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ABSTRACT 

We revisit the Malatya Dominating Set Algorithm (MDSA) to examine its structure from a theoretical standpoint. 
Although earlier applications—combining centrality with greedy and dynamic programming—produced promising 
results, those outcomes lacked formal analysis. In this study, we show that MDSA yields near-optimal solutions on 
several graph types, including paths, cycles, stars, and bipartite graphs. We explore how MDSA selects nodes and the 
role centrality plays in that process. In practice, the algorithm often skips over nodes with low relevance, which helps 
produce smaller and more efficient sets. This observation supports earlier empirical findings, and it also helps explain 
the reasoning behind the algorithm’s behavior. Our interest is not only in confirming its performance but also in 
gaining a clearer view of how and why it works. The results show that MDSA compares well with other methods for 
structured graphs where identifying minimal dominating sets is essential. 

Keywords: Dominating Sets, Malatya Centrality Value, Malatya Dominating Set Algorithm, Greedy Algorithms, 
Dynamic Programming, Theoretical Proof 
 
 

Malatya Hakim Küme Algoritmasının Analitik Doğrulaması: Artık Düğümler Olmadan 
Optimal Hakim Kümelerin Oluşturulması  

 
ÖZ 

Bu çalışmada, Malatya Hâkim Küme Algoritması (MDSA) teorik açıdan yeniden ele alınmaktadır. Merkezilik temelli 
yaklaşımları açgözlü ve dinamik programlama yöntemleriyle birleştiren algoritma, önceki çalışmalarda çeşitli veri 
kümeleri üzerinde başarılı sonuçlar üretmiş olsa da bu başarıların ardında güçlü bir teorik temel bulunmamaktadır. Bu 
kapsamda, MDSA’nın yol, döngü, yıldız ve iki taraflı çizgeler gibi belirli çizge türlerinde optimale yakın çözümler 
üretebildiği gösterilmiştir. Algoritmanın düğüm seçim süreci ve merkezilik hesaplamalarının bu sürece etkisi ayrıntılı 
biçimde incelenmiştir. Uygulama sonuçları, önemsiz düğümlerin elenmesiyle daha küçük ve verimli hâkim kümeler 
elde edildiğini göstermektedir. Bu bulgular, önceki deneysel sonuçlarla örtüşmekte ve algoritmanın karar 
mekanizmasını açıklamaya yardımcı olmaktadır. Bu çalışma yalnızca algoritmanın başarımını doğrulamakla 
kalmayıp, aynı zamanda bu başarımın arkasındaki temel ilkeleri de ortaya koymaktadır. Sonuçlar, MDSA’nın 
yapılandırılmış çizgelerde hâkim küme belirleme problemleri için etkili bir seçenek olduğunu göstermektedir. 

Anahtar Kelimeler: Hâkim Kümeler, Malatya Merkeziyet Değeri, Malatya Hâkim Küme Algoritması, Açgözlü 
Algoritmalar, Dinamik Programlama, Teorik İspat 
 
 
INTRODUCTION 
 

Mathematical modeling to solve real-world problems 
is a fundamental approach in many engineering and 
scientific fields. Graph theory is a structure used in such 
modeling techniques for many optimization problems 
[1], [2]. There are many graph application areas such as 
social networks, computer networks, biological 
interaction networks, transportation, wireless networks, 
text mining, text summarization, network flows, circuit 
connections, molecular simulations, connection 
networks, etc. [3], [4], [5], [6]. As an NP-hard problem, 
the Minimum Dominating Set (MDS) problem holds a 
significant position in graph theory. This problem aims 

to find the smallest subset of nodes in a graph such that 
every node is connected to at least one dominant node, 
provided that the number of elements in the dominating 
set is minimal [7]. The MDS problem plays an important 
role in optimizing network structures by increasing 
efficiency in various areas. In communication networks, 
the use of MDS enables the selection of key relay nodes 
and the optimization of transmission load [8], [9]. In 
social network analysis, there are studies that apply MDS 
in determining effective nodes that control information 
dissemination [10], [11], [12], [13]. In biological 
networks, MDS is one of the methods used in modeling 
basic protein interactions and disease spread [14], [15], 
[16]. For the problem of node placement optimization in 
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sensor networks, in cases requiring full coverage, the 
minimum number of sensor nodes can be determined 
using MDS [17], [18], [19]. However, the fact that the 
solution of this problem is NP-hard necessitates the 
development of efficient algorithms in large-scale 
graphs. In the literature, various methods such as 
approximation algorithms, greedy algorithms, heuristic 
and meta-heuristic methods, and linear programming-
based solutions (integer linear programming - ILP) have 
been proposed. However, the vast majority of these 
methods either failed to reach the exact optimum solution 
or had high computational costs [8], [20]. 
Malatya Dominating Set Algorithm (MDSA), which we 
introduced in our previous study [21], offers a new 
method that optimizes the MDS determination process 
using the MC Values. In 2023, Yakut and colleagues 
introduced Malatya Centralization, which was 
subsequently applied to solve maximal independent set 
problems for simple graphs [22]. For the best matching 
in bipartite graphs, Öztemiz employed the MC algorithm 
[23]. The MDSA algorithm takes this centrality system 
to a further stage and introduces the second centrality 
concept. In our practices, we have seen that the solution 
of the minimum dominating set problem using classical 
centrality values creates limited effects. In the minimum 
dominating set problem, the "Second Layer Centrality 
Influence Area" philosophy was created based on the fact 
that the influence area of a node should be calculated 
together with the secondary neighborhoods. This 
philosophy led to the emergence of the Second Malatya 
Centrality concept. We show empirically in our previous 
study that MDSA performs effectively on large-scale 
graphs [21]. Nevertheless, this method requires 
theoretical validation and analytical demonstration of its 
best solutions for specific graph types. 
The aim of this study is to strengthen the theoretical 
foundations of MDSA and to mathematically prove that 
it produces optimal/near-optimal solutions for some 
special graph structures. The study seeks answers to the 
following questions: 

i. How can it be proven that the MDSA algorithm is 
optimal for certain types of graphs? 

ii. What is the mathematical effect of the MC Value 
in the minimum dominating set selection process? 

iii. How can the theoretical correctness of the MDSA 
process of eliminating unnecessary nodes be 
demonstrated? 

By answering the above questions, this article aims to 
support the experimental successes of MDSA with 
analytical evidence and to demonstrate that this method 
has a theoretically solid basis. 
 
MALATYA DOMINATIN SET ALGORITHM 
 

The Malatya centrality (MC) value was defined by Yakut 
and his friends [22] for the first time, and this centrality 
value was called as the “First Malatya Centrality” (FMC) 
value. This value can be obtained by using Algorithm 1. 
The main principle to define the FMC value: “The 
relative strength of an entity within a community is 

determined by the strength of its neighbors”. Yakut and 
his friends to solve many graph theory problems utilized 
this idea. 
 
Definition 1 (First Malatya Centrality): Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
be a simple graph with ∀u∈V, where N(u) is the 
collection of u's neighbor nodes other than itself. The 
summation of node degree of u over its neighbors’ node 
degrees is called the “First Malatya Centrality Value”, 
and it is denoted as 𝛹𝛹1(… ) (Eq. 1). 
 
The FMC value computed by using the ratio of 
corresponding node degree to its neighbors’ degrees as 
shown in Eq. 1. 

𝛹𝛹1(𝑢𝑢) = � �
𝑑𝑑(𝑢𝑢)
𝑑𝑑�𝑣𝑣𝑗𝑗�∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑢𝑢)

�
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎(𝑢𝑢)
𝑑𝑑(𝑢𝑢)

=
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎(𝑢𝑢)
𝑑𝑑(𝑢𝑢) �

𝑑𝑑(𝑢𝑢)
𝑑𝑑�𝑣𝑣𝑗𝑗�∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑢𝑢)

 

(1) 

  

Algorithm 1. Computing of the FMC Value 
 

Input: A is adjacency matrix of G = (V, E) 

Output: 𝛹𝛹1 

1 Initialize 𝛹𝛹1 as an empty array of size |𝑉𝑉|. 
2 for each vertex 𝑣𝑣𝑎𝑎 ∈  𝑉𝑉: 
3     if  𝑑𝑑(𝑣𝑣𝑎𝑎)  ≠ 0 compute: 
4         𝛹𝛹1(𝑢𝑢) =  𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢)

𝑑𝑑(𝑢𝑢)
∑ 𝑑𝑑(𝑢𝑢)

𝑑𝑑�𝑣𝑣𝑗𝑗�∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑢𝑢)  

5 return 𝛹𝛹1  
 

 
In Algorithm 1, input A is adjacency matrix of Graph. 
The elements of adjacency matrix are initialized as: 
[𝑝𝑝(𝑥𝑥)]  = 1 if 𝑝𝑝(𝑥𝑥) is true, otherwise [𝑝𝑝(𝑥𝑥)]  =  0. 𝑑𝑑(𝑣𝑣𝑎𝑎) 
is degree of the node (how many neighbors it has). 
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎(𝑣𝑣𝑎𝑎) is active node degree (whether the 
connections are active or not depending on certain 
conditions). 𝑁𝑁(𝑣𝑣𝑎𝑎) is neighborhood set (other nodes that 
the node is directly connected to).  Finally, 𝛹𝛹1(𝑣𝑣𝑎𝑎) is the 
MC Value (a decisive metric for MDS). 

We defined the Second Malatya Centrality (SMC) value 
for the first time and they used it to obtain the minimum 
dominating set for the given graph [21]. The 
idea/paradigm used in this study is “The relative strength 
of an entity within a community is determined by the 
relative strength of its neighbors”. The second MC value 
definition is given in Definition 2 as defined in [21]. 
 
Definition 2 (Second Malatya Centrality): Assume that 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a simple graph, and ∀𝑢𝑢∈𝑉𝑉, where 𝑁𝑁(𝑢𝑢) is 
the set of neighbor nodes of u except itself. The 
summation of node relative strength (FMC value) of u 
over its neighbors’ node relative strength (FMC values) 
is called the “Second Malatya Centrality Value” (SMC). 
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This value is denoted as 𝛹𝛹1(… ) and can be calculated 
with Eq.2.   
 

𝛹𝛹2(𝑣𝑣𝑎𝑎) = � �
𝛹𝛹1(𝑣𝑣𝑎𝑎)
𝛹𝛹1�𝑣𝑣𝑗𝑗�∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑣𝑣𝑎𝑎)

�
1

𝑑𝑑(𝑣𝑣𝑎𝑎)
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎(𝑣𝑣𝑎𝑎)
𝑑𝑑(𝑣𝑣𝑎𝑎)

=
1

𝑑𝑑(𝑣𝑣𝑎𝑎)
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎(𝑣𝑣𝑎𝑎)
𝑑𝑑(𝑣𝑣𝑎𝑎)

�
𝛹𝛹1(𝑣𝑣𝑎𝑎)
𝛹𝛹1(𝑣𝑣𝑗𝑗)

∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑣𝑣𝑎𝑎)

 

(2) 

 
The SMC value is quite suitable for the nature of the 
dominant set problem since the coverage area can extend 
to the tertiary neighborhood (another dominant node). 
The algorithm of the SMC values starts with getting the 
FMC values, and continue with new centrality values 
from FMC values. This computation steps shown in 
Algorithm 2. 
 
Algorithm 2. Computing of the SMC Value 
 

Inputs: 

   A  Adjacency matrix of graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 

   𝛹𝛹1  FMC Value 

Output: 𝛹𝛹2  

1 Compute 𝛹𝛹1 using “Algorithm 1”. 
2 Initialize 𝛹𝛹2 as an empty array of size |𝑉𝑉|. 
3 for each vertex 𝑣𝑣𝑎𝑎 ∈  𝑉𝑉: 
4     if  𝑑𝑑(𝑣𝑣𝑎𝑎)  ≠ 0 compute: 
5          𝛹𝛹2(𝑢𝑢) =  1

𝑑𝑑(𝑣𝑣𝑎𝑎)
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑎𝑎)
𝑑𝑑(𝑣𝑣𝑎𝑎)

∑ 𝛹𝛹1(𝑣𝑣𝑎𝑎)
𝛹𝛹1(𝑣𝑣𝑗𝑗)∀𝑣𝑣𝑗𝑗∈𝑁𝑁(𝑣𝑣𝑎𝑎)  

6 return 𝛹𝛹2  
 

 
Node Selection Strategy: All of the nodes in the 
provided graph are initially designated as white nodes. 
The node with the highest centrality value is chosen 
following the computation of the graph's SMC values. 
All of its neighbors are designated as gray nodes, and this 
node is added to the minimum dominating set. Centrality 
values are then computed once more. The node with the 
highest centrality value among the white nodes is 
identified. The node with the highest value is identified 
among the grey nodes. The selection of the grey node 
occurs if its centrality value exceeds the white node's 
maximum centrality value and if its number of neighbors 
is at least two times bigger than the white node's. The 
white node is chosen in the alternative scenario. This 
process is repeated until there are no white nodes left in 
the graph. Thus, it is ensured that all nodes are covered 
under a minimum dominating set. This situation is 
demonstrated by Algorithm 3. 
 
Algorithm 3. Overall Minimum Dominating Set 
Algorithm 
 

Inputs: 

   A  Adjacency matrix of graph 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) 

Output: 𝑉𝑉𝐷𝐷  ⊆ 𝑉𝑉, 𝑉𝑉𝐷𝐷 is optimal minimum dominating set 

1 Initialize all nodes 𝑣𝑣𝑎𝑎   with color 0 (white), indicating 
they are unprocessed. 

2 while at least one white node remains: 
3 Compute 𝛹𝛹2  using “Algorithm 2” 
4  𝑢𝑢 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥{𝛹𝛹2(𝑣𝑣)} 
5 Mark 𝑢𝑢 as a dominating node (color = 2, black). 
6  𝑉𝑉𝐷𝐷 =  𝑉𝑉𝐷𝐷 ∪ 𝑢𝑢 
7 Mark all neighbors of 𝑢𝑢 as covered (color = 1, grey). 
8 Update adjacency matrix 𝐴𝐴 to remove connections 

involving 𝑢𝑢: 
9 𝐴𝐴(𝑢𝑢,𝑘𝑘) ← 0 and 𝐴𝐴(𝑘𝑘, 𝑢𝑢) ← 0 for all 𝑘𝑘 in 𝑁𝑁(𝑢𝑢). 
10 If any neighbor 𝑎𝑎 of 𝑢𝑢 has degree = 1, remove its 

connections: 𝐴𝐴(𝑎𝑎,𝑘𝑘) ← 0 and 𝐴𝐴(𝑘𝑘, 𝑎𝑎) ← 0 
11 Eliminate redundant nodes  
12 Return 𝑉𝑉𝐷𝐷 
 

 
Principle 1: An entity's strength ought to be measured in 
relation to the strength of its neighbors within its 
community (Fig.1). 
 

 
 
Figure 1. The central is the node whose centrality value is 
subject to computation. The peripheral nodes are used to 
compute the first centrality values. 
 
The power of a node is proportional to the powers of that 
node relative to its neighbors. The MC value of node ‘a’ 
is computed by using its degree and its neighbors’ 
degrees. We called this concept as First Layer Centrality 
Effect Region. In literature, Jiang and Zheng defined a 
new graph for the given graph, and they called it as 2-hop 
graph [24]. Assume that, 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a graph and the 
corresponding 2-hop graph is: 
 

𝐺𝐺2 = (𝑉𝑉,𝐸𝐸2) (3) 

𝐸𝐸2 = {(𝑢𝑢, 𝑣𝑣)|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸  or 𝑁𝑁(𝑢𝑢) ∩ 𝑁𝑁(𝑣𝑣) ≠ ∅} (4) 

 
Two nodes 𝑢𝑢 and 𝑣𝑣 are adjacent in 𝐺𝐺2 if and only if 𝑢𝑢 and 
𝑣𝑣 are 2-hop adjacent in G. 𝐺𝐺2 is called the 2-hop graph 
of G. The similar logic or philosophy was used in 
Malatya Dominating Set Algorithm, and due to this case, 
this algorithm is an effective algorithm. In Fig.1, the aim 
is to compute the FMC value of node “a”. So that the 
degree of node “a” is over the degrees of nodes “b”, “c”, 
“d”, “e”, “f”. The summation of these ratios give the 
FMC value of node “a” (Fig.1). 
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Principle 2: An entity's relative strength can be defined 
as its strength in relation to its neighbors' relative 
strengths within its society (Fig.2). 

         

 
 
Figure 2. The central is the node whose centrality value is 
subject to computation. The peripheral nodes are used to 
compute the second centrality values. 
 
The SMC value for node “a” can be computed similar to 
the FMC value. The FMC values are used to determine 
the independent set, vertex-cover sets. It is not suitable to 
determine the MDS. In order to determine the MDS, the 
SMC values are used. This case is called as “Second 
Layer Centrality Effect Region” (Fig.2). When a node is 
selected for MDS such as node “a”, the next node 
selected for MDS may be neighbor of one of the nodes is 
set {g, h, i, j, k, m, n, p, q}. This philosophy should be 
used for all MDS algorithms. 
 
Definition 3: Assume that 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a graph and 𝑉𝑉𝐷𝐷 
is the minimum dominating set for 𝐺𝐺 obtained by using 
Malatya Dominating Set Algorithm. ∃𝑢𝑢 ∈  𝑉𝑉𝐷𝐷,∀𝑣𝑣𝑎𝑎 ∈
𝑁𝑁(𝑢𝑢), all 𝑣𝑣𝑎𝑎 have got more than one black node, then 
node u is called redundant node. 
 
The Redundant Node Elimination algorithm changes the 
state of redundant node in 𝑉𝑉𝐷𝐷 (the minimum dominating 
set). The Malatya Dominating Set finalized with node 
colors as grey and black. If the grey neighbors of the 
nodes in the MDS have more than one black neighbor, 
two or more black neighbors of the grey are added to the 
grey nodes list and the grey node is added to the black 
nodes list. 
 
VERIFYING OPTIMALITY OF MALATYA 
DOMINATING SET FOR SPECIAL GRAPHS 
 
The Malatya Dominating Set algorithm can be verified 
that it is optimum for some important graphs. 
 
Theorem 1: Malatya Dominating Set algorithm is 
optimum for path graph 𝑃𝑃𝑛𝑛. 
 
Proof:  Assume that 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a path graph of size n, 
Fig. 3 illustrates the first step of determining the first 
element of 𝑉𝑉𝐷𝐷. 

Algorithm 3 should be used to the graph shown in Fig. 3 
in order to determine the best dominating set. Fig. 3 
displays the algorithm's results. The SMC values are 
calculated using Algorithm 2 for the initial step of 
Algorithm 3 following the computation of the FMC 
values. Fig. 3 (a) displays the MC values for the original 
graph, whereas Fig. 3 (b) displays the values for the 
revised graph. The first element chosen for 𝑉𝑉𝐷𝐷 is node 
"2," while the second element chosen for 𝑉𝑉𝐷𝐷 is node "5". 
This is how the process continues. Table 1 lists the 
cardinalities of dominating set for various 𝑃𝑃𝑛𝑛 sizes. 
 
Table 1. The cardinalities of 𝑉𝑉𝐷𝐷 obtained by the Malatya 
Dominating Set algorithm for different sizes of 𝑃𝑃𝑛𝑛. 
 
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 

|𝑉𝑉𝐷𝐷| 1 2 2 2 3 3 3 4 4 4 5 5 5 6 … 

 

 
 
Figure 3. MC values for the original Path graph are shown in 
(a), while the values for the revised graph are shown in (b). 
 
The optimum cardinalities of VD can be computed by 
Eq.5. 

|𝑉𝑉𝐷𝐷| =

⎩
⎪
⎨

⎪
⎧�
𝑛𝑛
3
� + 1, 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑎𝑎𝑚𝑚𝑑𝑑3 = 1

�
𝑛𝑛
3
� + 1, 𝑖𝑖𝑖𝑖 𝑛𝑛 𝑎𝑎𝑚𝑚𝑑𝑑3 = 2

�
𝑛𝑛
3
� ,        𝑖𝑖𝑖𝑖 𝑛𝑛 𝑎𝑎𝑚𝑚𝑑𝑑3 = 0

 (5) 

In other word, it is seen that the formula for the 
cardinality of 𝑉𝑉𝐷𝐷 is |𝑉𝑉𝐷𝐷| = ⌈𝑛𝑛

3
⌉ where ⌈… ⌉ is a ceiling 

function  
 
Theorem 2: MDSA is optimum for cycle graph 𝐶𝐶𝑛𝑛. 
 
Proof: Assume that 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a cycle graph of size 𝑛𝑛 
and Fig. 4 illustrates a cycle graph. The FMC values are 
all 2 for all nodes and the SMC values for all nodes are 
1. In this case, any node is randomly selected and selected 
node and its neighbors are colored as grey. This process 
concludes in path graph. The optimum case of Malatya 
Dominating Set algorithm for path graph was verified in 
Theorem 2. The node ‘1’ is selected randomly, then 
selected node is removed from graph and its neighbors 
(1, 2, n) are colored as grey 𝐶𝐶𝑛𝑛, and this case concludes 
in path graph 𝑃𝑃𝑛𝑛−3. In the case of cycle graph, the 
neighbors of selected node are also removed from given 
graph, since all grey nodes have active degrees as 1. The 
Malatya Dominating Set algorithm obtains the following 
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minimum dominating set cardinalities with respect to 
cycle sizes (Table 2 illustrates these cases). The selected 
node and its neighbors are removed from the given graph, 
and this case is 𝑃𝑃(𝑛𝑛−3) = 𝐶𝐶𝑛𝑛 − {1,2,𝑛𝑛}. The obtained 
result is a path and the Malatya Dominating Set algorithm 
is optimum for path graph. 
 
Table 1. The cardinalities of 𝑉𝑉𝐷𝐷 obtained by the Malatya 
Dominating Set algorithm for different sizes of 𝐶𝐶𝑛𝑛. 
 
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 … 

|𝑉𝑉𝐷𝐷| 1 2 2 2 3 3 3 4 4 4 5 5 5 6 … 

 
The cardinality of 𝑉𝑉𝐷𝐷 is given in Eq.5. In other way, it is 
seen that the formula for the cardinality of 𝑉𝑉𝐷𝐷 is |𝑉𝑉𝐷𝐷| =
⌈𝑛𝑛
3
⌉ where ⌈… ⌉ is a ceiling function  

 

 
 
Figure 4. Cycle graph and at the first step node ‘1’ is selected. 
 
Theorem 3: Malatya Dominating Set algorithm is 
optimum for star graph 𝑆𝑆𝑛𝑛. 
 
Proof: Assume that 𝑆𝑆𝑛𝑛 = (𝑉𝑉,𝐸𝐸) is a star graph as seen in 
Fig.5. The node degrees 𝑑𝑑(2) = 𝑑𝑑(3) = ⋯ = 𝑑𝑑(𝑛𝑛) = 1 
and 𝑑𝑑(1) = 𝑛𝑛 − 1. So, the FMC value for all nodes is: 
 

𝛹𝛹1(2) = 𝛹𝛹1(3) = 𝛹𝛹1(4) = ⋯ = 𝛹𝛹1(𝑛𝑛) = 1
𝑛𝑛−1

 and 

𝛹𝛹1(1) =
𝑛𝑛−1
1

+ 𝑛𝑛−1
1

+ ⋯+ 𝑛𝑛−1
1�������������

𝑛𝑛 − 1
= (𝑛𝑛 − 1)2 

(6) 

𝛹𝛹2(2) = 𝛹𝛹2(3) = 𝛹𝛹2(4) = ⋯ = 𝛹𝛹2(𝑛𝑛) =
1

𝑛𝑛−1
(𝑛𝑛−1)2 = 1

(𝑛𝑛−1)3 

and  𝛹𝛹2(1) = �� (𝑛𝑛−1)2
1

𝑛𝑛−1

� (𝑛𝑛 − 1)� � 1
(𝑎𝑎𝑛𝑛−1) 

(7) 

 
The structural visualization of star graph is shown in Fig. 
5. 

 
 
Figure 5. Star graph of size 𝑛𝑛. 
 
The node ‘1’ has maximum SMC value and it is subject 
to select for minimum dominating set. The remaining 
nodes are all neighbors of node ‘1’, and they all are added 
to set 𝑉𝑉𝑁𝑁. This is the optimum result for star graph  
 
Theorem 4: Malatya Dominating Set algorithm does not 
include redundant nodes for bipartite graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
where 𝑉𝑉 = 𝑉𝑉1 ∪  𝑉𝑉2, 𝑉𝑉1 ∩  𝑉𝑉2 = ∅,  |𝑉𝑉1| = 𝑎𝑎, |𝑉𝑉2| = 𝑛𝑛, 
𝑎𝑎 ≥ 2, 𝑛𝑛 ≥ 2. 
 
Proof: The proof can be handled for bipartite graphs in 
two cases. 
 
Case a: Assume that 𝐾𝐾𝑚𝑚,𝑛𝑛 = (𝑉𝑉,𝐸𝐸) is a grid graph where 
|𝑉𝑉| = 𝑎𝑎 + 𝑛𝑛, and V = V1∪ U, V1 ∩  U = ∅. The 
optimality of the Malatya Dominating Set algorithm for 
given graph (Fig.6). 
 

 
 

Figure 6. Complete bipartite graph. 
 

Without losing generality, assume that 𝑎𝑎 > 𝑛𝑛. The SMC 
values are as follow: 
 

∀vi ∈ V1 ⇒ 𝛹𝛹1(𝑣𝑣𝑎𝑎) = 𝑛𝑛2

𝑚𝑚
  

and ∀ui ∈ U ⇒ 𝛹𝛹1(𝑢𝑢𝑎𝑎) = 𝑚𝑚2

𝑛𝑛
 

(8) 

∀vi ∈ V1 ⇒ 𝛹𝛹2(𝑣𝑣𝑎𝑎) =
𝑛𝑛2

𝑚𝑚
𝑚𝑚2

𝑛𝑛

. 1
𝑛𝑛

= 𝑛𝑛2

𝑚𝑚3  (9) 

…
..

2
3

4

1

n-1

i-1

i
i+1

n-3

n-2
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and ∀ui ∈ U ⇒ 𝛹𝛹2(𝑢𝑢𝑖𝑖) =
𝑎𝑎2
𝑛𝑛
𝑛𝑛2
𝑎𝑎

. 1
𝑎𝑎 = 𝑎𝑎2

𝑛𝑛3   

𝑛𝑛2

𝑚𝑚3 < 1 and 𝑚𝑚
2

𝑛𝑛3
> 1, then one of the nodes in U is selected 

for the minimum dominating set. After this step, the 
nodes in 𝑉𝑉1 are marked as grey and all nodes in 𝑈𝑈 have 
active degrees as zero. Due to this case, all the remaining 
nodes in 𝑈𝑈 are added to the minimum dominating set. The 
𝑛𝑛 > 𝑎𝑎 case is similar to this case. 
 
Case b: Assume that G is not a complete bipartite graph 
and 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a bipartite graph where V = V1∪V2, 
V1∩V2=∅, |V1|=n and |V2|=m. Thus, the situation in 
Eq.10 will occur. 
 

∀ui ∈ V1, 1 ≤ i ≤ n, 1 ≤ d(ui) ≤ m  

and ∀vj ∈ V2 1 ≤ 𝑗𝑗 ≤ 𝑎𝑎, 1 ≤ 𝑑𝑑(vj) ≤ 𝑛𝑛 
(10) 

Malatya Dominating Set algorithm consists of four steps: 
Computation of the FMC values, the SMC values, 
selecting maximum arguments and the redundant node 
eliminations. Without losing generality, assume that 
∀ui ∈ V1, 1 ≤ i ≤ n, d(ui) = 𝑎𝑎 and  ∀vj ∈ V2 1 ≤ 𝑗𝑗 ≤
𝑎𝑎, d�vj� = 𝑘𝑘. This situation can be seen in Eq. 11.  
 

𝛹𝛹1(𝑢𝑢𝑎𝑎) = 𝑟𝑟
𝑘𝑘
𝑎𝑎 = 𝑟𝑟2

𝑘𝑘
 and 𝛹𝛹1�𝑣𝑣𝑗𝑗� = 𝑘𝑘

𝑟𝑟
𝑘𝑘 = 𝑘𝑘2

𝑟𝑟
 

and 𝛹𝛹2(𝑢𝑢𝑎𝑎) =
𝑟𝑟2
𝑘𝑘
𝑘𝑘2
𝑟𝑟

1
𝑟𝑟

= 𝑟𝑟2

𝑘𝑘3
 and  𝛹𝛹2�𝑣𝑣𝑗𝑗� =

𝑘𝑘2
𝑟𝑟
𝑟𝑟2
𝑘𝑘

1
𝑘𝑘

= 𝑘𝑘2

𝑟𝑟3
 

(11) 

If 𝑎𝑎 > 𝑘𝑘 then 𝛹𝛹2(𝑢𝑢𝑎𝑎) > 𝛹𝛹2�𝑣𝑣𝑗𝑗� ⇒
𝑟𝑟2

𝑘𝑘
> 𝑘𝑘2

𝑟𝑟3
 . A node in V1 

can be selected for the minimum dominating set. After 
selection of a node to minimum dominating set makes 
decreasing in degrees of r nodes in V2 by 1 (as seen in 
Fig.7). The FMC values for nodes in V2 are seen in Fig.7. 
 

 
 
Figure 7. The node selection process changes degrees of some 
nodes. 
 
The new state of graph is as follow: |V1| = m − 1,  
|V2| = 𝑛𝑛, and there are r grey nodes, one black node. The 
remaining nodes are white nodes. The remaining nodes 
in V1 have the following the FMC values (the nodes in V1 
can be grouped into two ways with respect to node 
degrees). 

The nodes (assume that these nodes are denoted as 
𝑢𝑢𝑎𝑎 have degrees as k-1. Thus, 𝛹𝛹1(𝑢𝑢𝑎𝑎) is: 

𝛹𝛹1(𝑢𝑢𝑎𝑎) = �
𝑎𝑎

𝑘𝑘 − 1
+
𝑎𝑎(𝑎𝑎 − 1)

𝑘𝑘
�
𝑎𝑎 − 1
𝑎𝑎

=
(𝑎𝑎 − 1)(𝑎𝑎𝑘𝑘 − 𝑎𝑎 + 1)

𝑘𝑘(𝑘𝑘 − 1)
 

(12) 

and the remaining nodes have the following the FMC 
values: 

𝛹𝛹1(𝑢𝑢𝑎𝑎) =
𝑎𝑎
𝑘𝑘
𝑎𝑎 =

𝑎𝑎2

𝑘𝑘
 (13) 

 
All nodes in given graph are grouped into four groups. 
a) The nodes in vj∈V2 have degrees as k-1, and so their 

SMC values are: 
 

𝛹𝛹2�𝑣𝑣𝑗𝑗� =�
(𝑘𝑘−1)2

𝑟𝑟
(𝑟𝑟−1)(𝑟𝑟𝑘𝑘−𝑟𝑟+1)

𝑘𝑘(𝑘𝑘−1)

𝛾𝛾 +
(𝑘𝑘−1)2

𝑟𝑟
𝑟𝑟2

𝑘𝑘

(𝑘𝑘 − 𝛾𝛾)� 1
𝑘𝑘−1

 

=
𝛾𝛾𝑘𝑘(𝑘𝑘 − 1)2

𝑎𝑎(𝑎𝑎 − 1)(𝑎𝑎𝑘𝑘 − 𝑎𝑎 + 1) +
𝑘𝑘(𝑘𝑘 − 1)(𝑘𝑘 − 𝛾𝛾)

𝑎𝑎2  

(14) 

 
where 𝛾𝛾 is the number of grey neighbors of node 𝑣𝑣𝑗𝑗. 

 
b) The nodes in vj∈V2 have degrees as ‘k’, and so their 

SMC values are: 
 

𝛹𝛹2�𝑣𝑣𝑗𝑗� = �
𝑘𝑘2
𝑎𝑎

(𝑎𝑎 − 1)(𝑎𝑎𝑘𝑘 − 𝑎𝑎 + 1)
𝑘𝑘(𝑘𝑘 − 1)

𝛾𝛾 +
𝑘𝑘2
𝑎𝑎
𝑎𝑎2
𝑘𝑘

(𝑘𝑘 − 𝛾𝛾)�
1
𝑘𝑘 

=
𝛾𝛾𝑘𝑘2(𝑘𝑘 − 1)

𝑎𝑎(𝑎𝑎 − 1)(𝑎𝑎𝑘𝑘 − 𝑎𝑎 + 1) +
(𝑘𝑘 − 𝛾𝛾)𝑘𝑘2

𝑎𝑎3  

 

(15) 

where 𝛾𝛾 is the number of grey neighbors of node 𝑣𝑣𝑗𝑗. 
 

c) The nodes in ui∈V1 have degrees as 𝑎𝑎 − 1 (have 𝛾𝛾 
neighbors), and so their SMC values are: 
 

𝛹𝛹2(𝑢𝑢𝑎𝑎) = 𝑟𝑟−1−𝛾𝛾
(𝑟𝑟−1)2

�𝑟𝑟(𝑟𝑟−1)(𝑟𝑟𝑘𝑘−𝑟𝑟+1)
𝑘𝑘3(𝑘𝑘−1)

𝛾𝛾 +
𝑟𝑟(𝑟𝑟−1(𝑟𝑟𝑘𝑘−𝑟𝑟+1)

𝑘𝑘(𝑘𝑘−1)3 (𝑎𝑎 − 1 − 𝛾𝛾)� 

 =�𝑟𝑟(𝑟𝑟𝑘𝑘−𝑟𝑟+1)
𝑘𝑘3(𝑘𝑘−1)

𝛾𝛾 + 𝑟𝑟(𝑟𝑟𝑘𝑘−𝑟𝑟+1)
𝑘𝑘(𝑘𝑘−1)3 (𝑎𝑎 − 1 − 𝛾𝛾)� 𝑟𝑟−1−𝛾𝛾

(𝑟𝑟−1)
 

 

(16) 

d) The nodes in ui∈V1 have degrees as 𝑎𝑎 (have 𝛾𝛾 
neighbors), and so their SMC values are:  
 

𝛹𝛹2(𝑢𝑢𝑎𝑎) = �
𝑎𝑎3

𝑘𝑘3 𝛾𝛾 +
𝑎𝑎3

𝑘𝑘(𝑘𝑘 − 1)2 (𝑎𝑎 − 𝛾𝛾)�
𝑎𝑎 − 𝛾𝛾
𝑎𝑎2  

= �
𝑎𝑎
𝑘𝑘3 𝛾𝛾 +

𝑎𝑎
𝑘𝑘(𝑘𝑘 − 1)2 (𝑎𝑎 − 𝛾𝛾)� (𝑎𝑎 − 𝛾𝛾) 

(17) 

 
There are four cases to compute the SMC values of all 
nodes in the changed graph. Assume that 𝑘𝑘 = 𝑎𝑎, then the 
centrality values are simplified as follows (at the second 
step, all nodes in 𝑉𝑉2 do not have grey neighbors). 
 
a) 𝛹𝛹2�𝑣𝑣𝑗𝑗� = (𝑘𝑘−1)

𝑘𝑘2−𝑘𝑘+1
+ (𝑘𝑘−1)

𝑘𝑘
 

b) 𝛹𝛹2�𝑣𝑣𝑗𝑗� = 𝑘𝑘
𝑘𝑘2−𝑘𝑘+1

+ 1
𝑘𝑘
 

c) 𝛹𝛹2(𝑢𝑢𝑎𝑎) = �𝛾𝛾(𝑘𝑘2−𝑘𝑘+1)
𝑘𝑘2(𝑘𝑘−1)2 + 𝑘𝑘2−𝑘𝑘+1

(𝑘𝑘−1)4
(𝑘𝑘 − 𝛾𝛾 − 1)� (𝑘𝑘 − 𝛾𝛾 − 1) 

d) 𝛹𝛹2(𝑢𝑢𝑎𝑎) = � 1
𝑘𝑘2
𝛾𝛾 + 1

(𝑘𝑘−1)2
(𝑘𝑘 − 𝛾𝛾)� (𝑘𝑘 − 𝛾𝛾) 
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Without losing generality, lets 𝑘𝑘 = 4, then 
a) 𝛹𝛹2�𝑣𝑣𝑗𝑗� = (𝑘𝑘−1)

𝑘𝑘2−𝑘𝑘+1
+ (𝑘𝑘−1)

𝑘𝑘
≅ 0.98  

b) 𝛹𝛹2�𝑣𝑣𝑗𝑗� = 𝑘𝑘
𝑘𝑘2−𝑘𝑘+1

+ 1
𝑘𝑘
≅ 0.33  

c) 𝛹𝛹2(𝑢𝑢𝑎𝑎) = �𝑘𝑘
2−𝑘𝑘+1

𝑘𝑘(𝑘𝑘−1)2 𝛾𝛾 + 𝑘𝑘2−𝑘𝑘+1
(𝑘𝑘−1)4

(𝑘𝑘 − 1 − 𝛾𝛾)� (𝑘𝑘 − 1 − 𝛾𝛾) 

= 156+65𝛾𝛾
324

(3 − 𝛾𝛾)  

d) 𝛹𝛹2(𝑢𝑢𝑎𝑎) = � 1
𝑘𝑘2
𝛾𝛾 + 1

(𝑘𝑘−1)2
(𝑘𝑘 − 𝛾𝛾)� (𝑘𝑘 − 𝛾𝛾) = 64−7𝛾𝛾

144
(4 − 𝛾𝛾)  

 
In case of 𝛾𝛾 = 1,  

a) 𝛹𝛹2�𝑣𝑣𝑗𝑗�  ≅  0.98  

b) 𝛹𝛹2�𝑣𝑣𝑗𝑗� ≅ 0.33   

c) 𝛹𝛹2(𝑢𝑢𝑎𝑎) ≅ 1.36  

d) 𝛹𝛹2(𝑢𝑢𝑎𝑎) ≅ 1.19 

In this case, all nodes in V1 are white nodes, and the 
selected node in the second must be element of V1. This 
process is carrying on until all nodes are black or grey  
 
Theorem 5: Malatya Dominating Set algorithm is 
optimum for a regular graph of degree (girth graph) 3. 
 
Proof: The Malatya Dominating Set algorithm obtains 
the minimum dominating set for the given graph. The 
proof will be handled by using a similar way to 
mathematical induction. A sample of 3-degree graph is 
shown in Fig. 8. 

 
 

 
 

 
Figure 8. A graph of degree 3 
 
In Fig.8, all the second centrality values are equals and 
any node is selected to minimum dominating set. Assume 
that this node is 2, and the nodes 1, 3 and 5 are marked as 
grey. The nodes 4 and 6 are white nodes of active degrees 
are equal to zero. In this case, both nodes are added to the 
minimum dominating set. The obtained result is 
optimum. The same process can be handled on the graph 
as seen in Fig.9. 
Initially, all nodes of graph seen in Fig.9(a) have 1 as the 
SMC values. The yellow node is selected to the 
Minimum Dominating Set VD, and cyan nodes (grey 
nodes) are marked as grey nodes. Fig.9(b) illustrates node 
with the SMC values, and at this case, node v4 can be 
selected for the Minimum Dominating Set. The nodes v3, 
v5 and vk+4 are marked as grey nodes.  
The process can be specified as a principle such as if the 
node vr selected to the minimum dominating set, the 
nodes 𝑣𝑣𝑟𝑟−1, 𝑣𝑣𝑟𝑟+1 and 𝑣𝑣𝑘𝑘+𝑟𝑟 are marked as grey nodes 

(assume that |𝑉𝑉| = 𝑛𝑛 = 2𝑘𝑘).  Each step covers four 
nodes, and if the number n is multiple of the number 4, 
algorithm determines VD of size as 𝑛𝑛/4  
 

a) 

 
b) 

 
 
Figure 9. A regular graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) where |𝑉𝑉| = 𝑛𝑛 = 2𝑘𝑘 of 
degree 3. 
 
Theorem 6: Malatya Dominating Set algorithm is 
optimum for a regular graph like hypercubes. 

 
Proof: Assume that 𝐻𝐻𝑑𝑑 = (𝑉𝑉,𝐸𝐸) is a hypercube of size 𝑛𝑛 
and dimension 𝑑𝑑 = 𝑙𝑙𝑎𝑎𝑛𝑛 where 𝑛𝑛 = 2𝑑𝑑. All node degrees 
are equal to 𝑑𝑑 = 𝑙𝑙𝑎𝑎𝑛𝑛 where n is the number of nodes in 
𝐻𝐻𝑑𝑑. Initially, all nodes have active degrees as 𝑑𝑑 = 𝑙𝑙𝑎𝑎𝑛𝑛. 
This situation can be seen in Eq.18 and Eq. 19. 
 

∀𝑣𝑣𝑎𝑎 ∈ 𝑉𝑉,𝛹𝛹1(𝑣𝑣𝑎𝑎) =
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 +

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛+. . . +

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

�������������𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 = 𝑙𝑙𝑎𝑎𝑛𝑛

𝑙𝑙𝑙𝑙𝑛𝑛
 

(18) 

∀𝑣𝑣𝑎𝑎 ∈ 𝑉𝑉,𝛹𝛹2(𝑣𝑣𝑎𝑎) =
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 +

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 + ⋯+

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

��������������� 𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

1
𝑙𝑙𝑎𝑎𝑛𝑛 = 1

𝑙𝑙𝑙𝑙𝑛𝑛
 
(19) 

Nodes 1 2 3 4 5 6 

Ψ1 3 3 3 3 3 3 

Ψ2 1 1 1 1 1 1 

1

2

3

4

5

6
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In this case, any node can be selected to minimum 
dominating set, and assume that the selected node is 𝑢𝑢. 
The 𝑁𝑁(𝑢𝑢) are marked as grey (gray) nodes. The 
neighbors of grey nodes are depicted as red nodes. The 
green node and its edges are removed from original 
graph. Fig.10 illustrates the H5 after one node selection 
process. Fig.10 depicts that there are four node types with 
respect to their neighbors’ status. The red nodes are 2-
hop nodes to the selected node, and white nodes are 3-
hop nodes with respect to the selected node. In order to 
select next node to the minimum dominating set, the 
centrality values should be re-computed for the re-
formed graph after deletion of the selected node (green 
node). The FMC values are as follows for all types of 
nodes. Eqs.20-22 are symbolized this situation. 
 

∀𝑣𝑣𝑙𝑙𝑟𝑟𝑎𝑎𝑔𝑔 ∈ 𝑉𝑉,𝛹𝛹1�𝑣𝑣𝑙𝑙𝑟𝑟𝑎𝑎𝑔𝑔� = (𝑙𝑙𝑎𝑎𝑛𝑛 − 1)
𝑙𝑙𝑎𝑎𝑛𝑛 − 1
𝑙𝑙𝑎𝑎𝑛𝑛

=
(𝑙𝑙𝑎𝑎𝑛𝑛 − 1)2

𝑙𝑙𝑎𝑎𝑛𝑛  
(20) 

∀𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑 ∈ 𝑉𝑉,𝛹𝛹1(𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑) =
2𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 − 1 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 2)

=
2𝑙𝑙𝑎𝑎𝑛𝑛 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 1)(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)

𝑙𝑙𝑎𝑎𝑛𝑛  
(21) 

∀𝑣𝑣𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∈ 𝑉𝑉,𝛹𝛹1(𝑣𝑣𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎) =
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 𝑙𝑙𝑎𝑎𝑛𝑛 = 𝑙𝑙𝑎𝑎𝑛𝑛 (22) 

 

 
 

Figure 10. Hypercube of size 5 and the selected node and its 
neighbors. 
 
The SMC values are as follows for all types of nodes: 
 

∀𝑣𝑣𝑙𝑙𝑟𝑟𝑎𝑎𝑔𝑔 ∈ 𝑉𝑉,𝛹𝛹2�𝑣𝑣𝑙𝑙𝑟𝑟𝑎𝑎𝑔𝑔� = 
(𝑙𝑙𝑎𝑎𝑛𝑛 − 1)2

𝑙𝑙𝑎𝑎𝑛𝑛
2𝑙𝑙𝑎𝑎𝑛𝑛 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 1)(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)

𝑙𝑙𝑎𝑎𝑛𝑛

𝑙𝑙𝑎𝑎𝑛𝑛 − 1
𝑙𝑙𝑎𝑎𝑛𝑛 − 1

1
𝑙𝑙𝑎𝑎𝑛𝑛 − 1 

(23) 

=
𝑙𝑙𝑎𝑎𝑛𝑛 − 1

𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2 

 
∀𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑 ∈ 𝑉𝑉,𝛹𝛹2(𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑) = 

⎝

⎜⎜
⎛(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)

2𝑙𝑙𝑎𝑎𝑛𝑛 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 1)(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

+ 2
𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2

(𝑙𝑙𝑎𝑎𝑛𝑛 − 1)2 ⎠

⎟⎟
⎞𝑙𝑙𝑎𝑎𝑛𝑛 − 2

𝑙𝑙𝑎𝑎𝑛𝑛
1
𝑙𝑙𝑎𝑎𝑛𝑛 

 
= �2

𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2
(𝑙𝑙𝑎𝑎𝑛𝑛 − 1)2 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 2)

𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2
𝑙𝑙𝑎𝑎2𝑛𝑛

�
𝑙𝑙𝑎𝑎𝑛𝑛 − 2
𝑙𝑙𝑎𝑎𝑛𝑛

1
𝑙𝑙𝑎𝑎𝑛𝑛

 

(24) 

 
∀𝑣𝑣𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∈ 𝑉𝑉,𝛹𝛹2(𝑣𝑣𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎) = 

⎝

⎜⎜
⎛

2
𝑙𝑙𝑎𝑎𝑛𝑛

2𝑙𝑙𝑎𝑎𝑛𝑛 + (𝑙𝑙𝑎𝑎𝑛𝑛 − 1)(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)
𝑙𝑙𝑎𝑎𝑛𝑛

+(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 ⎠

⎟⎟
⎞ 𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

1
𝑙𝑙𝑎𝑎𝑛𝑛 

=�2 𝑙𝑙𝑙𝑙2𝑛𝑛
2𝑙𝑙𝑙𝑙𝑛𝑛+(𝑙𝑙𝑙𝑙𝑛𝑛−1)(𝑙𝑙𝑙𝑙𝑛𝑛−2) + (𝑙𝑙𝑎𝑎𝑛𝑛 − 2)� 1

𝑙𝑙𝑙𝑙𝑛𝑛
 

 

(25) 

The all nodes 4-hop or more faraway to the selected node 
have the SMC values as follows (vi ∈ V, vi is 4-hop or 
more faraway): 

 

𝛹𝛹2(𝑣𝑣𝑎𝑎) =
𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 +

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛 + ⋯+

𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

��������������� 𝑙𝑙𝑎𝑎𝑛𝑛
𝑙𝑙𝑎𝑎𝑛𝑛

1
𝑙𝑙𝑎𝑎𝑛𝑛 = 1

𝑙𝑙𝑙𝑙𝑛𝑛
 

(26) 

 
In order to select next node to minimum dominating set, 
the SMC values should be compared and the node whose 
centrality value is maximum, should be selected. The first 
step is to compare grey and red nodes’ SMC values: 

 
𝛹𝛹2�𝑣𝑣𝑙𝑙𝑟𝑟𝑎𝑎𝑔𝑔�𝑘𝑘1 = 𝛹𝛹2(𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑) 

�
𝑙𝑙𝑎𝑎𝑛𝑛 − 1

𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2
� 𝑘𝑘1 = 

⎝

⎜
⎛ 2

𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2
(𝑙𝑙𝑎𝑎𝑛𝑛 − 1)2

+(𝑙𝑙𝑎𝑎𝑛𝑛 − 2)
𝑙𝑙𝑎𝑎2𝑛𝑛 − 𝑙𝑙𝑎𝑎𝑛𝑛 + 2

𝑙𝑙𝑎𝑎2𝑛𝑛 ⎠

⎟
⎞ 𝑙𝑙𝑎𝑎𝑛𝑛 − 2

𝑙𝑙𝑎𝑎𝑛𝑛
1
𝑙𝑙𝑎𝑎𝑛𝑛 

(27) 

 

where 𝑘𝑘1 =
𝑙𝑙𝑙𝑙4𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1)2

2𝑙𝑙𝑙𝑙2𝑛𝑛(𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2)(𝑙𝑙𝑙𝑙𝑛𝑛−2)+(𝑙𝑙𝑙𝑙𝑛𝑛−2)2(𝑙𝑙𝑙𝑙𝑛𝑛−1)2(𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2)
 and  

1
𝑘𝑘2

= 2�𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2�(𝑙𝑙𝑙𝑙𝑛𝑛−2)
𝑙𝑙𝑙𝑙2𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1)2 + (𝑙𝑙𝑙𝑙𝑛𝑛−2)2(𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2)

𝑙𝑙𝑙𝑙4𝑛𝑛
 where 

(𝑙𝑙𝑙𝑙𝑛𝑛−2)2(𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2)
𝑙𝑙𝑙𝑙4𝑛𝑛

< 1 , 4(𝑙𝑙𝑙𝑙𝑛𝑛−2)
𝑙𝑙𝑙𝑙𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1)2 < 1 and 

2(𝑙𝑙𝑙𝑙𝑛𝑛−2)2

𝑙𝑙𝑙𝑙2𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1) < 1. 
 
𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 → ∞ (𝑙𝑙𝑙𝑙𝑛𝑛−2)2(𝑙𝑙𝑙𝑙2𝑛𝑛−𝑙𝑙𝑙𝑙𝑛𝑛+2)

𝑙𝑙𝑙𝑙4𝑛𝑛
= 1, 

𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 → ∞ 4(𝑙𝑙𝑙𝑙𝑛𝑛−2)
𝑙𝑙𝑙𝑙𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1)2 = 0 and 
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 𝑙𝑙𝑖𝑖𝑎𝑎𝑛𝑛 → ∞ 2(𝑙𝑙𝑙𝑙𝑛𝑛−2)2

𝑙𝑙𝑙𝑙2𝑛𝑛(𝑙𝑙𝑙𝑙𝑛𝑛−1) = 0 imply that 𝑘𝑘2 > 1. That’s 
why, 𝛹𝛹2(𝑣𝑣𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎) > 𝛹𝛹2(𝑣𝑣𝑟𝑟𝑎𝑎𝑑𝑑)  
 
NON-REDUNCDANCY OF MALATYA 
DOMINATING SET ALGORITHM 
 
Malatya Dominating Set Algorithm (MDSA)is an 
efficient algorithm to find the minimum dominating sets 
for given graphs, since the space and time complexities 
of MDSA are polynomials. MDSA finds near-optimal 
solutions for some graphs, and due to this case, MDSA is 
an optimal or near-optimal algorithm. The requirement of 
revision in algorithm is needed. Fig.11 illustrates this 
case, i.e. red nodes are elements of minimum dominating 
set, and green nodes are elements of neighbors of 
dominating nodes. The red nodes 10, 20 can be removed 
from minimum dominating set and in this case, green 
node 15 should be added to minimum dominating set. 
Due to this case, “redundant node elimination” should be 
done in this perspective. 
 

 
 

Figure 11. Near-optimal solution for grid 5x5 without Node 
Justification process. 
 
Fig.11 illustrates the result of MDSA for grid graph of 
size 5x5. The nodes 10 and 20 are redundant nodes with 
respect to Definition 3. “Redundant node elimination” 
algorithm detects node 15, and in this case, black nodes 
10 and 20 are converted to grey nodes and node 15 is 
converted to black node. This is the last step of MDSA 
and it eliminates redundant nodes from the minimum 
dominating set and adds new node(s) to minimum 
dominating set. 
 
TIME AND SPACE COMPLEXITIES OF MDSA 
 
The justification of the optimality of these algorithms 
were handled in this paper. The justification of these 
algorithms was handled in two ways: according to 
obtained solutions, time-space complexities. The time 
and space complexities were given in subsequent pages. 
 
Theorem 7: The algorithm 1 consumes the time and 
space in polynomial forms for given graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
where |𝑉𝑉| = 𝑛𝑛 and |𝐸𝐸| = 𝑎𝑎. 

 
Proof: The graph data structures can be performed in two 
ways. The proof of theorem can be given in two ways: 
Matrix can be used to represent the given graph. In this 
case, usage space is only an 𝑛𝑛 × 𝑛𝑛 matrix, where |𝑉𝑉| =
𝑛𝑛. Due to this case, the space complexity of Algorithm 1 
is 𝑃𝑃𝑀𝑀𝑀𝑀1(𝑛𝑛) =  𝛩𝛩(𝑛𝑛2). The FMC computation requires 
traversing adjacency matrix once. That’s why, the time 
complexity of Algorithm 2 is 𝑇𝑇𝑀𝑀𝑀𝑀1(𝑛𝑛) = 𝛩𝛩(𝑛𝑛2).If the 
graph is represented by linked list, then the space usage 
is for Algorithm 1 is PMC1(n)= Θ(n.∆(G)). So, the time 
consumption of Algorithm 1 is O(∆(G). n) ▀ 
 
Theorem 8: The algorithm 2 consumes the time and 
space in polynomial forms for given graph G=(V,E) 
where |V|=n and |E|=m. 
 
Proof: The graph data structures can be performed in two 
ways. The proof of theorem can be given in two ways: 
Matrix can be used to represent the given graph. In this 
case, usage space is only an 𝑛𝑛 × 𝑛𝑛 matrix where |V|=n. 
Due to this case, the space complexity of Algorithm 2 is 
PMC2(n)= Θ(n2). The FMC computation requires 
traversing adjacency matrix once. That’s why, the time 
complexity of Algorithm 2 is TMC2(n)=Θ(n2).If the graph 
is represented by linked list, then the space usage is for  
Algorithm 2 is PMC2(n)= Θ(n.∆(G)). So, the time 
consumption of Algorithm 2 is TMC2(n)=O(∆(G).n) ▀ 
 
Theorem 9: Assume that 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is a graph where 
|𝑉𝑉| = 𝑛𝑛 and |𝐸𝐸| = 𝑎𝑎. The Algorithm 3 has polynomial 
time and space complexities. 
 
Proof: 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) = 𝐺𝐺0 = (𝑉𝑉0,𝐸𝐸0), |V|=n, where |V|=n. 
In order to select a node to the minimum dominating set 
requires usage of Algorithm 1 and Algorithm 2 once. 
𝛹𝛹1(… ) and 𝛹𝛹2(… ) are computed. After selection of one 
node to the minimum dominating set, given graph is re-
formed. The same process is repeated. The complexity of 
DominatingSet algorithm can be phrased in two ways 
(adjacency matrix, linked list). 𝛾𝛾(𝐺𝐺) is the cardinality of 
minimum dominating set, TS(…) is the time searching 
node for minimum dominating set. 
 
Case 1: Adjacency matrix: 

 

𝑇𝑇𝐷𝐷𝐷𝐷(𝑛𝑛) = ��𝑇𝑇𝑀𝑀𝑀𝑀1(|𝑉𝑉𝑎𝑎|) + 𝑇𝑇𝑀𝑀𝑀𝑀2(|𝑉𝑉𝑎𝑎|)
𝛾𝛾(𝐺𝐺)

𝑎𝑎=0
+ 𝑇𝑇𝐷𝐷(|𝑉𝑉𝑎𝑎|)� = 𝑂𝑂(𝛾𝛾(𝐺𝐺)𝑛𝑛2) 

(28) 

Case 2: Linked list: 
 

𝑇𝑇𝐷𝐷𝐷𝐷(𝑛𝑛) = �� 𝑇𝑇𝑀𝑀𝑀𝑀1(∆(𝐺𝐺𝑎𝑎)|𝑉𝑉𝑎𝑎|)
+𝑇𝑇𝑀𝑀𝑀𝑀2(∆(𝐺𝐺𝑎𝑎)|𝑉𝑉𝑎𝑎|) + 𝑇𝑇𝐷𝐷(|𝑉𝑉𝑎𝑎|)

�
𝛾𝛾(𝐺𝐺)

𝑎𝑎=0

 

= 𝑂𝑂(𝛾𝛾(𝐺𝐺).𝑛𝑛.∆(𝐺𝐺)) 

(29) 

So, the proof is completed ▀ 
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CONCLUSIONS 
 
This study presents analytical verifications to strengthen 
the theoretical foundations of the Malatya Dominating 
Set Algorithm (MDSA). Previous studies have shown 
that MDSA has given successful results experimentally 
on various datasets and graph structures. However, these 
experimental successes needed to be mathematically 
proven and it needed to be proven that the algorithm 
produces optimal or near-optimal results on certain graph 
types. Accordingly, in our study, it has been 
mathematically shown that MDSA gives the best results 
with the least number of nodes on certain graph types and 
its theoretical framework has been strengthened.  

One of the most important contributions of the study is 
the analytical modeling of the minimum dominating set 
determination process using the Malatya Centrality 
Value and proving that it can produce optimal solutions. 
Mathematical analyses performed especially on Path, 
Cycle, Star, and Bipartite Graph types have revealed that 
MDSA can create optimal minimum dominating sets for 
these graph types. In addition, it has been mathematically 
proven that the minimum dominating set can be created 
on regular graph types such as grid-based structures and 
hypercubes.   

Another important feature of MDSA is that it can 
produce redundant minimum dominating sets. Unlike 
traditional greedy or heuristic methods, MDSA includes 
the Redundant Node Elimination mechanism. In our 
study, it is shown that this mechanism is mathematically 
verified and that the algorithm can optimize the minimum 
dominating set size by eliminating unnecessary nodes. 
This feature shows that MDSA is built on a theoretically 
stronger foundation compared to other minimum 
dominating set algorithms. 

Analysis in terms of time and space complexity proves 
that MDSA has polynomial time and memory 
requirements and offers an efficient approach to solve the 
dominating set problem. The Minimum Dominating Set 
(MDS) problem, which is NP-hard, is generally 
addressed in the literature with heuristic or ILP-based 
approaches. However, MDSA offers significant 
advantages over existing methods in the literature since 
it is both more efficient in terms of time and provides 
optimal solutions for certain graph types.  
 
In conclusion, this study mathematically proves that 
MDSA produces analytically optimal results for certain 
types of graphs and presents a new theoretical framework 
for minimum dominating set problems. Specifically, the 
non-redundant minimum dominating set creation 
mechanism's analytical demonstration adds significantly 
to the body of research. MDSA should be supported by 
more comprehensive analyses in the future and made 
usable in different applications due to its ability to 
determine minimum dominating sets and produce 
optimal solutions in polynomial time complexity. 

Therefore, our study provides a theoretical basis for new 
research on minimum dominating set problems and takes 
an important step towards increasing the efficiency of 
centrality-based algorithms. 
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