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Abstract: The key ideas of summability theory have been the subject of extensive investigation 

in recent years in a variety of metric space extensions. Octonion-valued metric spaces are based 

on modifying the triangle inequality of a semi-metric space by multiplying one side of the 

inequality by a scalar 𝑏. This new generalisation of metric spaces is very interesting since 

octonions are not even a ring since they do not have the associative property of multiplication 

and the spaces do not satisfy the standard triangle inequality. We are prompted by this to study 

the notions of strong ℐ-Cesàro summability, ℐ-statistical convergence, ℐ-lacunary statistical 

convergence, and similar notions that respect the modulus function in octonion valued 𝑏-metric 

spaces, an extension of metric spaces. We also examine the connections among these ideas. 

 

Keywords: Ideal convergence, Statistical convergence, Prime numbers, Octonion valued b -
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1. Introduction 

With important contributions to computer science, topology, functional analysis, 

Fourier analysis, applied mathematics, mathematical modeling, and measure theory, 

sequence convergence and summability theory study has long been an important area in 

pure mathematics. The concept of statistical convergence of sequences has gained 

importance in recent years. Zygmund first referred to statistical convergence as "almost 

convergence" in the first edition of his well-known 1935 monograph (see [54]). Steinhaus 

later introduced the concept [44]. This development sparked a number of statistical 

convergence research. Fast introduced the idea of statistical convergence and its 

characteristics for the first time in 1951 [13]. It was later represented by Schoenberg [44], 

who described some basic properties of statistical convergence and studied statistical 

convergence as a summability technique. Fridy [18] and S̆alát [38] also examined some 

intriguing aspects of statistical convergence (also see [22,23,29,30,42,49]). Introduced 

by Nuray and Ruckle in [34], who referred to it as generalized statistical convergence as 

a generalization of statistical convergence, and independently by Kostyrko, Salát, and 

Wilczyński in [27], the idea of ideal convergence (or ℐ-convergence) of real sequences 

offers a unifying perspective on various types of convergence related to statistical 
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convergence. In his doctoral thesis, Gürdal [20] presented the ideal Cauchy sequence and 

its characteristics. ℐ-convergence, ℐ-Cauhy sequence, and related subjects have been the 

subject of several publications over the past 20 years; for further information, check 

[31,32,37,40,41,43,50,51,52], etc. Recently, Das et al. [9] introduced new concepts such 

as ℐ-statistical convergence and ℐ-lacunary statistical convergence within the framework 

of ideals. In mathematics, metric spaces are crucial, particularly in topology and analysis. 

The concept of a modulus function was introduced by Nakano [33] in 1953. In 1973, 

Ruckle [36] and in 1993, Maddox [28] defined certain sequence spaces using the modulus 

function. Connor [8] investigated the relationships between statistical convergence and 

strongly Cesaro summability with respect to the modulus function. For more details, refer 

to [2]. In the following years, the modulus function has been explored by numerous 

researchers, among which an important study was conducted by Gürdal and Özgür in 

2015. In [21], the concepts of ℐ𝑓-statistical convergence and ℐ𝑓-Cauchy, which respect 

the modulus function, were introduced and the relationships between these concepts were 

examined in normed spaces. Fréchet [17] initially proposed the idea of metric space in 

1906. Since then, the generalization of metric spaces has attracted the attention of several 

scholars, who have written numerous articles on the topic [10, 19, 25, 53]. The idea of 

octane-valued 𝑏-metric space, which was put up by Çetin et al. in 2025 [5] as a 

generalization of octane metrics-a logical extension of complex and quaternion-valued 

metrics as well as the traditional concept of metric-is one outcome of their investigations. 

Examining ideal convergence and its characteristics in octane valued 𝑏-metric spaces is 

the goal of this research. 

Soon after quaternions were discovered in 1843, John T. Graves created octonions. 

Arthur Cayley later expanded and improved this idea on his own. A systematic extension 

in hypercomplex number theory controlled by the Cayley-Dickson structure is 

demonstrated by the evolution from real numbers to complex numbers, then to 

quaternions, and eventually to octonions. Because of their unique mathematical 

characteristics, octonions stand out in this sequence. Octonions are neither commutative 

nor associative, in contrast to real and complex numbers, which are commutative, and 

quaternions, which are non-commutative but nonetheless associative. In addition to their 

theoretical significance, octonions' special non-associative properties are useful in 

applications that need to manage multidimensional data relationships. Octonions have 

been employed in physics to create duality-invariant field equations for dyons, according 

to Kansu et al. [24]. These equations effectively represent electricmagnetic dualities, 

much like Maxwell's equations do. Eight-dimensional octonions' multicomponent 

character unifies the intricate interactions between electric and magnetic components. 

Octonions have emerged as a practical tool for processing and expressing high-

dimensional data in the field of machine learning. Deep octonion networks (DONs), 

which incorporate multidimensional characteristics into various layers of neural networks 

by taking use of the compact structure of octonions, were first presented by Wu et al. [47]. 

Octonions facilitate effective data representation and processing in this context; activities 

like picture classification exhibit enhanced performance and convergence. Accordingly, 

octonions' associative and non-commutative characteristics have enabled creative 

applications in contemporary theoretical physics, artificial intelligence, and control 

systems where multidimensionality and flexible data representation are essential, despite 
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initially posing difficulties for conventional algebraic applications. Acoording to 

[4,6,11,12,35,48], octonions, their subalgebraic structure, and multidisciplinary 

applications are covered in detail. 

In this study, we extend certain fundamental ideas, such ideal convergence, statistical 

convergence and convergence, to octonion valued 𝑏-metric spaces, which were initially 

created by Çetin et al. [5], Savaş et al. [39] and Kişi et al. [26]. We present the essential 

ideas associated with this special mathematical structure, such as ℐ-statistical 

convergence, ℐ-lacunary statistical convergence, by developing a partial order relation on 

octonions via modulus function. We may investigate these ideas' characteristics and the 

relationships between them since they are generalized in the context of octonion valued 

𝑏-metric spaces. Furthermore, we investigate the effects of the non-associative structure 

of octonions on the behavior of strong ℐ-Cesàro summability, ℐ-statistical convergence, 

ℐ-lacunary statistical convergence, and similar notions that respect the modulus function. 

This unique feature highlights the new opportunities and challenges that octonions bring 

in mathematical research in addition to providing more insight into convergence theory. 

2. Material and Method 

In the follow-up we will to examine on 𝑂, Octonions, a non-associative 

generalization of the division algebra of quaternions. 

Now, we will begin by extending the basis elements of quaternions, represented 

as {1, 𝑖, 𝑗, 𝑘}, by incorporating an additional basis element ℓ. This extension enables us to 

construct the eightdimensional octonion division algebra in detail, as described in [16], 

including its diagrammatic representation and algebraic operations. 

Thus, from [5, Diagram 1], each element 𝔵 ∈ 𝑂 can be expressed in the form: 

𝔵 = o0 + o1𝑒1 + o2𝑒2 + o3𝑒3 + o4𝑒4 + o5𝑒5 + o6𝑒6 + o7𝑒7, o𝑛 ∈ ℝ, 

where 𝑛 = 0,1,2,3,4,5,6,7. The basis elements of O are 1, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7. The 

detailed multiplication of these basis elements is shown in the table below. 

⋅ 1 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 

1 1 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 

𝑒1 𝑒1 -1 𝑒3 −𝑒2 𝑒5 −𝑒4 −𝑒7 𝑒6 

𝑒2 𝑒2 −𝑒3 -1 𝑒1 𝑒6 𝑒7 −𝑒4 −𝑒5 

𝑒3 𝑒3 𝑒2 −𝑒1 -1 𝑒7 −𝑒6 𝑒5 −𝑒4 

𝑒4 𝑒4 −𝑒5 −𝑒6 −𝑒7 -1 𝑒1 𝑒2 𝑒3 

𝑒5 𝑒5 𝑒4 −𝑒7 𝑒6 −𝑒1 -1 −𝑒3 𝑒2 

𝑒6 𝑒6 𝑒7 𝑒4 −𝑒5 −𝑒2 𝑒3 -1 −𝑒1 

𝑒7 𝑒7 −𝑒6 𝑒5 𝑒4 −𝑒3 −𝑒2 𝑒1 -1 
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The conjugate element 𝔵 is given by 

𝔵 = o0 − o1𝑒1 − o2𝑒2 − o3𝑒3 − o4𝑒4 − o5𝑒5 − o6𝑒6 − o7𝑒7. 

The norm of an arbitrary octonion is calculated as 

‖𝔵‖ = √𝔵 ⋅ 𝔵 = √o0
2 + o1

2 + o2
2 + o3

2 + o4
2 + o5

2 + o6
2 + o7

2. 

Additionally, the inverse of an arbitrary octonion 𝔵 is given in the form 

𝔵−1 =
𝔵

‖𝔵‖2
 

Any quaternion's imaginary part can be represented as a vector in three-

dimensional Euclidean space, analogous to a movement vector, with its real part 

indicating the time of this movement. Similarly, octonions can be redefined in a seven-

dimensional Euclidean space as a pair consisting of a scalar and a vector, allowing for a 

different perspective. While quaternions differ from real and complex numbers in their 

non-commutative multiplication, octonions, as a more complex structure, lose the 

associative property from the group axioms in multiplication. Consequently, division 

algebra over octonions becomes non-associative, adding to its intriguing properties. 

We can represent octonions as an ordered set of eight real numbers 

(o0, o1, o2, o3, o4, o5, o6, o7 ) with coordinate-wise addition and multiplication defined by 

a specific table. Here, the first component, o0, is called the real part, while the remaining 

seven-tuple ( o1, o2, o3, o4, o5, o6, o7 ) constitutes the imaginary part. 

Thus, as noted above, any quaternion can be written in the form (o0, 𝑢⃗ ), where 

𝑢⃗ = (o1, o2, o3, o4, o5, o6, o7) and 𝑜0 represents the real part. From here, the following 

properties can be easily observed: 

𝔵: = (o0, 𝑢⃗ ), 𝑢⃗ ∈ ℝ
7;  o0 ∈ ℝ

 = (o0, (o1, o2, o3, o4, o5, o6, o7)); o0, o1, o2, o3, o4, o5, o6, o7 ∈ ℝ

 = o0 + o1𝑒1 + o2𝑒2 + o3𝑒3 + o4𝑒4 + o5𝑒5 + o6𝑒6 + o7𝑒7.

 

Now, let us define a partial ordering relation ⪯ on the non-associative and non-

commutative octonion algebra O as follows. 

𝔵 ⪯ 𝔵′ if and only if Re(𝔵) ≤ Re(𝔵′), Im𝑒(𝔵) ≤ Im𝑒(𝔵
′), 𝔵, 𝔵′ ∈ ℍ; 𝑒 =

𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, where Im𝑒𝑛 = 𝑜𝑛; 𝑛 = 1,2,3,4,5,6,7. To confirm that it is 𝔵 ⪯ 𝔵′, 

satisfying any one of the 256 conditions derived from the sum of all possible 

combinations of 8, from 0 to 8 in respectively, will suffice. Obtained from the 0 -

combinations of 8, meaning none of its components are equal;this 1 case constitute 

(1) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6,7. 

Obtained from the 2-combinations of 8, meaning only one component is equal; 

these 8 cases constitute 
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(2) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6,7. 

(3) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 2,3,4,5,6,7; Im𝑒1(𝔵) = Im𝑒1

(𝔵′). 

(4) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,3,4,5,6,7; Im𝑒2(𝔵) = Im𝑒2

(𝔵′). 

(5) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,4,5,6,7; Im𝑒3(𝔵) = Im𝑒3

(𝔵′). 

(6) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,5,6,7; Im𝑒4(𝔵) = Im𝑒4

(𝔵′). 

(7) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,6,7; Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(8) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,7; Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(9) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6; Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

Obtained from the 2-combinations of 8, meaning only two components are 

equal; these 27 cases constitute 

(10) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 2,3,4,5,6,7; Im𝑒1(𝔵) = Im𝑒1

(𝔵′). 

(11) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,3,4,5,6,7; Im𝑒2(𝔵) = Im𝑒2

(𝔵′). 

(12) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,4,5,6,7; Im𝑒3(𝔵) = Im𝑒3

(𝔵′). 

(13) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,5,6,7; Im𝑒4(𝔵) = Im𝑒4

(𝔵′). 

(14) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,6,7; Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(15) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,7; Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(16) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6; Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

(17) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 3,4,5,6,7; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒2(𝔵) = Im𝑒2

(𝔵′). 

(18) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 2,4,5,6,7; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒3(𝔵) = Im𝑒3

(𝔵′). 

(19) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 2,3,5,6,7; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒4(𝔵) = Im𝑒4

(𝔵′). 

(20) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 2,3,4,6,7; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(21) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 2,3,4,5,7; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(22) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 2,3,4,5,6; Im𝑒1(𝔵) =

Im𝑒1
(𝔵′); Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

(23) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,4,5,6,7; Im𝑒2(𝔵) =

Im𝑒2
(𝔵′); Im𝑒3(𝔵) = Im𝑒3

(𝔵′). 

(24) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,3,5,6,7; Im𝑒2(𝔵) =

Im𝑒2
(𝔵′); Im𝑒4(𝔵) = Im𝑒4

(𝔵′). 

(25) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,3,4,6,7; Im𝑒2(𝔵) =

Im𝑒2
(𝔵′); Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(26) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,3,4,5,7; Im𝑒2(𝔵) =

Im𝑒2
(𝔵′); Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(27) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,3,4,5,6; Im𝑒2(𝔵) =

Im𝑒2
(𝔵′); Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

(28) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,5,6,7; Im𝑒3(𝔵) =

Im𝑒3
(𝔵′); Im𝑒4(𝔵) = Im𝑒4

(𝔵′). 
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(29) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,4,6,7; Im𝑒3(𝔵) =

Im𝑒3
(𝔵′); Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(30) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,4,5,7; Im𝑒3(𝔵) =

Im𝑒3
(𝔵′); Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(31) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,4,5,6; Im𝑒3(𝔵) =

Im𝑒3
(𝔵′); Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

(32) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,3,6,7; Im𝑒4(𝔵) =

Im𝑒4
(𝔵′); Im𝑒5(𝔵) = Im𝑒5

(𝔵′). 

(33) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,3,5,7; Im𝑒4(𝔵) =

Im𝑒4
(𝔵′); Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(34) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,3,5,6; Im𝑒4(𝔵) =

Im𝑒4
(𝔵′); Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

(35) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,3,4,7; Im𝑒5(𝔵) =

Im𝑒5
(𝔵′); Im𝑒6(𝔵) = Im𝑒6

(𝔵′). 

(36) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) < Im𝑒𝑛
(𝔵′), 𝑛 = 1,2,3,4,6; Im𝑒5(𝔵) =

Im𝑒5
(𝔵′); Im𝑒7(𝔵) = Im𝑒7

(𝔵′). 

Following a similar approach, we can easily list the 56 cases where exactly 3 

components are equal (derived from the 3-combinations of 8), 70 cases with 4 equal 

components, 56 cases with 5 equal components, and 27 cases with 6 equal components. 

However, to avoid making the article overly tedious, we will not elaborate in detail on 

the remaining 211 intermediate cases. For simplicity, let us focus only on the 8 cases 

with exactly 7 equal components, corresponding to the 7-combinations of 8 where just 

one component differs. 

(248) Re(𝔵) < Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6,7. 

(249) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 2,3,4,5,6,7; Im𝑒1(𝔵) < Im𝑒1

(𝔵′). 

(250) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,3,4,5,6,7; Im𝑒2(𝔵) < Im𝑒2

(𝔵′). 

(251) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,4,5,6,7; Im𝑒3(𝔵) < Im𝑒3

(𝔵′). 

(252) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,5,6,7; Im𝑒4(𝔵) < Im𝑒4

(𝔵′). 

(253) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,6,7; Im𝑒5(𝔵) < Im𝑒5

(𝔵′). 

(254) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,7; Im𝑒6(𝔵) < Im𝑒6

(𝔵′). 

(255) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6; Im𝑒7(𝔵) < Im𝑒7

(𝔵′). 

Finally, let us consider the case derived from the 8-combinations of 8, where all 

corresponding components are equal, which indicates that the two octonions are identical. 

(256) Re(𝔵) = Re(𝔵′); Im𝑒𝑛(𝔵) = Im𝑒𝑛
(𝔵′), where 𝑛 = 1,2,3,4,5,6,7. 

Specifically, if ‖𝔵‖ ≠ ‖𝔵′‖ and any condition between (1) and (256) is satisfied, 

𝔵 ⪯ 𝔵′ will be writen. If only condition (256) is satisfied, we will denote this by 𝔵 ≺ 𝔵′. 

We will briefly denote this situation as 

𝔵 ⪯ 𝔵′ ⟹ ‖𝔵‖ ≤ ‖𝔵′‖. (2.1) 
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A careful examination of the 256 conditions above reveals that we can introduce 

octonion-valued metric spaces, which generalize the complex metric spaces defined by 

Azam et al. [3], by taking the codomain as the field of complex numbers. 

These are then generalized to quaternion-valued metric spaces, as defined by 

Ahmed et al. [1], taking the codomain as the skew field of quaternions, which serve as a 

non-commutative extension of these metric spaces to Clifford algebra analysis. 

Following, we will define octonion-valued metric spaces, an interesting 

generalization of metric spaces that are neither commutative nor associative. 

Definition 1. ([7]) Given a nonempty set ϝ. If the transformation Π𝑂: ϝ × ϝ → O on this 

set satisfies following conditions, 

(1) 0O ⪯ ΠO(𝑠, 𝑡) for all 𝑠, 𝑡 ∈ ϝ and ΠO(𝑠, 𝑡) = 0O if and only if 𝑠 = 𝑡, 

(2) ΠO(𝑠, 𝑡) = ΠO(𝑡, 𝑠) for all 𝑠, 𝑡 ∈ ϝ, 

(3) ΠO(𝑠, 𝑡) ⪯ ΠO(𝑠, 𝑣) + ΠO(𝑣, 𝑡) for all 𝑠, 𝑡, 𝑣 ∈ ϝ. 

Then ΠO is called be an octonion valued metric on ϝ, and the pair (ϝ, ΠO) is called 

be an octonion valued metric space. 

Example 1. Let ΠO: O × O → O be an octanion valued function defined as ΠO(o, o
′) =

|o0 − o0
′ | + |o1 − o1

′ |𝑒1 + |o2 − o2
′ |𝑒2 + |o2 − o2

′ |𝑒2 + |o3 − o3
′ |𝑒3 + |o4 − o4

′ |𝑒4 +

|o5 − o5
′ |𝑒5 + |o6 − o6

′ |𝑒6 + |o7 − o7
′ |𝑒7, where o, o′ ∈ 𝕆 with 

𝔵 = o0 + o1𝑒1 + o2𝑒2 + o3𝑒3 + o4𝑒4 + o5𝑒5 + o6𝑒6 + o7𝑒7, 

𝔵′ = o0
′ + o1

′ 𝑒1 + o2
′ 𝑒2 + o3

′ 𝑒3 + o4
′ 𝑒4 + o5

′ 𝑒5 + o6
′ 𝑒6 + o7

′ 𝑒7;

o𝑖, o𝑖
′ ∈ ℝ; 𝑖 = 0,1,2,3,4,5,6,7.

 

Then (O, ΠO) defines an octanion valued metric space. 

Below, we provide an example of an octonion-valued metric that does not have a 

known numerical set as its domain. 

Example 2. Let 𝑋 = {𝑎, 𝑏, 𝑐} be an arbitrary set with three elements. Define the distances 

between the elements of the set by 

ΠO(𝑎, 𝑏) = ΠO(𝑏, 𝑎) = 3 + 4𝑒1 − 6𝑒2 + 4𝑒3 + 3𝑒4 + 3𝑒5 − 2𝑒6 + 𝑒7
ΠO(𝑏, 𝑐) = ΠO(𝑐, 𝑏) = 1 + 2𝑒1 + 3𝑒3 − 5𝑒4 − 3𝑒6 + 4𝑒7
ΠO(𝑎, 𝑐) = ΠO(𝑐, 𝑎) = 2 + 3𝑒1 + 𝑒2 + 𝑒3 − 2𝑒4 + 2𝑒5 − 𝑒6 + 5𝑒7
ΠO(𝑎, 𝑎) = ΠO(𝑏, 𝑏) = ΠO(𝑐, 𝑐) = 0 + 0𝑒1 + 0𝑒2 + 0𝑒3 + 0𝑒4 + 0𝑒5 + 0𝑒6 + 0𝑒7.

 

Since they are ‖ΠO(𝑎, 𝑏)‖ = 10, ‖ΠO(𝑎, 𝑐)‖ = 7, ‖ΠO(𝑐, 𝑏)‖ = 8, ‖ΠO(𝑎, 𝑏) +

ΠO(𝑎, 𝑐)‖ = √195, ‖ΠO(𝑎, 𝑏) + ΠO(𝑏, 𝑐)‖ = √200 and ‖ΠO(𝑐, 𝑏) + ΠO(𝑎, 𝑐)‖ =

√169 = 13, it can be seen through straightforward calculations that the conditions given 

in Definition 1 above are satisfied. 

Definition 2. ([5]) Given a nonempty set ϝ. If the transformation ΠO: ϝ × ϝ → O on this 

set satisfies following conditions, 
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(1) 0O ⪯ ΠO(𝑠, 𝑡) for all 𝑠, 𝑡 ∈ ϝ and ΠO(𝑠, 𝑡) = 0O if and only if 𝑠 = 𝑡, 

(2) ΠO(𝑠, 𝑡) = ΠO(𝑡, 𝑠) for all 𝑠, 𝑡 ∈ ϝ, 

(3) ΠO(𝑠, 𝑡) ⪯ 𝑏 ⋅ (ΠO(𝑠, 𝑣) + ΠO(𝑣, 𝑡)) for all 𝑠, 𝑡, 𝑣 ∈ ϝ, 1 ≤ 𝑏 ∈ ℝ.  

Then ΠO is called be an octonion valued b-metric on ϝ, and the pair (ϝ, ΠO) is called be 

an octanion valued b-metric space. 

Example 3. Example 1 and Example 2 are instances of octonion-valued 1-metric spaces 

for the real scalar 𝑏 = 1. 

Remark 1. It should be explicitly noted that, as seen from Definition 1 and Definition 2, 

every octonion-valued metric space is an octonion-valued 𝑏-metric space in the special 

case where 𝑏 = 1. 

The converse of the remark we provided above is not true, except for the special 

case of 𝑏 = 1. The next example we will present is an octonion-valued 𝑏-metric space 

for 𝑏 = 2, yet it is not an octonion-valued metric space. 

Example 4. Let ΠO
𝑏 : O × O → O be an octonion valued function defined as ΠO

𝑏(o, o′) =

|o0 − o0
′ |2 + |o1 − o1

′ |2𝑒1 + |o2 − o2
′ |2𝑒2 + |o3 − o3

′ |2𝑒3 + |o4 − o4
′ |2𝑒4 + |o5 −

o5
′ |2𝑒5 + |o6 − o6

′ |2𝑒6 + |o7 − o7
′ |2𝑒7, where o, o′ ∈ O with 

o = o0 + o1𝑒1 + o2𝑒2 + o3𝑒3 + o4𝑒4 + o5𝑒5 + o6𝑒6 + o7𝑒7,

o′ = o0
′ + o1

′ 𝑒1 + o2
′ 𝑒2 + o3

′ 𝑒3 + o4
′ 𝑒4 + o5

′ 𝑒5 + o6
′ 𝑒6 + o7

′ 𝑒7;

o𝑖 , o𝑖
′ ∈ ℝ; 𝑖 = 0,1,2,3,4,5,6,7

 

Then (O, ΠO) defines an octonion valued 𝑏-metric space. Indeed, note that if we take 

o = 3 + 3𝑒1 + 3𝑒2 + 3𝑒3 + 3𝑒4 + 3𝑒5 + 3𝑒6 + 3𝑒7
o′ = 2 + 2𝑒1 + 2𝑒2 + 2𝑒3 + 2𝑒4 + 2𝑒5 + 2𝑒6 + 2𝑒7
o′′ = 1 + 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 + 𝑒6 + 𝑒7,

 

although they are comparable under the partial ordering relation defined on octonions in 

[7], 

ΠO
𝑏(o, o′′) = 4 + 4𝑒1 + 4𝑒2 + 4𝑒3 + 4𝑒4 + 4𝑒5 + 4𝑒6 + 4𝑒7

ΠO
𝑏(o, o′) = 1 + 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 + 𝑒6 + 𝑒7

ΠO
𝑏(o′, o′′) = 1 + 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 + 𝑒6 + 𝑒7

ΠO
𝑏(o, o′) + ΠO

𝑏(o′, o′′) = 2 + 2𝑒1 + 2𝑒2 + 2𝑒3 + 2𝑒4 + 2𝑒5 + 2𝑒6 + 2𝑒7,

 

which would violate the third property of the axioms for being an octonion-valued metric 

space as stated in Definition 1, making it not an octonion-valued metric space. However, 

if we take 𝑏 = 2, in this case, the partial ordering ⪯ satisfies the axioms in Definition 2. 

As can be seen from the definitions and example above, the definition we provided 

is a natural generalization of the classical 𝑏-metric definition, as well as complex and 

quaternion-valued 𝑏-metrics. To express the connections between them, let us present the 

following propositions. 
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Proposition 1. Every quaternion-valued b-metric space can be embedded into an 

octonion-valued 𝑏-metric space. 

Proposition 2. Every complex-valued b-metric space can be embedded into a quaternion-

valued bmetric space and an octonion-valued b-metric space. 

Proposition 3. Every b-metric space can be embedded into a complex-valued b-metric 

space, a quaternion-valued b-metric space and an octonion-valued b-metric space. 

This is accomplished by generalizing scalar fields from conventional metric 

spaces to complexvalued metric spaces. The integral domain is further generalized to 

quaternion-valued metric spaces, and non-associative, higher-dimensional extensions 

result in octonion-valued metric spaces. The categories of classical, complex-valued, 

quaternion-valued, and octonion-valued 𝑏-metric spaces are introduced by relaxing the 

triangle inequality for 𝑏 ≥ 1. While forgetful functors cause reverse transitions, inclusion 

functors help with these transitions. Here, instead of concentrating on the algebraic and 

categorical features of octonion valued 𝑏-metric spaces, we concentrate on their calculus 

aspects. 

Thus, we can now proceed to define some fundamental concepts related to the 

definition above (see [5], [39] and [26]). 

Definition 3. Any point 𝑠 ∈ ϝ is called be an interior point of set 𝐴 ⊂ ϝ whenever there 

exists 0O ≺ 𝑟 ∈ O such that 

𝐵(𝔣, 𝑟) = {𝑡 ∈ ϝ: ΠO(𝔣, 𝑡) ≺ 𝑟} ⊂ 𝐴. 

Definition 4. Any point 𝔣 ∈ ϝ is called be a limit point of 𝐴 ⊂ ϝ whenever for every 0O ≺

𝑟 ∈ O 

𝐵(𝔣, 𝑟) ∩ (𝐴 − {𝔣}) ≠ ∅. 

Definition 5. Set 𝑂 is said to be an open set whenever each element of 𝑂 is an interior 

point of 𝑂. Subset 𝐶 ⊂ ϝ is called a closed set whenever each limit point of 𝐶 belongs to 

𝐶. The family 

𝐹 = {𝐵(𝔣, 𝑟): 𝔣 ∈ ϝ, 0O ≺ 𝑟} 

is a subbase for Hausdorff topology 𝜏 on ϝ. 

Definition 6. Let 𝔣 ∈ ϝ and 𝔣𝛼 be a sequence in the set ϝ. If for each o ∈ O with 0O ≺ o 

there is 𝛼0 ∈ ℕ such that for all 𝛼 > 𝛼0, ΠO(𝔣𝛼, 𝔣) ≺ o, then (𝔣𝛼) is called convergence 

sequence. Then, in this case (𝔣𝛼) sequence converges to the limit point 𝔣; as notation, 𝔣𝛼 →

𝔣 as 𝛼 → ∞ or lim
𝛼
 𝔣𝛼 = 𝔣. 

Definition 7. If there exists 𝛼0 ∈ ℕ such that for all 𝛼 > 𝛼0, ΠO(𝔣𝛼+𝑚, 𝔣𝛼) ≺ o, then (𝔣𝛼) 

is said to be a Cauchy sequence in the octonion valued b-metric space ( ϝ, ΠO). If every 
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Cauchy sequence is convergent in (ϝ, ΠO), then (ϝ, ΠO) is said to be a complete octonion 

valued b-metric space. 

Definition 8. If there exists 𝛼0 ∈ ℕ such that for all 𝛼 > 𝛼0, Π𝑂(𝔣𝛼+𝑚, 𝔣𝛼) ≺ o, then (𝔣𝛼) 

is said to be a Cauchy sequence in the octanion-valued b-metric space (ϝ, ΠO). If every 

Cauchy sequence is convergent in (ϝ, ΠO), then (ϝ, ΠO) is said to be a complete octonion 

valued b-metric space. 

Definition 9. A sequence (𝔣𝛼) in an octonion valued b-metric space (ϝ, Π𝑂) is said to 

converge statistically to a point 𝔣 ∈ ϝ (denoted as 𝔣𝛼 →
 stg  

𝔣), if as for all 0O ≺ 𝔵, we have 

lim
𝑁→∞

 
1

𝑁
|{𝛼 ≤ 𝑁:ΠO(𝔣𝛼, 𝔣) ⊀ 𝔵}| = 0. 

Definition 10. A sequence (𝔣𝛼) in an octonion valued b-metric space (ϝ, Π𝑂) is said to be 

statistical Cauchy sequence, if as for all 0O ≺ 𝔵, we have 𝑙 ∈ ℕ+depending on the norm 

of 𝔵 ∈ O 

lim
𝑁
 
1

𝑁
|{𝛼 ≤ 𝑁:ΠO(𝔣𝛼, 𝔣𝑙) ⊀ 𝔵}| = 0 

Theorem 1. Every statistically convergent sequence in an octonion valued b-metric space 

is a statistical Cauchy sequence. 

Definition 11. If every statistically Cauchy sequence is statistically convergent in (ϝ, ΠO), 

then (ϝ, ΠO) is said to be a statistically complete octonion valued b-metric space. 

Definition 12. A sequence (𝔣𝛼) in an octonion valued b-metric space ( ϝ, ΠO ) ideally 

converges to a point 𝔣 ∈ ϝ (represented as 𝔣𝛼 →
ℐ(ϝ,ΠO)

 

𝔣 ), if, for all 0O ≺ 𝜚 with 0O ≺ 𝜚, 

{𝛼 ∈ ℕ:ΠO(𝔣𝛼, 𝔣) ⊀ 𝜚} ∈ ℐ. 

Definition 13. A sequence (𝔣𝛼) in an octonion-valued b-metric space (ϝ, ΠO) is said to be 

an ideal Cauchy sequence if, for every 𝜚 ∈ O with 0O ≺ 𝜚, there exists an 𝑙 ∈

ℕ+depending on the norm of 𝜚 ∈ O such that 

{𝛼 ∈ ℕ:ΠO(𝔣𝛼, 𝔣𝑙) ⊀ 𝜚} ∈ ℐ. 

3. Results 

In this section, by using modulus functions, we present some definitions for octonion-

valued 𝑏-metric spaces as given in [5], [39] and [26], focusing on concepts such as ℐ-

statistically convergence, ℐ-lacunary statistically convergence, strong ℐ-Cesàro 

summability, and strong ℐ-lacunary summability in octonion-valued 𝑏-metric space. 

Additionally, various properties associated with these notions are explored. 

A modulus function is a function 𝑓: [0,∞) → [0,∞) such that (i) 𝑓(𝔞) = 0 iff 𝔞 = 0, (ii) 

𝑓(𝔞 + 𝔟) ≤ 𝑓(𝔞) + 𝑓(𝔟) for all 𝔞, 𝔟 ≥ 0, (iii) 𝑓 is increasing, (iv) 𝑓 is continuous from 
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right at 0. The modulus function may be bounded or unbounded. For example, if we take 

𝑓(𝔞) = 𝔞/(𝔞 + 1), then 𝑓(𝔞) is bounded. If 𝑓(𝔞) = 𝔞𝜍, 𝜍 ∈ (0,1), then the modulus 𝑓(𝔞) 

is unbounded. Unless otherwise stated throughout the paper, consider 𝑓 as an unbounded 

modulus function. 

We can now present some definitions, among which we will give the inclusion relations. 

Definition 14. Let (ϝ, ΠO) represent an octonion-valued b-metric space, where 𝜔 ∈ ϝ is a 

point, and (𝜔𝛼) ⊆ ϝ is a sequence. A sequence (𝜔𝛼) is considered ℐ-statistically 

convergent to 𝜔 if, for every 𝜚, 𝜏 ∈ O with 0O ≺ 𝜚, 𝜏 such that 

{𝛾 ∈ ℕ:
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|)

𝑓(𝛾)
⊀ 𝜏} ∈ ℐ. 

This type of convergence is denoted by F(ℐ, 𝑓)(ϝ,ΠO) − lim
𝛼→∞

 𝜔𝛼 = 𝜔 or 

(𝜔𝛼) →
F(ℐ,𝑓)(ϝ,ΠO) 

𝜔. The set of all ℐ-statistically convergent sequences in octonion-valued 

𝑏-metric space is represented as F(ℐ, 𝑓)(ϝ,Π∘). 

Definition 15. A sequence (𝜔𝛼) is known as ℐ-lacunary statistically convergent to 𝜔 ∈ ϝ 

if, for every 𝜚, 𝜏 ∈ O with 0O ≺ 𝜚, 𝜏 such that 

{𝔯 ∈ ℕ:
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

𝑓(ℎ𝔯)
⊀ 𝜏} ∈ ℐ. 

It is indicated by F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔 or (𝜔𝛼) →

F𝜃(ℐ,𝑓)
(ϝ,ΠO) 

𝜔. The set of all ℐ-

lacunary statistically convergent sequences in octonion-valued 𝑏-metric space is 

symbolized as F𝜃(ℐ, 𝑓)
(ϝ,ΠO). 

Definition 16. A sequence (𝜔𝛼) is defined as strongly ℐ-Cesàro summable to 𝜔 ∈ ϝ if, 

for any 𝜚 ∈ O with 0O ≺ 𝜚, 

{𝑡 ∈ ℕ:∑  

𝑡

𝛼=1

 𝑓(ΠO(𝜔𝛼, 𝜔)) ⊀ 𝜚} ∈ ℐ. 

This is denoted by 𝐶1
(ϝ,ΠO)[ℐ, 𝑓] − lim

𝛼→∞
 𝜔𝛼 = 𝜔 or (𝜔𝛼) 

𝐶1
(ϝ,ΠO)

 [ℐ,𝑓]𝜔. 

Definition 17. A sequence (𝜔𝛼) is considered as strongly ℐ-lacunary convergent to 𝜔 ∈

ϝ if, for all 𝜚 ∈ O with 0O ≺ 𝜚, 

{𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

 𝑓(ΠO(𝜔𝛼, 𝜔)) ⊀ 𝜚} ∈ ℐ. 

and is indicated by 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] − lim

𝛼→∞
 𝜔𝛼 = 𝜔 or (𝜔𝛼)

𝑁
𝜃

(ϝ,ΠO)

 [ℐ,𝑓]𝜔. 
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Definition 18. A sequence (𝜔𝛼) is called to be [𝑉, 𝜆](ϝ,ΠO)(ℐ)-summable to 𝜔 ∈ ϝ, if for 

any every 𝜚 ∈ O with 0O ≺ 𝜚, 

{𝛾 ∈ ℕ:ΠO(𝑡𝛾(𝜔𝛼), 𝜔) ⊀ 𝜚} ∈ ℐ, 

where 

𝑡𝛾(𝜔𝛼):=
1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

𝑓(ΠO(𝜔𝛼 , 𝜔)), 𝐼𝛾 = [𝛾 − 𝜆𝛾 + 1, 𝛾]. 

In this context, we write [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔 or (𝜔𝛼) 
[𝑉,𝜆](ϝ,ΠO)  (ℐ,𝑓)𝜔. The set 

of all [𝑉, 𝜆](ℐ, 𝑓)-summable sequences in octonion valued 𝑏-metric space is symbolized 

as [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓). 

Definition 19. A sequence (𝜔𝛼) is known as ℐ - 𝜆, 𝑓-statistically convergent or ℐ - ϝ𝜆,𝑓-

convergent to 𝜏, if, for every 𝜚, 𝜏 ∈ O with 0O ≺ 𝜚, 𝜏, 

{𝛾 ∈ ℕ:
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|)

𝑓(𝜆𝛾)
⊀ 𝜏} ∈ ℐ. 

In this case we write ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜔 or (𝜔𝛼) →
ℐ(ϝ,ΠO)−ϝ𝜆,𝑓 

𝜔. The collection 

of all ℐ - 𝜆, 𝑓-statistically convergent sequences in octonion valued 𝑏-metric space is 

symbolized as ℐ(ϝ,Π0) − ϝ𝜆,𝑓. 

Theorem 2. Let 𝜃 = (𝑘𝑟) be a lacunary sequence. Then, the following statements hold: 

(i) (a) If 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] − lim

𝛼→∞
 𝜔𝛼 = 𝜔, then F𝜃(ℐ, 𝑓)

(ϝ,ΠO) − lim
𝛼→∞

 𝜔𝛼 = 𝜔, and (b) 

𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] is a proper subset of F𝜃(ℐ, 𝑓)

(ϝ,ΠO). 

(ii) If (𝜔𝛼) ∈ 𝑙∞(ϝ), the space of all bounded sequences of (ϝ, ΠO) and 

F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔, then 𝑁𝜃

(ϝ,ΠO)[ℐ, 𝑓] − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

(iii) F𝜃(ℐ, 𝑓)
(ϝ,ΠO) ∩ 𝑙∞ = 𝑁𝜃

(ϝ,ΠO)[ℐ, 𝑓] ∩ 𝑙∞. 

Proof. (i) (a) If 𝜚 ∈ O with 0O ≺ 𝜚 and 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] − lim

𝛼→∞
 𝜔𝛼 = 𝜔, then we can write 

∑  

𝛼∈𝐼r

𝑓(ΠO(𝜔𝛼, 𝜔)) ≥ ∑  

𝛼∈𝐼r&𝑓(ΠO(𝜔𝛼,𝜔))⊀𝜚

𝑓(ΠO(𝜔𝛼 , 𝜔)) ≥ 𝜚 ⋅ 𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|), 

and so 

1

𝜚𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

𝑓(ΠO(𝜔𝛼, 𝜔)) ≥
1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|). 

For any 𝜏 ∈ O with 0O ≺ 𝜏, we obtain 
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{𝔯 ∈ ℕ:
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

𝑓(𝔥𝔯)
⊀ 𝜏} ⊆ {𝔯 ∈ ℕ:

∑  𝛼∈𝐼𝑟  𝑓(ΠO(𝜔𝛼 , 𝜔))

𝑓(𝔥𝔯)
⊀ 𝜚𝜏} ∈ ℐ. 

Hence, F𝜃(ℐ, 𝑓)
(ϝ,Π0) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. 

(b) To show that the inclusion 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] ⊆ F𝜃(ℐ, 𝑓)

(ϝ,ΠO) is strict, consider a given 𝜃. 

Define (𝜔𝛼) as follows: for the first √𝔥𝔯 integers in 𝐼𝔯, let (𝜔𝛼) be 1,2, … ,√𝔥𝔯; for all 

other values, let 𝜔𝛼 = 0. For any 𝜚 ∈ O with 0O ≺ 𝜚, one writes 

(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

𝑓(ℎ𝔯)
≤
𝑓(√ℎ𝔯)

𝑓(ℎ𝔯)
, 

and for any 𝜏 ∈ O with 0O ≺ 𝜏, 

{𝔯 ∈ ℕ:
(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

𝑓(ℎ𝔯)
⊀ 𝜏} ⊆ {𝔯 ∈ ℕ:

𝑓(√ℎ𝔯)

𝑓(ℎ𝔯)
≥ 𝜏} 

Since the set on the right-hand side is finite and thus belongs to ℐ, it follows that 

F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. On the other hand, 

1

𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

𝑓(ΠO(𝜔𝛼 , 0)) =
1

𝑓(𝔥𝔯)

𝑓(√𝔥𝔯) (𝑓(√𝔥𝔯 + 1))

2
→
1

2
≠ 0, 

Thus, we have 

{𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

 𝑓(ΠO(𝜔𝛼 , 0)) ⊀
1

4
} = {𝔯 ∈ ℕ:

𝑓(√𝔥𝔯) (𝑓(√𝔥𝔯 + 1))

2𝑓(𝔥𝔯)
≥
1

2
} = {𝑛, 𝑛 + 1,… } 

for some 𝑛 ∈ ℕ that belongs to ℱ(ℐ, 𝑓), given that ℐ is admissible. Hence, 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] −

lim
𝛼→∞

 𝜔𝛼 ≠ 0. 

(ii) Suppose that (𝜔𝛼) ∈ 𝑙∞(ϝ) and F𝜃(ℐ, 𝑓)
(ϝ,Π∘) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. Then, there exists a 

𝔇 > 0 such that ΠO(𝜔𝛼, 𝜔) ⊀ 𝔇. Given 𝜚 ∈ O with 0O ≺ 𝜚, we have 

1

𝑓(𝔥r)
∑  

𝛼∈𝐼r

 𝑓(ΠO(𝜔𝛼 , 𝜔)) ≥
1

𝑓(𝔥r)
∑  

𝛼∈𝐼r&ΠO(𝜔𝛼,𝜔)⊀
𝜚

2

 𝑓(ΠO(𝜔𝛼, 𝜔)) +
1

𝑓(ℎr)
∑  

𝛼∈𝐼r&ΠO(𝜔𝛼,𝜔)≺
𝜚

2

 𝑓(ΠO(𝜔𝛼, 𝜔))

 ≥
𝒟

𝑓(𝔥r)
𝑓 (|{𝛼 ∈ 𝐼r: ΠO(𝜔𝛼, 𝜔) ⊀

𝜚

2
}|) +

𝜚

2
.

 

Therefore, we have 
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{𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

 𝑓(ΠO(𝜔𝛼 , 𝜔)) ⊀ 𝜚}

 ⊆ {𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
𝑓 (|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀

𝜚

2
}|) ⊀

𝜚

2𝔒
} ∈ ℐ.

 

As a result 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] − lim

𝛼→∞
 𝜔𝛼 = 𝜔. 

Theorem 3. Let 𝜃 = {𝑘𝔯} be a lacunary sequence. If liminf
𝔯
 
𝑓(𝔥𝔯)

𝑓(𝑘𝔯)
> 1, then 

F(ℐ, 𝑓)(ϝ,ΠO) − lim
𝛼→∞

 𝜔𝛼 = 𝜔 ⇒ F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. 

If lim inf𝔯𝔯
𝑓(𝔥𝔯)

𝑓(𝑘𝔯)
= 1, then there exists a bounded sequence (𝜔𝛼) which is ℐ-statistically 

convergent but not ℐ-lacunary statistically convergent in octonion valued b-metric space. 

Proof. If lim inf
𝔯

 
𝑓(𝔥𝔯)

𝑓(𝑘𝔯)
> 1, then there exists 𝜍 > 0 such that 

𝑓(𝔥𝔯)

𝑓(𝑘𝔯)
≥ 1 + 𝜍 for all 𝔯 ≥ 1. 

Since ℎ𝔯 = 𝑘𝔯 − 𝑘𝔯−1, we have 
𝑓(𝑘𝔯)

𝑓(ℎ𝔯)
≤

1+𝜍

𝜍
 and 

𝑓(𝑘𝔯−1)

𝑓(𝔥𝔯)
≤

1

𝜍
. If F(ℐ, 𝑓)(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔, 

then for all 𝜚 ∈ O with 0O ≺ 𝜚, we have 

1

𝑓(𝑘r)
𝑓(|{𝛼 ≤ 𝑘r: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|) ≥

1

𝑓(𝑘r)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|)

 ≥
𝜍

1 + 𝜍

1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|);

 

Then, for every 𝜏 ∈ O with 0O ≺ 𝜏, we get 

{𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼r: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|) ⊀ 𝜏}

 ⊆ {𝑘𝔯 ∈ ℕ:
1

𝑓(𝑘r)
𝑓(|{𝛼 ≤ 𝑘𝔯: ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|) ⊀

𝜏𝜍

1 + 𝜍
} ∈ ℐ.

 

As a result, we obtain F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. Suppose that liminf

𝔯
 
𝑓(𝔥𝔯)

𝑓(𝑘𝔯)
= 1. Then, 

we can select a subsequence (𝑘𝔯𝔳) of 𝜃 such that 

𝑓(𝑘𝔯𝔳)

𝑓(𝑘𝔯𝔳−1)
< 1 +

1

𝔳
 and 

𝑓(𝑘𝔳𝔳−1)

𝑓(𝑘𝔯𝔳−1)
> 𝔳 

where 𝔯𝔳 > 𝔯𝔳−1 + 2. Construct a sequence ( 𝜔𝛼 ) such that 

𝜔𝛼 = {
1,  if 𝛼 ∈ 𝐼𝔯𝑣 ,

0,  if not. 
 

Then, we have 

1

𝑓(𝔥𝔯𝔳)
∑  

𝛼∈𝐼𝔯

𝑓(ΠO(𝜔𝛼, 𝜔)) = 1 − 𝜔 for 𝔳 = 1,2, . . and 
1

𝑓(𝔥𝔯)
∑  

𝛼∈𝐼𝔯

𝑓(ΠO(𝜔𝛼, 𝜔)) = 𝜔 for 𝔯 ≠ 𝔯𝔳. 
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Given that (𝜔𝛼) does not belong to 𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓], and considering that (𝜔𝛼) is bounded, 

Theorem 2( iii ) implies that F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 ≠ 𝜔. Next, let 𝑘r𝑣−1 ≤ 𝛾 ≤

𝑘𝔯𝑣+1−1. Then, from Theorem 2.1 in [14], we can write 

1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾:ΠO(𝜔𝛼 , 𝜔) ⊀ 𝜚}|) ≤

1

𝑓(𝛾)
∑  

𝛾

𝛼=1

𝑓(ΠO(𝜔𝛼 , 𝜔)) ≺
𝑘𝔯𝔳−1 + 𝔥𝔯𝔳
𝑘𝔯𝔳−1

≺
1

𝔳
+
1

𝔳
=
2

𝔳
. 

Hence, F(ℐ, 𝑓)(ϝ,ΠO) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

Theorem 4. If 𝜃 = {𝑘𝔯} be a lacunary sequence with limsup
𝑓(𝑘𝔳−𝑘𝔳−1)

𝑓(𝑘𝔳−1)
= 𝔅𝔳 < ∞(𝔳 =

1,2, … , 𝔯), then 

F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔 ⇒ F(ℐ, 𝑓)(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔. 

Proof. Assume that F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔, and for 𝜚, 𝜏 ∈ O with 0O ≺ 𝜚, 𝜏, define 

the sets 

ℭ = {𝔯 ∈ ℕ:
1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) < 𝜏} 

and 

𝔗 = {𝛾 ∈ ℕ:
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) < 𝜏1}. 

Based on our assumption that ℭ ∈ ℱ(ℐ), the filter associated with the ideal ℐ, it is also 

evident that 

𝔎𝔳 =
1

𝑓(𝔥𝔳)
𝑓(|{𝛼 ∈ 𝐼𝔳: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) < 𝜏 

for all 𝔳 ∈ ℭ. Let 𝛾 ∈ ℕ be such that 𝑘𝔯−1 < 𝛾 ≤ 𝑘𝔯 for some 𝑟 ∈ ℭ. Now 
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1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ≤

1

𝑓(𝑘r − 1)
𝑓(|{𝛼 ≤ 𝑘𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 =
1

𝑓(𝑘r−1)
𝑓(|{𝛼 ∈ 𝐼1: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) +

1

𝑓(𝑘r−1)
𝑓(|{𝛼 ∈ 𝐼2: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 +⋯+
1

𝑓(𝑘r−1)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 =
𝑓(𝑘1)

𝑓(𝑘𝔯−1)

1

𝑓(𝔥1)
𝑓(|{𝛼 ∈ 𝐼1: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) +

𝑓(𝑘2 − 𝑘1)

𝑓(𝑘𝔯 − 1)

1

𝑓(𝔥2)
𝑓(|{𝛼 ∈ 𝐼2: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 +⋯+
𝑓(𝑘𝔯 − 𝑘r − 1)

𝑓(𝑘r)

1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼r: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 =
𝑓(𝑘1)

𝑓(𝑘𝔯−1)
𝔎1 +

𝑓(𝑘2 − 𝑘1)

𝑓(𝑘𝔯 − 1)
𝔎2 +⋯+

𝑓(𝑘r − 𝑘r−1)

𝑓(𝑘r−1)
𝔎𝔱

 ≤ sup
𝔳∈ℂ

 𝔎𝔳. sup
𝑓(𝑘𝔳 − 𝑘𝔳−1)

𝑓(𝑘𝔳−1)
< 𝔅𝔳𝜏.

 

Given that 𝜏1 =
𝜏

𝔅𝔳
 and considering that ⋃  {𝔱: 𝑘𝔯−1 < 𝔱 ≤ 𝑘𝔯, 𝔯 ∈ ℭ} ⊂ 𝔗 where ℭ ∈ ℱ(ℐ) 

it follows from our assumption on 𝜃 that the set 𝔗 also belongs to ℱ(ℐ). Therefore, we 

have F(ℐ, 𝑓)(ϝ,Π0) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

Theorem 5. Let ℐ be an admissible ideal satisfying condition (AP), and let 𝜃 ∈ ℱ(ℐ). If 

𝜔 ∈ F(ℐ, 𝑓)(ϝ,ΠO) ∩ F𝜃(ℐ, 𝑓)
(ϝ,ΠO), then F(ℐ, 𝑓)(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = F𝜃(ℐ, 𝑓)

(ϝ,ΠO) −

lim
𝛼→∞

 𝜔𝛼. 

Proof. Suppose that F(ℐ, 𝑓)(ϝ,Π∘) − lim
𝛼→∞

 𝜔𝛼 = 𝜔1 and F𝜃(ℐ, 𝑓)
(ϝ,Π∘) − lim

𝛼→∞
 𝜔𝛼 = 𝜔2, and 

𝜔1 ≠ 𝜔2. Let 0O < 𝜚 <
1

2
|𝜔1 − 𝜔2|, where 𝜚 ∈ O with 0O ≺ 𝜚. As ℐ meets the condition 

(AP), there exists an 𝔐 ∈ ℱ(ℐ) (i.e., ℕ ∖𝔐 ∈ ℐ ) such that 

lim
𝔯→∞

 
1

𝑓(𝔱𝔯)
𝑓(|{𝛼 ≤ 𝔱𝔯: ΠO(𝜔𝛼, 𝜔1) ⊀ 𝜚}|) = 0, where 𝔐 = {𝔱1, 𝔱2, … } 

Let 

𝔘 = {𝛼 ≤ 𝔱𝐫: ΠO(𝜔𝛼, 𝜔1) ⊀ 𝜚}, 𝔗 = {𝛼 ≤ 𝔱𝔯: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}. 

The inequality 𝔱𝔯 = |𝔘 ∪ 𝔗| ≤ |𝔘| + |𝔗| leads to 1 ≤
𝑓(|𝔘|)

𝑓(𝔱r)
+
𝑓(|𝔗|)

𝑓(𝔱r)
. Given that 

𝑓(|𝔗|)

𝑓(𝔱r)
≤ 1 

and lim
𝔯→∞

 
𝑓(|𝔏|)

𝑓(𝔱𝔯)
= 0, it follows that lim

𝔯→∞
 
𝑓(|𝔉|)

𝑓(𝔱𝔯)
= 1. Let 𝔐∗ = {𝛼𝔧1 , 𝛼𝔧2 , … } = 𝔐 ∩ 𝜃 ∈

ℱ(ℐ). Then, the 𝛼𝑗𝔰  th term of the statistical expression 

1

𝑓(𝔱𝔯)
𝑓(|{𝛼 ≤ 𝔱r: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}|) 

is 
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1

𝑓(𝛼𝔧𝔰)
𝑓 (|{𝛼 ∈⋃  

𝔧𝔰

𝔯=1

  𝐼𝔯: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}| ∣) =
1

∑  
𝔧𝔰
𝔯=1  𝑓(𝔥𝔯)

∑  

𝔧𝔰

𝔯=1

 𝑓(𝔥𝔯)𝜏𝔯 (3.1) 

where 

𝜏𝔯 =
1

𝑓(𝔥𝔯)
𝑓(|{𝛼 ∈ 𝐼𝔯: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}|) →

ℐ 
0 

since F𝜃(ℐ, 𝑓)
(ϝ,ΠO) − lim

𝛼→∞
 𝜔𝛼 = 𝜔2. Let 𝜃 represent a lacunary sequence. The expression 

(3.1) is a regular weighted mean transform of 𝜏r 's, and is therefore ℐ-convergent to zero 

as 𝔰 → ∞. Consequently, it has a subsequence converging to zero due to ℐ meeting the 

condition (𝐴𝑃). However, as this forms a subsequence of 

{
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}|)}

𝛾∈𝔐

 

it follows that 

{
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔2) ⊀ 𝜚}|)}

𝛾∈𝔐

↛ 1 

which contradicts the assumption. This contradiction establishes the validity of the 

theorem. 

We can give the following result without proof. 

Corollary 1. If lim infinf
𝔯
 𝑞r > 1, then 𝐶1

(ϝ,ΠO)[ℐ, 𝑓] ⊆ 𝑁𝜃
(ϝ,ΠO) and if lim inf

𝔯
 𝑞r < ∞, then 

𝑁𝜃
(ϝ,ΠO)[ℐ, 𝑓] ⊆ 𝐶1

(ϝ,ΠO)[ℐ, 𝑓]. 

Theorem 6. Let 𝜆 = (𝜆𝑛) ∈ Δ. Then 

(i) If [𝑉, 𝜆](ϝ,Π0)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔, then ℐ(ϝ,Π∘) − ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜔 and the 

inclusion [𝑉, 𝜆](ϝ,Π0)(ℐ, 𝑓) ⊂ ℐ(ϝ,Π0) − ϝ𝜆,𝑓 is proper for every ideal ℐ. 

(ii) If (𝜔𝛼) ∈ 𝑙∞(ϝ), the space of all bounded sequences of (ϝ, ΠO) and ℐ(ϝ,ΠO) −

ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜔, then [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

Proof. Let 𝜚 ∈ O with 0O ≺ 𝜚 and [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. Then, we have 

∑  

𝛼∈𝐼𝛾

 𝑓(ΠO(𝜔𝛼, 𝜔)) ≥ ∑  

𝛼∈𝐼𝛾&𝑓(ΠO(𝜔𝛼,𝜔))⊀𝜚

 𝑓(ΠO(𝜔𝛼, 𝜔))

 ≥ 𝜚. 𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 

So for a given 𝜏 ∈ O with 0O ≺ 𝜏, 
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1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀ 𝜏 ⇒

1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

𝑓(ΠO(𝜔𝛼, 𝜔)) ⊀ 𝜚𝜏, 

i.e., 

{𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀ 𝜏}

 ⊆ {𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

 𝑓(ΠO(𝜔𝛼, 𝜔)) ⊀ 𝜚𝜏} .

 

Since [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔, so the set on the right-hand side belongs to ℐ and 

so it follows that ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜔.  

To establish that ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 ⫋ [𝑉, 𝜆]
(ϝ,ΠO)(ℐ, 𝑓), consider a fixed 𝔏 ∈ ℐ. Define (𝜔𝛼) 

as 

𝜔𝛼 =

{
 

 𝛼𝔭,  for 𝛾 − [√𝜆𝛾] + 1 ≤ 𝛼 ≤ 𝛾, 𝛾 ∉ 𝔏

𝛼𝔭,  for 𝛾 − 𝜆𝛾 + 1 ≤ 𝛼 ≤ 𝛾, 𝛾 ∈ 𝔏

𝜃,  if not. 

 

where 𝔭 ∈ ϝ is a fixed element satisfying ‖𝔭‖ = 1, and 𝜃 is the null element of ϝ. Then 

(𝜔𝛼) ∉ 𝑙∞(ϝ) and for every 𝜚 ∈ O with 0O ≺ 𝜚 since 

1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 0) ⊀ 𝜚}|) =

𝑓([√𝜆𝛾)

𝑓(𝜆𝛾)
→ 0 

as 𝛾 → ∞ and 𝛾 ∉ 𝔏, so for every 𝜏 ∈ O with 0O ≺ 𝜏, 

{𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀ 𝜏} ⊂ 𝔏 ∪ {1,2, … , 𝔰} 

for some 𝔰 ∈ ℕ. Since ℐ is admissible, it follows that ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜃. 

Clearly, 

1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

𝑓(ΠO(𝜔𝛼, 𝜔)) → ∞ (𝛾 → ∞) 

which implies [𝑉, 𝜆](ϝ,Π0)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 ≠ 𝜃. It is important to observe that if 𝔏 ∈ ℐ is 

infinite, then ϝ𝜆,𝑓
(ϝ,Π0) − lim

𝛼→∞
 𝜔𝛼 ≠ 𝜃. This example demonstrates that ℐ - ϝ𝜆,𝑓-convergence 

is a more general concept than 𝜆-statistical convergence in octonion valued b-metric 

spaces. 
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(ii) Suppose that ℐ(ϝ,Π∘) − ϝ𝜆,𝑓 − lim
𝛼→∞

 𝜔𝛼 = 𝜔 and (𝜔𝛼) ∈ 𝑙∞. Then, there exists a 𝔇 > 0 

such that ΠO(𝜔𝛼, 𝜔) ⊀ 𝔇. Given 𝜚 ∈ O with 0O ≺ 𝜚, we have 

1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

 𝑓(ΠO(𝜔𝛼, 𝜔)) =
1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾&𝑓(ΠO(𝜔𝛼,𝜔))⊀𝜚

 𝑓(ΠO(𝜔𝛼, 𝜔))

 +
1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾&𝑓(ΠO(𝜔𝛼,𝜔))≺𝜚

 𝑓(ΠO(𝜔𝛼, 𝜔))

 ≤
𝒟

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 0) ⊀ 𝜚}|) + 𝜚.

 

Note that 

ℜ(𝜚):= {𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀

𝜚

𝔇
} ∈ ℐ. 

If 𝛾 ∈ ℜ𝑐, then 

1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

𝑓(ΠO(𝜔𝛼, 𝜔)) ≺ 2𝜚. 

Therefore, 

{𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
∑  

𝛼∈𝐼𝛾

 𝑓(ΠO(𝜔𝛼, 𝜔)) ⊀ 2𝜚} ⊂ ℜ 

and thus it belongs to ℐ. This demonstrates that [𝑉, 𝜆](ϝ,ΠO)(ℐ, 𝑓) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

Theorem 7. Let (ϝ, ΠO) be an octonion-valued b-metric spaces, 𝜔 ∈ ϝ be a point, and 

(𝜔𝛼) ⊆ ϝ be a sequence and 𝜆 = (𝜆𝛾) ∈ Δ. Then  

(i) ϝ(ϝ,ΠO)(ℐ, 𝑓) ⊆ ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 if lim inf
𝛾→∞

 
𝑓(𝜆𝛾)

𝑓(𝛾)
> 0. 

(ii) If lim inf
𝛾→∞

 
𝑓(𝜆𝛾)

𝑓(𝛾)
= 0, ℐ-strongly (by which we mean that ∃ a subsequence 

(𝛾(𝑖))𝑖=1
∞ , for which 

𝜆𝛾(𝑖)

𝛾(𝑖)
<

1

𝑖
∀𝑖 and {𝛾(𝑖): 𝑖 ∈ ℕ} ∉ ℐ) then ϝ(ϝ,Π∘)(ℐ, 𝑓) ⫋

ℐ(ϝ,Π∘) − ϝ𝜆,𝑓. 

Proof. (i) Given 𝜚 ∈ O with 0O ≺ 𝜚, we have 

1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ≥

1

𝑓(𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 ≥
𝑓(𝜆)

𝑓(𝛾)

1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)
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If lim inf
𝛾→∞

 
𝑓(𝜆𝛾)

𝑓(𝛾)
= 𝔳 then from definition {𝛾 ∈ ℕ:

𝑓(𝜆𝛾)

𝑓(𝛾)
<

𝔳

2
} is finite. For 𝜏 ∈ O with 0O ≺

𝜏 

{𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀ 𝜏}

 ⊆ {𝛾 ∈ ℕ:
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀

𝔳

2
𝜏}

 ∪ {𝛾 ∈ ℕ:
𝑓(𝜆)

𝑓(𝛾)
<
𝔳

2
} .

 

Since ℐ is admissible, the set on the right-hand side belongs to ℐ, completing the proof of 

(𝑖). 

(ii) Construct a sequence (𝜔𝛼) such that 

𝜔𝛼 = {
𝔮,  if 𝛼 ∈ 𝐼𝛾(𝑖), 𝑖 = 1,2, …

𝜃,  if not ,
 

where 𝔮 ∈ ϝ, ‖𝔮‖ = 1 and 𝜃 is the zero element of ϝ. Then (𝜔𝛼) is statistically convergent, 

placing it in ϝ(ϝ,Π0)(ℐ, 𝑓) (Since ℐ is admissible). But (𝜔𝛼) ∉ [𝑉, 𝜆]
(ϝ,Πo) and so by 

Theorem 6(ii)(𝜔𝛼) ∉ ℐ(ϝ,ΠO) − ϝ𝜆,𝑓. 

Theorem 8. If 𝜆 ∈ Δ be such that lim
𝛾→∞

 
𝑓(𝛾−𝜆𝛾)

𝑓(𝛾)
= 1, then ℐ(ϝ,ΠO) − ϝ𝜆,𝑓 ⊂ ϝ

(ϝ,ΠO)(ℐ, 𝑓). 

Proof. Let 𝜍 > 0 be given. Since lim
𝛾→∞

 
𝑓(𝛾−𝜆𝛾)

𝑓(𝛾)
= 1, we can choose 𝔰 ∈ ℕ such that 

|
𝑓(𝛾−𝜆𝛾)

𝑓(𝛾)
− 1| < 

𝜍

2
, for all 𝛾 ≥ 𝔰. Now observe that, for 𝜚 ∈ O with 0O ≺ 𝜚, 

1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 =
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾 − 𝜆𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 +
1

𝑓(𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 ≤
𝑓(𝛾 − 𝜆𝛾)

𝑓(𝛾)
+

1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|)

 ≤
𝜍

2
+

1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|),

 

for all 𝛾 ≥ 𝔰. Hence 

{𝛾 ∈ ℕ:
1

𝑓(𝛾)
𝑓(|{𝛼 ≤ 𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀ 𝜍}

 ⊆ {𝛾 ∈ ℕ:
1

𝑓(𝜆𝛾)
𝑓(|{𝛼 ∈ 𝐼𝛾: ΠO(𝜔𝛼, 𝜔) ⊀ 𝜚}|) ⊀

𝜍

2
} ∪ {1,2,3, … , 𝔰}.
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If ℐ(ϝ,ΠO) − ϝ𝜆 − lim
𝛼→∞

 𝜔𝛼 = 𝜔 then F(ℐ, 𝑓)(ϝ,ΠO) − lim
𝛼→∞

 𝜔𝛼 = 𝜔. 

4. Conclusion 

Important ideas in summability theory have been thoroughly examined in generalized 

metric spaces in recent years. This work uses the modulus function to introduce the 

notions of strong ℐ-Cesaro summability, ℐ-lacunary statistical convergence, and ℐ-

statistical convergence in octonion-valued 𝑏 metric spaces, which are a generalization of 

metric spaces. Analysis is also done on the relationships between these ideas. Compared 

to comparable research in the literature, the findings of this study are more thorough. The 

generalized convergence of double sequences obeying the modulus function in octonion 

valued 𝑏-metric spaces may be examined using the results of this work. Also, as a future 

work, the concepts of deferred statistical convergence, deferred statistical boundedness 

and deferred strong Cesaro convergence in octonion-valued b-metric spaces, which are a 

generalisation of metric spaces, can be introduced using the modulus function. 
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