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Abstract

Suppose G is a graph, A(G) its adjacency matrix, and ¢(G,A) = ¥ ;a;A" " is the characteristic polynomial of G. The polynomial
M(G,x) = ¥>0(—1)*m(G,k)x"~2*, is called the matching polynomial of G, where m(G,k) is the number of k—matchings in G. In this pa-
per, we consider tetrameric 1, 3-adamantane, TA(N), and determine some coefficients of characteristic polynomial and matching polynomial
of TA(N).
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1. Introduction

Suppose G is a simple graph with n vertices and m edges. The adjacency matrix of G is a square n X n matrix A such that A;; is 1 when there
is an edge from v; to v; and zero when there is no edge. The characteristic polynomial of G, denoted by ¢(G, 1), is defined as:

(P(G7A') =det(Aly _A(G)) =A" _‘_alzfni1 +---+ap.

The roots of the characteristic polynomial are called the eigenvalues of G and the eigenvalues together with their multiplicities form the
spectrum of G. A matching in a graph G is a set of its edges such that no two edges of this set have a vertex in common. The matching
polynomial of G is defined as:

M(G,x) = Y (—1)*m(G,k)x"~2*,

k>0

where m(G, k) is the number of k—matchings in G [9]. It is clear that m(G, 1) = m and m(G,k) = 0 for k > | 5| or k < 0. The matching
polynomial is an important concept in Combinatorics and Theoretical Chemistry [7, 8, 10, 11]. A walk of length £ in a graph is an alternating
sequence vy, €1, V2, €2, ..., Vg, €k, Vg4 Of vertices and edges such that for any i = 1,2,...,k, the vertices v; and v;; are distinct end-vertices
of the edge e;. A closed walk is a walk in which the first and the last vertices are the same.
Let A1,..., A, be the eigenvalues of A(G). The numbers S (G) = Y7, A¥ are called the k—th spectral moment of G. It is easy to see that
So(G) =n, $1(G) =0, $»(G) =2m and S3(G) = 61, where n, m and ¢ denote the number of vertices, edges and triangles of the graph G,
respectively [4].
Strightforward computations yield that |V (TA(N))| = 10N and |E(TA(N))| = 13N — 1. Some authors computed the 4 and 5-matchings in a
graph [2, 15]. In this paper we consider a tetrameric 1, 3-adamantane, TA(N), and we find the spectral moments of this graph and then by
these spectral moments we compute the number of the k—matchings in TA(N) for N > 3 and k = 2,3,4.

2. Preliminaries

Our terminology and notations are mostly standard and are taken from Biggs [3]. Suppose G is a graph with n vertices, m edges and with
adjacency matrix A(G). The characteristic polynomial of G, ¢(G, 1), is defined as

O(GA) =A"+a) A" . ta,

An elementary subgraph of G is a subgraph, each of whose connected component is regular and has degree 1 or 2. In other words, the
connected components are single edges or a cycle. The following theorems of Biggs [3] is crucial throughout this paper.
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Figure 1.1: The Tetrameric 1, 3-adamantane TA(N).
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Figure 2.1: The subgraphs Hj9 and H;7.

Theorem 2.1. Let G be a graph and ¢(G, 1) be the characteristic polynomial of G. Then (—1)'a; = ¥(— 1)’(H)25(H), where the summation
is taken over all elementary subgraphs H of G which have i vertices and r(H) = n— ¢ and s(H) = m — n+ ¢ where c is the number of
connected components of H and m, n are the number of edges and vertices of H, respectively.

Theorem 2.2. Let G be a graph with characteristic polynomial ¢(G, ). Then

1. a) = 0,
2. ap=the number of edges of G,
3. az=twice the number of triangles in G.

Throughout this paper, denote by P,, Cy, S, and U,, a path, a cycle, a star with n verices and a graph obtained from C,_; by attaching a
vertex of degree 1 to one vertex of C,,_1, respectively. Suppose F' and G are graphs. An F'—subgraph of G is a subgraph isomorphic to the
graph F. The number of all F—subgraphs of G is denoted by ¢ (F). For the sake of completeness, we mention here three lemmas from
Cvetkovic et al [4], Wu and Liu [16].

Lemma 2.3. The k—th spectral moment of G is equal to the number of closed walks of length k in G.

Lemma 2.4. For any graph G, we have

1. $4(G) =20(P2) +4¢(P3) +8¢(Cy),
2. S5(G) =309(C3) + 109 (Us) + 104 (Cs),
3. 86(G) =20(Py) + 129 (P3) + 6 (P4) + 129(S4) + 120 (Us) + 369 (B4) +249(Bs) + 24 (C3) +489(Cy) + 12¢(Ce).

Lemma 2.5. For any graph G, we have

1. S7(G) = 126¢(C3)+84¢(H1)—|—28¢(H7)+ 14(])(H5)+ 14(])(H6)+ 112¢(H3)+42¢(H15)+28¢(Hg)+70¢(€5)+ 14(])(H13)+ l4¢(C7),
2. S3(G)=20(P>)+28¢(P;)+320(Ps)+8¢(Ps)+72¢ (K1 3)+16¢ (Hi7)+489 (K1 4)+168¢0(C3)+064¢ (H|)+464¢ (H3)+384¢ (Ha)+
96¢ (Hy5)+96¢ (H10) +480 (H11)+80¢ (H12)+32¢ (Hig) +264¢(Ca) +24¢ (Hy) +112¢ (Hy ) + 164 (Hp3 ) + 160 (Hyo) + 16¢ (Ha1 ) +

320 (Hap) +32¢ (Hy3) +32¢ (Hia) + 5280 (K4) + 960 (C) + 166 (H19) + 16¢(Cg).

Some authors applied above formula to calculate the spectral moments of some graphs. They also gave an ordering of these graphs with
respect to spectral moments [12]. Also some authors found signless Laplacian spectral moments of graphs and then they order some graphs
with respect to them [13, 14].

Theorem 2.6. (Newtons identity) Let Ay, 22, ..., A be the roots of the polynomial @(G,A) = A" +a A"\ + -+ a, with spectral moment
Si. Then
—1

X (Sg+ Sk—1a; + ... +S1ag_1).

Ak

3. Main Results

In this section, first we find the spectral moments of TA(N), for k = 1,2,3,...,8 and then by Newtons identity compute the coefficients of
characteristic polynomial and matching polynomial in TA(N) for N > 3.
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Theorem 3.1. In a tetrameric 1, 3-adamantane TA (N ) we have
O(P)=13N—1, ¢(P;)=24N—-6, ¢(Py)=39N—15, ¢(P5)=67TN—32.

Proof. Ttis easy to see that ¢ (P,) = m = 13N — 1. In a tetrameric 1, 3-adamantane with 10N vertices, there are 2N + 2 vertices of degree 3,
6N vertices of degree 2 and 2N — 2 vertices of degree 4. So ¢ (P3) = 24N — 6.

To calculate ¢ (Py), we select an edge e. There are three type of edges in TA(N). The first type edges are those with an end vertex of degree 2
and another of degree 3. The number of these edges is equal to 6N + 6. The second type of edges are those with an end vertex of degree 2
and another of degree 4. The number of these edges is equal to 6N — 6. The third type of edges are those both end vertices have degree 4. It
is easy to see that the number of these edges is equal to N — 1. Now if e is an edge of the first type, then the number of subgraphs isomorphic
to Py is equal to 2(6N +6). If e is an edge of the second type, then the number of subgraphs isomorphic to Py is equal to 3(6N — 6) and if e
is an edge of the third type, then the number of subgraphs isomorphic to Py is equal to 9(N — 1). Thus ¢ (P4) = 39N — 15.

To calculate ¢ (Ps), we select a vertex v as the middle vertex of ¢ (Ps). If v is a vertex of degree 3, then the number of subgraphs isomorphic
to ¢ (Ps) is equal to 6N + 6. Suppose that v is a vertex of degree 2. Then by a simple calculation we have ¢ (Ps) = 37N — 14. If v is a vertex
of degree 4, then ¢ (Ps) = 24N — 24. Therefore ¢ (Ps) = 67N — 32. O

Theorem 3.2. The spectral moments of TA(N), for k =1,2,3,...,8 can be computed as the followings:
S1(TA(N)) =0, S»(TA(N))=26N—2, S3(TA(N))=0,
S4(TA(N)) = 122N —26, S5(TA(N)) =0, Sec(TA(N))="T16N —236,
S7(TA(N)) =0, Sg(TA(N))=4690N — 2010.

Proof. 1t is easy to see that S (TA(N)) = 0. Also since m(TA(N)) = 13N — 1 and since a tetrameric 1, 3-adamantane is triangle free,
S3(TA(N)) = 0. Now we compute the forth spectral moment of TA(N). By using Theorem 2.2 and Lemma 2.2 we have

S4(TA(N)) = 26N —244(24N — 6) = 122N — 26.

Since ¢(C3) = ¢(Cs5) =0, S5(TA(N)) = 0. To compute Sg(TA(N)) it is easy to check thatin TA(N), ¢(K; 3) = 10N —6 and so S¢(TA(N)) =
716N — 236. According to the structure of the tetrameric 1, 3-adamantane and by Lemma 2.5, we have S7(TA(N)) = 0. To calculate the
eighth spectral moment of TA(N), we must calculate the number of subgraphs isomorphic to K 4, Cg, Hi7 and Hjg, where the last two
subgraphs are shown in Figure 2.1 and the number of other subgraphs mentioned in Lemma 2.5 is equal to 0. To have a subgraph isomorphic
to Hy7, we select an edge e = uv such that the degree of u is at least 2 and degree of v is at least 3. If e is an edge of the first type, then
¢ (Hy7) = 6N + 6. While if e is an edge of the second type, then ¢ (Hy7) = 18N — 18 and otherwise ¢ (H;7) = 18N — 18. So in a tetrameric
1, 3-adamantane we have ¢ (H;7) = 42N — 30. A simple verification shows that the number of subgraphs isomorphic to Hjg is equal to
18N — 6 and also ¢ (K 4) = 2N — 2. Therefore by Lemma 2.5 we have Sg(TA(N)) = 4690N —2010. O

Theorem 3.3. The coefficients of characteristic polynomial of TA(N), for i =1,2,3,...,8 are as following:

a1(TA(N)) = 0, ay(TA(N))=—13N+1, a3(TA(N)) =0,
169N2 87N
as(TA(N)) = 5~ +Tas(TA(N)) =0,
—1445N 2197N3
as(TA(N)) = T+46+4811\/2— , a7(TA(N)) =0,
—18205N 72107N%  35321N3  28561N*
ag(TA(N)) = B +315+ A ey

Proof. By Theorem 2.1 and Newtons§ identity we can compute the coefficients of characteristic polynomial of a tetrameric 1, 3-adamantane.
It is easy to check that a; = a3 = a5 = a7 = 0. Since S>(TA(N)) = 26N —2, a,(TA(N)) = —13N + 1. Also since S4(TA(N)) = 122N — 26
and S(TA(N)) = 716N — 236, thus ag(TA(N)) = 19 — 81N 17 and ag(TA(N)) = 145N 4 46 4 481N2 — 29702 Similarly the eighth
coefficients of characteristic polynomial of TA(N) can be calculated. O

In the following by Theorems 2.1 and 2.2 we can compute the coefficients of matching polynomial of TA(N), m(TA(N),k), for k =2,3,4
and N > 3.

Theorem 3.4. In a tetrameric 1, 3-adamantane, we have:

169N2 87N
m(TA(N),2) = - —+7,
2 2
1397N 2197N3
m(TA(N),3) = T—46—481N2+ .
—17029N 69611N2  35321N°  28561N*

Proof. Wehaveay =Y (—1)" (H)2s(H) \where H is an elementary subgraph with 4 vertices. Since there is one elementary subgraph with 4
vertices, ag = m(TA(N),2)) = % — 46 —481N? + %. To calculate m(TA(N),3) again by Theorem 2.1 we have

a5 =Y (=1’ +} (=12 = —m(TA(N),3) —29(Co),
A B
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where A and B are the subgraphs isomorphic to three separate edges and a 6-cycle, respectively. Due to the structure of a tetrameric 1,
3-adamantane, we have ¢ (Cg) = 4N and thus by Theorem 3.3

1397N

2197N3
m(TA(N),3) = —ag—8N = —— — 46— 48IN? + =

6

Now we compute the number of 4-matchings in TA(N). We have

ag =Y (-D)*+ Y (=1)%2+ Y (—1)"2 = m(TA(N),4) +2|B| — 26 (C3),
A B C

where A, B and C are the four separate edges, a 6-cycle with a single edge and a 8-cycle, respectively. It is easy to see that |C| = ¢(Cs) = 3N.
Now we calculate the number of subgraphs isomorphic to B. We consider part 1 of TA(N), Figure 1.1. For the first 6-cycle, there are m — 9
ways to choose a single edge. For each of the second and third 6-cycle there are m — 10 ways to choose a single edge. Also for the forth
6-cycle, that is ujupusuqusuguy, there are m — 10 ways to choose a single edge. Thus for the first part of TA(N) we have, |B| = 4m — 39.
Similarly for the N—th part of TA(N) we have, |B| = 4m — 39. For each of the (N —2) middle part of TA(N) there are in total 4m — 42 ways
to select a 6-cycle with a single edge. Finally by putting m = 13N — 1 we have, |B| = 2(4m —39) + (N —2)(4m —42) = 52N2 — 46N + 6.
Therefore

—17029N 69611N2  3532IN°  28561N*
m(TA(N),4):T+3O3+ R sy e

This completes the proof. O
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