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Abstract

In this study, the results obtained by authors M. Ozkan and F. Oke [2] is extended the ring F2[u]
/
< u3 >. Certain matrices lexicographically

ordered are written using the elements of F2[u]
/
< u3 >. The relations between the codes generated by these matrices and Hadamard codes

are given.
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1. Introduction

Z4- Linear Hadamard codes and extented perfect codes were introduced in [3]. (1−u2) -cyclic codes over F2 +uF2 +u2F2 and the codes
over F2 which are the Gray images of (1−u2) -cyclic or cyclic codes over F2 +uF2 +u2F2 were characterized in [4]. The extended abstract
of this paper is published by AIP [1].
In this study, the codes over the ring F2 + uF2 + u2F2, where u3 = 0 defining by matrices given in section 3. Construction of matrices
are given and it is shown that the Gray images of these codes are Hadamard codes. It is seen that the codes written over the field F2 are
quasi-cyclic codes of index 4. Also some comments are given on the parameters of these codes.

2. Basic Definition

The ring F2[u]
/
< u3 >=

{
a0 +a1.u+a2.u2 + 〈u3〉 | ai ∈ F2, i = 0,1,2

}
is isomorphic to the ring F2 +uF2 +u2F2 and it is also isomorphic

to the ring F2[u]
/
< u3 > where u3 = 0.

The set of cosets F2 +uF2 +u2F2=
{

0 , 1 , u , u2, 1+u , 1+u2,u+u2, 1+u+u2} is a ring with usual addition and multiplication under
the condition u3 = 0.
All the principle ideals of the ring R2 =F2 +uF2 +u2F2 are listed below:
(0) = {0},(u2) = {0 ,u2} ,(u) = (u+u2) = {0 ,u , u2,u+u2} , (1) = (1+u) = (1+u2) = (1+u+u2) = R2 .
The relation (0)⊂ (u2)⊂ (u) = (u+u2)⊂ (1+u) = (1+u2) = (1+u+u2) = (1) = R2 is satisfied for the ideals of the ring R2.
A linear code C over the ring R2 of length n is a R2 submodule of Rn

2 . Also a linear code C over F2 of length n is a n subspace of Fn
2 . An

element of C is called a codeword.
Let C be a code over F2 of length n and let c = (co,c1, ...,cn−1) be a codeword of C. The Hamming weight of C is defined as

wH(c) =
n−1
∑

i=0
wH(ci) where

wH(ci) = 0 if ci = 0 and wH(ci) = 1 if ci = 1 .

The Lee distance dH(c,c′) between any distinct vectors c, c′ ∈ F2
n is defined to be wH(c− c′). The minimum Hamming distance of C is

called as dH(C) = min{dH(c,c′)} for any c,c′ ∈C, c 6= c′

The Lee weight wL(r) of r ∈ R2 is given by
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wL(r) =


0 ; r = 0
4 ; r = u2

2 ; otherwise

This extends to Lee weight function in Rn
2 such that wL(r) =

n−1
∑

i=0
wL(ri) for r = (ro,r1, ...,rn−1) ∈ Rn

2 . The Lee distance dL(x, y) between

any distinct vectors x,y ∈ Rn
2 is defined to be wL(x− y). The dL minimum Lee distance of C is defined as dL(C) = min{dL(x,y)} for any

x,y ∈ C , x 6= y.
A n×n matrix such that all components are−1 or 1 and M.Mt = n.I is called Hadamard matrix. An n×n matrix is called binary normalized
Hadamard matrix if it is obtained from Mn n×n normalized Hadamard matrix writing 0 instead of 1 and writing 1 instead of −1. Let An be
binary normalization of a binary Hadamard matrix Mn.
Think that each row of An is a vector. Then it is seen that the distance of between two vectors is n

2 .
Writing each row of matrix as a vector which has length n and adding themselves and their complements to back of these vectors respectively,
new vectors which has 2n length are obtained. Construct these new vectors in the form of code words. If completions of these codewords
join to this set, it is obtained that a Hadamard code including 4n elements. Thus the minimum distance of this code is n .
Generally the Gray map is defined as :

Φ : Rn
2 −→ F4n

2

(r1,r2, ...,rn) 7→Φ(r1,r2, ...,rn) =

(c1,c2, ...,cn,a1 + c1,a2 + c2, ...,an + cn,b1 + c1,b2 + c2, ...,bn + cn,a1 +b1 + c1,a2 +b2 + c2, ...,an +bn + cn)

where ri = ai +bi.u+ ci.u2 ∈ R2 for 0 < i < n+1.
Therefore C is a code over F2 +uF2 +u2F2 which has length n, it’s image Φ(C) under the Gray map is a binary code which has length 4n.
There is a relation dL(a,b) = dH(Φ(a),Φ(b)) for a, b ∈ Rn

2 between Lee distance dL over Rn
2 and Hamming distance dH over F4n

2 . This
means that Gray map is an isometry.

3. Structure of Hadamard codes

Generating matrices of the new special code will be constructed according the rules given below :
Choose that all elements of first row of the matrix Mα1,α2 from the set {1} , choose that the elements of the other rows from the set{

0 , 1 , u , u2, 1+u , 1+u2,u+u2, 1+u+u2} if α2 = 0 and from the set {0 ,u2 } if α1 = 0. Compare that colums of this matrix by
lexicographically ordering. This matrix constructed above is a special matrix which has α1 +α2 +1 rows.
Certain examples for the matrix Mα1,α2 constructed above are given below :

M0,0 = [1 ]1x1, M0,1 =

[
1 1
0 u2

]
2x2

, M0,2 =

 1 1 1 1
0 0 u2 u2

0 u2 0 u2


3x4

,

M0,3 =


1 1 1 1 1 1 1 1
0 0 0 0 u2 u2 u2 u2

0 0 u2 u2 0 0 u2 u2

0 u2 0 u2 0 u2 0 u2


4x8

, M1,0 =

[
1 1 1 1 1 1 1 1
0 1 u u2 1+u 1+u2 u+u2 1+u+u2

]
2x8

,

M1,1 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 u u u2 u2 1+u 1+u 1+u2 1+u2 u+u2 u+u2 1+u+u2 1+u+u2

0 u2 0 u2 0 u2 0 u2 0 u2 0 u2 0 u2 0 u2


3x16

.

Define the code Cα1,α2 = { (c1,c2).Mα1,α2

∣∣∣ c1 ∈ Rα1+1
2 , c2 ∈ IFα2

2 } which has a generator matrix Mα1,α2 , where α1, α2 positive integers.

The lenght of this code is n = 23α1+α2 . Moreover, the parameters of the code Cα1,α2 over IF2 +uIF2 +u2IF2 are (n,8n,2n).

Theorem 3.1. Let Φ : Rn
2 −→ F4n

2 be Gray map. If Cα1,α2 is a code generated by the matrix Mα1,α2 over F2 + uF2 + u2F2 , it’s image
Φ(Cα1,α2) under the Gray map is the (4n,8n,2n) Hadamard code over the field F2 .

Proof. Writing the code Cα1,α2 generated by matrix Mα1,α2 which has the dimension (α1 +α2 +1) ×n of the form

Cα1,α2 = { (c1,c2).Mα1,α2

∣∣∣ c1 ∈ Rα1+1
2 , c2 ∈ IFα2

2 } the proof is obtained as in [1] .

Lemma 3.2. The dual code of (Cα1,α2)⊥ is a (n, 8n

8n ,4) code and it’s image Φ((Cα1,α2)⊥) under the Gray map is a (4n, 8n

8n ,4) code, in
except the case α1 = α2 = 0.

Proof. The generator matrix Mα1,α2 of Cα1,α2 is the parity-check matrix of the dual code (Cα1,α2)⊥. The dual code of (Cα1,α2)⊥ contains
elements c of Rn

2 satisfied Mα1,α2 .cT = 0. It is easily seen that the number of words satisfied this condition is 8n

8n and the minimum weight a
word is 4. Thus (Cα1,α2)⊥ is (n, 8n

8n ,4) code. Also it is seen that Φ((Cα1,α2)⊥) has the parameter (4n, 8n

8n ,4).
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4. cyclic codes and quasi-cyclic codes of index 4

Each codeword c in such a code C is an n−tuple of the form c = (c1,c2, ...,cn) ∈ Rn
2 can be represented by

c = (c1,c2, ...,cn) ←→c(x) =
n
∑

i=1
ci.xi ∈ R2[x] .

Definition 4.1. Let Cα1,α2 ⊆ Rn
2 be a linear code , where n = 23α1+α2 . Define the map

τ : Rn
2 −→ Rn

2
(c1,c2, ...,cn) 7→ τ (c1,c2, ...,cn) = (cn,c1, ...,cn−1)

If τ(Cα1,α2) =Cα1,α2 then Cα1,α2 is a cyclic code over R2.

Definition 4.2. Let Dα1,α2 ⊆ F4n
2 be a linear code and n = 23α1+α2 . Define the map

σ⊗4 : F4n
2 −→ F4n

2
(d1,d2, ...,d4n) 7→ σ⊗4(d1,d2, ...,d4n) = (dn,d1, ...,dn−1,d2n,dn+1, ...d2n−1,d3n,d2n+1, ...d3n−1,d4n,d3n+1, ...d4n−1)

If σ⊗4(Dα1,α2) = Dα1,α2 then Dα1,α2 is a quasi-cyclic code of index 4 over F2 .

Lemma 4.3. Φτ = σ⊗4 Φ is satisfied.

Proof. Let x = (x1,x2, ...,xn) ∈ Rn
2 where xi = ai +ubi +u2ci ∈ R2 for 1 6 i 6 n . If τ(x) = τ (x1,x2, ...,xn) = (xn,x1, ...,xn−1), then

Φτ(x) =Φ(τ(x1,x2, ...,xn)) =Φ(xn,x1, ...,xn−1) = Φ(an + ubn + u2cn,a1 + ub1 + u2c1,a2 + ub2 + u2c2, ...,an−1 + ubn−1 + u2cn−1) =
(cn,c1,c2, ...,cn−1,an + cn,a1 + c1,a2 + c2, ...,an−1 + cn−1,bn + cn,b1 + c1,b2 + c2, ...,bn−1 + cn−1,an + bn + cn,a1 + b1 + c1,a2 + b2 +
c2, ...,an−1 +bn−1 + cn−1). On the other hand,
Φ(x) = Φ(x1,x2, ...,xn) =Φ(a1 +ub1 +u2c1,a2 +ub2 +u2c2, ...,an +ubn +u2cn)= (c1,c2, ...,cn,a1 +c1,a2 +c2, ...,an +cn,b1 +c1,b2 +
c2, ...,bn + cn,a1 +b1 + c1,a2 +b2 + c2, ...,an +bn + cn) then
σ⊗4(Φ(x)) = (cn,c1,c2, ...,cn−1,an + cn,a1 + c1,a2 + c2, ...,an−1 + cn−1,bn + cn,b1 + c1,b2 + c2, ...,bn−1 + cn−1,an +bn + cn,a1 +b1 +
c1,a2 +b2 + c2, ...,an−1 +bn−1 + cn−1).

Theorem 4.4. The Hadamard code which is obtained by using the matrix Mα1,α2 is a quasi-cyclic code of index 4, in except the case α2 = 0.

Proof. Considering the images of Cα1,α2 under the maps σ⊗4 Φ, Φτ , the proof is completed as in [1].

Example 4.5. Write the matrix M0,1 to define the code C0,1 , M0,1 =

[
1 1
0 u2

]
2x2

. Then the elements of the code C0,1 are of the form

c = (c1,c2).M0 ,1 , where c1 ∈ R2 , c2 ∈ F2 .C0,1 = { 0 0 , 0 u2 , 11 , 11+ u2 , uu , uu+ u2 , u2 u2 , u2 0 , 1+ u1+ u , 1+ u1+ u+ u2 , 1+
u2 1+u2 1+u2 1 , u+u2 u+u2 , u+u2 u , 1+u+u2 1+u+u2 , 1+u+u2 1+u} ⊆ R2

2 . It is seen that dL(C0,1 ) = 4,
∣∣C0,1

∣∣= 16 and then
this is a (2,16,4) code.Therefore Φ(C0,1) = {00000000, 01010101, 00110011, 01100110, 11111111, 10101010, 11001100, 10011001,
00001111, 01011010, 00111100, 01101001 , 11110000, 10100101, 11000011, 10010110} ⊆ F8

2 is a (8,16,4) Hadamard code.

Let A4 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1


4x4

be a normalized Hadamard matrix. Writing 0 instead of 1 and 1 instead of −1 , the vectors

0000, 1010, 1100 and 0110 are obtained. Adding themselves and their complements to back of these vectors respectively, new vec-
tors 0000, 1010, 1100, 0110, 1111, 0101, 0011 and 1001 are obtained. Then using the method given above, the new codewords
00000000, 01010101, 00110011, 01100110, 11111111, 10101010, 11001100, 10011001,00001111, 01011010, 0011110001101001,
11110000, 10100101, 11000011, 10010110 are obtained. The code Φ(C0,2) formed by these codewords is a (8,16,4) Hadamard code.
Moreover (C0,1)⊥ =

{
00 , uu, u2 u2 , u+u2 u+u2}⊆ F2

2 and Φ((C0,1)⊥) = {00000000, 00001111, 11111111, 11110000} ⊆ F8
2 . C0,1 is

a cyclic code such that the equation τ(C0,1) =C0,1 is provided. Similarly Φ(C0,1) is quasi-cyclic code of index 4 such that the equation
σ⊗4(Φ(C0,1)) = Φ(C0,1) is satisfied.
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