of whole vertices in any simple graph G. So this idea will be applied in the proofs of results.
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For a (simple) graph G, two vertices are said to be a cover for each other in G if they are incident. On the other hand, a vertex cover in G is a
set of vertices that covers all edges of G. Depending on this, the covering number (cf. [10, 22]) of G, denoted by τ(G), is the number which
obtained by the minimum cardinality of a vertex cover in G. Thus, the first result of this paper is the following.

Theorem 2.1. For any SM as in (1.1), we certainly have τ(Γ(SM)) =
⌊ n

2
⌋
.

Proof. We need to define a cover set C for the graph Γ(SM). To do that, let us start by adding the vertices in C that having highest number
of neighborhoods. This gives an opportunity to cover highest number of edges with the less number of vertices. Now, we will investigate the
proof in the meaning of even and odd cases of n. For simplicity, let us call C1 and C2 to the cover sets depends on the even or odd cases over
n, respectively.
The set C1: For the vertex xn, since xnxi1 = 0, it must be in the set C1 (where 1 ≤ i1 ≤ n−1). Secondly, the vertex xn−1 must also be in
C1 since xn−1 is adjacent with all vertices holds the condition xnxi2 = 0 where 2≤ i2 ≤ n−2. By keeping this idea, we finally see that the
vertex x

n
2 +1 must be in C1 which covers x

n
2 x

n
2 +1 ∈ E(Γ(SM)). As a result of this, the vertex cover set C1 (for n is even) of Γ(SM) is given

by C1 =
{

x
n
2 +1,x

n
2 +2, · · · ,xn

}
that implies the covering number is equal to n

2 .

The set C2: As a similar approximation in the above case, the vertex xn must be in C2 since xn is adjacent with all the vertices of the form
xnxi1 = 0, where 1≤ i1 ≤ n−1. Secondly the vertex xn−1 must also be in C2 since xn−1 is adjacent with all vertices of the form xnxi2 = 0,
where 2 ≤ i2 ≤ n−2. By iterating this idea, we finally see that the vertex x

n+1
2 +1 must be in C2 which covers the edges x

n+1
2 +1x

n+1
2 and

x
n+1

2 +1x
n−1

2 . Thus, the vertex cover set C2 (for n is odd) of Γ(SM) is given by C2 =
{

x
n+1

2 +1,x
n+1

2 +2, · · · ,xn
}

such that the covering number

is equal to n−1
2 .

Considering the sets C1 and C2 (for both even and odd cases of n), one can obtain the covering number as the number
⌊ n

2
⌋
, as required.

The following two theorems will be about the accessible and independence numbers for Γ(SM). A subset A of V (G) is called accessible
if and only if each v ∈ {V (G)−A} is adjacent to N[A]. The minimal number of vertices over all accessible sets of G is called accessible
number (cf. [20]) and denoted by η(G).

Theorem 2.2. For any SM as in (1.1), we always have η (Γ(SM)) = 1.

Proof. It is easy to see that for the graph Γ(SM), if A is chosen as the set A = {xn}, then N[A] = {x1,x2, · · · ,xn−1}. Therefore, we get each
vertex v in the set {V (Γ(SM))−A} is adjacent to N[A]. So η (Γ(SM)) = 1, as required.

For a simple graph G, the non-empty subset J ⊆V (G) is called independent if there are no edges among the vertices in J. If an independent
set that is not a subset of another independent set, then it is called the maximal. In fact such sets are also named as dominating sets. The
cardinality of a largest independent set in G is called the independence number of G and denoted by ind(G).

The following lemma plays a central role in the proof next theorem.

Lemma 2.3 ([22]). A set J is independent if and only if its complement is a vertex cover. So the sum of ind(G) and the size of a minimum
vertex cover η(G) is the number of vertices in the graph.

Adapting this lemma into our graph, we obtain the following theorem.

Theorem 2.4. For any SM as in (1.1), we have ind(Γ(SM)) =
⌊ n

2
⌋
.

Proof. As we proved in Theorem 2.1, the minimum vertex cover has been obtained as the set C =
{

xb
n
2 c+1,xb

n
2 c+2, · · · ,xn

}
. Thus, by

Lemma 2.3, the set
{

x1,x2, · · · ,xb
n
2c
}

is actually independent which has the largest cardinality. So the independence number of Γ(SM) is⌊ n
2
⌋
, in other words, ind(Γ(SM)) =

⌊ n
2
⌋
.

By considering maximum or minumum degrees, another result can be stated as follows.

Example 2.5. Let us consider the graph Γ(SM6) in Figure 2.1 with the vertex set V (Γ(SM6)) = {x,x2,x3,x4,x5,x6} (see [15] for the details
of this graph).

x x2

x6 x5

x4 x3
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HH��
��
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Figure 2.1: The graph of Γ(SM6 )

Hence, by Theorems 2.1, 2.2 and 2.4, we certainly have τ(Γ(SM6)) = 3, η(Γ(SM6)) = 1 and ind(Γ(SM6)) = 3.
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3. Multiplicative Zagreb Indices

Topological indices play a significant role in chemistry, pharmacology, etc. (see, for instance, [18, 25, 26, 37]). Many of the topological
indices of current interest in mathematical chemistry are defined in terms of vertex degrees of the molecular graph. For example, the first and
second Zagreb indices are defined as

M1(G) = ∑
vi∈V (G)

dG(vi)
2 and M2(G) = ∑

viv j∈E(G)

dG(vi)dG(v j) ,

respectively (cf. [28, 29]). The Zagreb indices and their applications have been used to study molecular complexity, chirality, ZE-isomerism,
heterosystems, etc. We encourage the reader to consult [9, 24, 31, 32, 35, 40] for historical background, computational techniques, and
mathematical properties of Zagreb indices.
Following an earlier idea of Narumi and Katayama [34] (one may also cite the work [27]) who put forward what nowadays is referred to as
the Narumi-Katayama index

NK(G) =
n

∏
i=1

dG(vi) (3.1)

of a simple graph G. There also introduced the multiplicative versions of the Zagreb indices ([23]). Actually, the first and second
multiplicative Zagreb indices [21, 36, 37] are defined, respectively, as follows:

Π1(G) = ∏
vi∈V (G)

(dG(vi))
2 and Π2(G) =

n

∏
i=1

dG(vi)
dG(vi). (3.2)

These above facts clearly give us that Π1 = (NK(G))2. Therefore, as another main result of this paper, we have the following theorem.

Theorem 3.1. Let SM be a monogenic semigroup as given in (1.1). Then

• the Narumi-Katayama index of Γ(SMn) is (n−1)!
⌊ n

2
⌋

,

• the first mutliplicative Zagreb index of Γ(SMn) is
(
(n−1)!

⌊ n
2
⌋)2 ,

• the second mutliplicative Zagreb index of Γ(SMn) is
(
(n−1)!

⌊ n
2
⌋)((n−1)!b n

2c) .

Proof. By the Narumi-Katayama index as defined in (3.1), we get

NK(Γ(SMn)) =
n

∏
i=1

dΓ(SMn )
(vi) = 1.2.3. · · · .(n−1)

⌊n
2

⌋
= (n−1)!

⌊n
2

⌋
that gives the first condition of the theorem. Secondly, by the indices given in (3.2), we have

Π1(Γ(SMn)) =
n

∏
i=1

(
dΓ(SMn )

(vi)
)2

=
(
(n−1)!

⌊n
2

⌋)2

and

Π2(Γ(SMn)) =
n

∏
i j∈E(Γ(SMn ))

dΓ(SMn )
(vi)dΓ(SMn )

(v j) =
n

∏
i=1

dΓ(SMn )
(vi)

dΓ(SMn )(vi) =
(
(n−1)!

⌊n
2

⌋)((n−1)!b n
2c)

.

Hence the result.

4. Laplacian characteristic polynomial of Γ(SM)

The main goal of this section is to study on the Laplacian eigenvalue and Laplacian characteristic polynomial on Γ(SM).
The Laplacian matrix is a discrete analog of the Laplacian operator in multivariable calculus and serves a similar purpose by measuring to
what extent a graph differs at one vertex from its values at nearby vertices. The Laplacian matrix arises in the analysis of random walks and
electrical networks on graphs ([19]), and in particular in the computation of resistance distances ([7]). Furthermore, recently, it has been
added so many studies (see, for example, [2, 11, 12, 14, 30, 33]) in the literature about these important characterizations.
Let us again consider G with the vertex set V = {v1,v2,v3, ...,vn} and the edge set E of cardinality e. Assume that the vertices are ordered
as d1 ≥ d2 ≥ ·· · ≥ dn, where di is the degree of each vi for i = 1,2, ...,n. For each vi ∈V , the set of neighbors of vi and the average of the
degrees of the vertices adjacent to vi are denoted by Nvi and mv, respectively. Furthermore, as usually, let A(G) be the adjacency matrix and let
D(G) be the diagonal matrix of vertex degrees of G. It is quite well known that the Laplacian matrix of G is defined by L(G) = D(G)−A(G).
In here, L(G) is a real symmetric matrix and so its eigenvalues are all non-negative real numbers. Moreover, since the sum of the rows is
equal to 0, this implies that 0 is the smallest eigenvalue of L(G). Additionally, the spectrum of G is S(G) = (λ1(G),λ2(G), · · · ,λn(G)),
where λ1(G)≥ λ2(G)≥ ·· · ≥ λn(G) = 0 are the eigenvalues of L(G) arranged in non-increasing order. Thus, it is clear that for a star graph
of order n, the spectrum is (n,1,1, · · · ,1︸ ︷︷ ︸

n−2

,0).

The following lemma will be the keynote step in the proof next theorem which can be proved directly by induction steps.

Lemma 4.1 ([12]). Let G = (V,E) be a graph with a vertex subset V p = {v1,v2, · · · ,vk}. Also, let E+ = E ∪E p, where E p ⊆ V p×V p. If
Gp = (V p,E p) has eigenvalues a1 ≥ a2 ≥ ·· · ≥ ak = 0 then the eigenvalues of L(G+), where G+ = (V,E+) are as follows: those eigenvalues
of the graph G = (V,E) which are equal to N (k-1 in number) are incremented by ai,1,2, · · · ,k−1 and the remaining eigenvalues are same.
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To catch up the aim of this section, we also need the following result.

Theorem 4.2. The Laplacian characteristic polynomial of chromatic Γ(SMn) is

φn(x) = (x−n)(x− (n−1)), · · · ,(x− (
⌈n

2

⌉
+1))(x− (

⌈n
2

⌉
−1)), · · · ,(x−1)x.

Proof. The mathematical induction will be used for the proof.

Case i) n is odd:
Step 1 : By taking into account the graph Γ(SM3), the induction can be started by n = 3. In here the Laplacian eigenvalues are {3,1,0}. Now
if we apply Lemma 4.1 and the material before it (in another words, if we add one more vertex in the graph Γ(SM3) and then adjoint it with
all vertices of that graph, and also if we add another vertex with adjoint it only the last vertex which added in final), then we obtain the
Laplacian eigenvalues are {5,4,2,1,0} which belongs the graph Γ(SM5).
Step 2 : Let us assume that the spectrum of Γ(SMn) (where n is odd) is

{n,n−1, · · · ,
⌈n

2

⌉
+1,

⌈n
2

⌉
−1, · · · ,2,1,0}.

Step 3 : As a similar idea in Step 1 (i.e. adding a new vertex in the graph Γ(SMn) and then joining it with all vertices of Γ(SMn), and
also adding another vertex with joining it only the last vertex which added in final), we obtain the graph Γ(SMn+2) since Γ(SMn+2) =
(Γ(SMn)∪K1)∨K1. Thus the spectrum of it is

{n+2,n+1,n, · · · ,
⌈n

2

⌉
+2,

⌈n
2

⌉
,
⌈n

2

⌉
−1, · · · ,2,1,0}.

That gives the odd case.
Case ii) n is even:
Step 1 : Let us take n = 4 and so start it with the graph Γ(SM4). In fact the Laplacian eigenvalues of it is {4,3,1,0}. By Lemma 4.1 and the
material before it (applying same steps as in Step 1 in n is odd case), we obtain the Laplacian eigenvalues {6,5,4,2,1,0} which are belong
to Γ(SM6).
Step 2 : Let us assume that the spectrum of Γ(SMn) (where n is even) is

{n,n−1, · · · , n
2
+1,

n
2
−1, · · · ,2,1,0}.

Step 3 : Iterating the progress applied in Step 1, we obtain the graph Γ(SMn+2) since Γ(SMn+2) = (Γ(SMn)∪K1)∨K1. In here, the spectrum
is

{n+2,n+1,n, · · · , n
2
+2,

n
2
,

n
2
−1, · · · ,2,1,0}.

Hence the result.
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[2] A.S. Çevik, Ch. K. Das, I. Gutman, On the Laplacian-Energy-Like Invariant, Linear Algebra and its Applications, Vol 442, 58–68 (2014) DOI:

10.1016/j.laa.2013.05.002.
[3] N. Akgunes, K. Ch. Das, A. S. Cevik, Topological indices on a graph of monogenic semigroups, Chapter in the book: Topics in Chemical Graph Theory

in Mathematical Chemistry Monographs (Edt. I. Gutman), pp 3-20, No. 16a, Publisher: University of Kragujevac and Faculty of Science Kragujevac,
Kragujevac, 2014.

[4] D.F. Anderson, P.S. Livingston, The Zero-divisor Graph of Commutative Ring, J. Algebra, 217 (1999) 434-447.
[5] D.F. Anderson, A. Badawi, On the Zero-Divisor Graph of a Ring, Comm. Algeb. 36-8 (2008) 3073-3092.
[6] D. D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Algebra, 159 (1991) 500-514.
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