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Abstract

Suppose G is a graph, A(G) its adjacency matrix, and ϕ(G,λ ) = ∑
n
i=0 aiλ

n−i is the characteristic polynomial of G. The polynomial
M(G,x) = ∑k≥0(−1)km(G,k)xn−2k, is called the matching polynomial of G, where m(G,k) is the number of k−matchings in G. In this pa-
per, we consider tetrameric 1, 3-adamantane, TA(N), and determine some coefficients of characteristic polynomial and matching polynomial
of TA(N).
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1. Introduction

Suppose G is a simple graph with n vertices and m edges. The adjacency matrix of G is a square n×n matrix A such that Ai j is 1 when there
is an edge from vi to v j and zero when there is no edge. The characteristic polynomial of G, denoted by ϕ(G,λ ), is defined as:

ϕ(G,λ ) = det(λ In−A(G)) = λ
n +a1λ

n−1 + · · ·+an.

The roots of the characteristic polynomial are called the eigenvalues of G and the eigenvalues together with their multiplicities form the
spectrum of G. A matching in a graph G is a set of its edges such that no two edges of this set have a vertex in common. The matching
polynomial of G is defined as:

M(G,x) = ∑
k≥0

(−1)km(G,k)xn−2k,

where m(G,k) is the number of k−matchings in G [9]. It is clear that m(G,1) = m and m(G,k) = 0 for k > b n
2 c or k < 0. The matching

polynomial is an important concept in Combinatorics and Theoretical Chemistry [7, 8, 10, 11]. A walk of length k in a graph is an alternating
sequence v1, e1, v2, e2, . . ., vk, ek, vk+1 of vertices and edges such that for any i = 1,2, . . . ,k, the vertices vi and vi+1 are distinct end-vertices
of the edge ei. A closed walk is a walk in which the first and the last vertices are the same.
Let λ1, . . . ,λn be the eigenvalues of A(G). The numbers Sk(G) = ∑

n
i=1 λ k

i are called the k−th spectral moment of G. It is easy to see that
S0(G) = n, S1(G) = 0, S2(G) = 2m and S3(G) = 6t, where n, m and t denote the number of vertices, edges and triangles of the graph G,
respectively [4].
Strightforward computations yield that |V (TA(N))|= 10N and |E(TA(N))|= 13N−1. Some authors computed the 4 and 5-matchings in a
graph [2, 15]. In this paper we consider a tetrameric 1, 3-adamantane, TA(N), and we find the spectral moments of this graph and then by
these spectral moments we compute the number of the k−matchings in TA(N) for N ≥ 3 and k = 2,3,4.

2. Preliminaries

Our terminology and notations are mostly standard and are taken from Biggs [3]. Suppose G is a graph with n vertices, m edges and with
adjacency matrix A(G). The characteristic polynomial of G, ϕ(G,λ ), is defined as

ϕ(G,λ ) = λ
n +a1λ

n−1 + · · ·+an.

An elementary subgraph of G is a subgraph, each of whose connected component is regular and has degree 1 or 2. In other words, the
connected components are single edges or a cycle. The following theorems of Biggs [3] is crucial throughout this paper.
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Figure 1.1: The Tetrameric 1, 3-adamantane TA(N).
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Figure 2.1: The subgraphs H19 and H17.

Theorem 2.1. Let G be a graph and ϕ(G,λ ) be the characteristic polynomial of G. Then (−1)iai = ∑(−1)r(H)2s(H), where the summation
is taken over all elementary subgraphs H of G which have i vertices and r(H) = n− c and s(H) = m− n+ c where c is the number of
connected components of H and m, n are the number of edges and vertices of H, respectively.

Theorem 2.2. Let G be a graph with characteristic polynomial ϕ(G,λ ). Then

1. a1 = 0,
2. a2=the number of edges of G,
3. a3=twice the number of triangles in G.

Throughout this paper, denote by Pn, Cn, Sn and Un a path, a cycle, a star with n verices and a graph obtained from Cn−1 by attaching a
vertex of degree 1 to one vertex of Cn−1, respectively. Suppose F and G are graphs. An F−subgraph of G is a subgraph isomorphic to the
graph F . The number of all F−subgraphs of G is denoted by φG(F). For the sake of completeness, we mention here three lemmas from
Cvetković et al [4], Wu and Liu [16].

Lemma 2.3. The k−th spectral moment of G is equal to the number of closed walks of length k in G.

Lemma 2.4. For any graph G, we have

1. S4(G) = 2φ(P2)+4φ(P3)+8φ(C4),
2. S5(G) = 30φ(C3)+10φ(U4)+10φ(C5),
3. S6(G) = 2φ(P2)+12φ(P3)+6φ(P4)+12φ(S4)+12φ(U5)+36φ(B4)+24φ(B5)+24φ(C3)+48φ(C4)+12φ(C6).

Lemma 2.5. For any graph G, we have

1. S7(G)= 126φ(C3)+84φ(H1)+28φ(H7)+14φ(H5)+14φ(H6)+112φ(H3)+42φ(H15)+28φ(H8)+70φ(C5)+14φ(H18)+14φ(C7),
2. S8(G)= 2φ(P2)+28φ(P3)+32φ(P4)+8φ(P5)+72φ(K1,3)+16φ(H17)+48φ(K1,4)+168φ(C3)+64φ(H1)+464φ(H3)+384φ(H4)+

96φ(H15)+96φ(H10)+48φ(H11)+80φ(H12)+32φ(H16)+264φ(C4)+24φ(H9)+112φ(H2)+16φ(H23)+16φ(H20)+16φ(H21)+
32φ(H22)+32φ(H13)+32φ(H14)+528φ(K4)+96φ(C6)+16φ(H19)+16φ(C8).

Some authors applied above formula to calculate the spectral moments of some graphs. They also gave an ordering of these graphs with
respect to spectral moments [12]. Also some authors found signless Laplacian spectral moments of graphs and then they order some graphs
with respect to them [13, 14].

Theorem 2.6. (Newtonś identity) Let λ1,λ2, . . . ,λn be the roots of the polynomial ϕ(G,λ ) = λ n +a1λ n−1 + · · ·+an with spectral moment
Sk. Then

ak =
−1
k

(Sk +Sk−1a1 + . . .+S1ak−1).

3. Main Results

In this section, first we find the spectral moments of TA(N), for k = 1,2,3, . . . ,8 and then by Newtonś identity compute the coefficients of
characteristic polynomial and matching polynomial in TA(N) for N ≥ 3.
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Theorem 3.1. In a tetrameric 1, 3-adamantane TA(N) we have

φ(P2) = 13N−1, φ(P3) = 24N−6, φ(P4) = 39N−15, φ(P5) = 67N−32.

Proof. It is easy to see that φ(P2) = m = 13N−1. In a tetrameric 1, 3-adamantane with 10N vertices, there are 2N +2 vertices of degree 3,
6N vertices of degree 2 and 2N−2 vertices of degree 4. So φ(P3) = 24N−6.
To calculate φ(P4), we select an edge e. There are three type of edges in TA(N). The first type edges are those with an end vertex of degree 2
and another of degree 3. The number of these edges is equal to 6N +6. The second type of edges are those with an end vertex of degree 2
and another of degree 4. The number of these edges is equal to 6N−6. The third type of edges are those both end vertices have degree 4. It
is easy to see that the number of these edges is equal to N−1. Now if e is an edge of the first type, then the number of subgraphs isomorphic
to P4 is equal to 2(6N +6). If e is an edge of the second type, then the number of subgraphs isomorphic to P4 is equal to 3(6N−6) and if e
is an edge of the third type, then the number of subgraphs isomorphic to P4 is equal to 9(N−1). Thus φ(P4) = 39N−15.
To calculate φ(P5), we select a vertex v as the middle vertex of φ(P5). If v is a vertex of degree 3, then the number of subgraphs isomorphic
to φ(P5) is equal to 6N +6. Suppose that v is a vertex of degree 2. Then by a simple calculation we have φ(P5) = 37N−14. If v is a vertex
of degree 4, then φ(P5) = 24N−24. Therefore φ(P5) = 67N−32.

Theorem 3.2. The spectral moments of TA(N), for k = 1,2,3, . . . ,8 can be computed as the followings:

S1(TA(N)) = 0, S2(TA(N)) = 26N−2, S3(TA(N)) = 0,

S4(TA(N)) = 122N−26, S5(TA(N)) = 0, S6(TA(N)) = 716N−236,

S7(TA(N)) = 0, S8(TA(N)) = 4690N−2010.

Proof. It is easy to see that S1(TA(N)) = 0. Also since m(TA(N)) = 13N− 1 and since a tetrameric 1, 3-adamantane is triangle free,
S3(TA(N)) = 0. Now we compute the forth spectral moment of TA(N). By using Theorem 2.2 and Lemma 2.2 we have

S4(TA(N)) = 26N−2+4(24N−6) = 122N−26.

Since φ(C3) = φ(C5) = 0, S5(TA(N)) = 0. To compute S6(TA(N)) it is easy to check that in TA(N), φ(K1,3) = 10N−6 and so S6(TA(N)) =
716N−236. According to the structure of the tetrameric 1, 3-adamantane and by Lemma 2.5, we have S7(TA(N)) = 0. To calculate the
eighth spectral moment of TA(N), we must calculate the number of subgraphs isomorphic to K1,4, C8, H17 and H19, where the last two
subgraphs are shown in Figure 2.1 and the number of other subgraphs mentioned in Lemma 2.5 is equal to 0. To have a subgraph isomorphic
to H17, we select an edge e = uv such that the degree of u is at least 2 and degree of v is at least 3. If e is an edge of the first type, then
φ(H17) = 6N +6. While if e is an edge of the second type, then φ(H17) = 18N−18 and otherwise φ(H17) = 18N−18. So in a tetrameric
1, 3-adamantane we have φ(H17) = 42N−30. A simple verification shows that the number of subgraphs isomorphic to H19 is equal to
18N−6 and also φ(K1,4) = 2N−2. Therefore by Lemma 2.5 we have S8(TA(N)) = 4690N−2010.

Theorem 3.3. The coefficients of characteristic polynomial of TA(N), for i = 1,2,3, . . . ,8 are as following:

a1(TA(N)) = 0, a2(TA(N)) =−13N +1, a3(TA(N)) = 0,

a4(TA(N)) =
169N2

2
− 87N

2
+7,a5(TA(N)) = 0,

a6(TA(N)) =
−1445N

6
+46+481N2− 2197N3

6
, a7(TA(N)) = 0,

a8(TA(N)) =
−18205N

12
+315+

72107N2

24
− 35321N3

12
+

28561N4

24
.

Proof. By Theorem 2.1 and Newtonś identity we can compute the coefficients of characteristic polynomial of a tetrameric 1, 3-adamantane.
It is easy to check that a1 = a3 = a5 = a7 = 0. Since S2(TA(N)) = 26N−2, a2(TA(N)) =−13N +1. Also since S4(TA(N)) = 122N−26
and S6(TA(N)) = 716N−236, thus a4(TA(N)) = 169N2

2 − 87N
2 +7 and a6(TA(N)) = −1445N

6 +46+481N2− 2197N3

6 . Similarly the eighth
coefficients of characteristic polynomial of TA(N) can be calculated.

In the following by Theorems 2.1 and 2.2 we can compute the coefficients of matching polynomial of TA(N), m(TA(N),k), for k = 2,3,4
and N ≥ 3.

Theorem 3.4. In a tetrameric 1, 3-adamantane, we have:

m(TA(N),2) =
169N2

2
− 87N

2
+7,

m(TA(N),3) =
1397N

6
−46−481N2 +

2197N3

6
,

m(TA(N),4) =
−17029N

12
+303+

69611N2

24
− 35321N3

12
+

28561N4

24
.

Proof. We have a4 = ∑(−1)r(H)2s(H), where H is an elementary subgraph with 4 vertices. Since there is one elementary subgraph with 4
vertices, a4 = m(TA(N),2)) = 1397N

6 −46−481N2 + 2197N3

6 . To calculate m(TA(N),3) again by Theorem 2.1 we have

a6 = ∑
A
(−1)3 +∑

B
(−1)52 =−m(TA(N),3)−2φ(C6),
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where A and B are the subgraphs isomorphic to three separate edges and a 6-cycle, respectively. Due to the structure of a tetrameric 1,
3-adamantane, we have φ(C6) = 4N and thus by Theorem 3.3

m(TA(N),3) =−a6−8N =
1397N

6
−46−481N2 +

2197N3

6
.

Now we compute the number of 4-matchings in TA(N). We have

a8 = ∑
A
(−1)4 +∑

B
(−1)62+∑

C
(−1)72 = m(TA(N),4)+2|B|−2φ(C8),

where A, B and C are the four separate edges, a 6-cycle with a single edge and a 8-cycle, respectively. It is easy to see that |C|= φ(C8) = 3N.
Now we calculate the number of subgraphs isomorphic to B. We consider part 1 of TA(N), Figure 1.1. For the first 6-cycle, there are m−9
ways to choose a single edge. For each of the second and third 6-cycle there are m−10 ways to choose a single edge. Also for the forth
6-cycle, that is u1u2u3u4u5u6u1, there are m−10 ways to choose a single edge. Thus for the first part of TA(N) we have, |B|= 4m−39.
Similarly for the N−th part of TA(N) we have, |B|= 4m−39. For each of the (N−2) middle part of TA(N) there are in total 4m−42 ways
to select a 6-cycle with a single edge. Finally by putting m = 13N−1 we have, |B|= 2(4m−39)+(N−2)(4m−42) = 52N2−46N +6.
Therefore

m(TA(N),4) =
−17029N

12
+303+

69611N2

24
− 35321N3

12
+

28561N4

24
.

This completes the proof.
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