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Abstract 

This paper provides a thorough analysis of the axial vibration behavior of nanoring rods based on nonlocal 
elasticity theory, highlighting its relevance to nanoscale systems. The equation governing the axial vibration of 
nanoscale rods under nonlocal effects is formulated. By applying appropriate transformations to this equation, 
the frequency equation is derived. Additionally, a nonlocal finite element formulation for the rod is developed 
using the weighted residual method. 

Keywords: Axial vibration, Nanoring rod, Nonlocal elasticity, Finite element method 

1. Introduction 

Recent studies have demonstrated that the size effect in micro and nanoscale materials plays a 
critical role in determining their mechanical properties. This is due to the significant increase 
in the surface-to-volume ratio as the size of the material decreases. Consequently, the influence 
of surface atoms becomes more pronounced, leading to changes in the material's strength, 
elasticity, thermal conductivity, and optical properties. The effect of these changes in material 
properties has not been addressed by classical theories. To account for this, various theories 
incorporating the size effect have been developed. The most widely recognized of these is the 
"Nonlocal Elasticity Theory", which has been adopted as the solution method in the present 
study. The emergence of this theory and along with several related studies are presented below. 

The theory of nonlocal elasticity using the laws of global equilibrium and the second law of 
thermodynamics was developed by Eringen [1].  In the following years, Eringen searched for 
solutions to various problems using the nonlocal elasticity theory and demonstrated its 
effectiveness [2-5]. A study has been conducted combining nanotechnology with the nonlocal 
elasticity theory. One version of the nonlocal elasticity theory has been utilized to develop a 
nonlocal Bernoulli/Euler beam model [6]. The wave propagation on carbon nanotubes is 
investigated by Euler-Bernoulli and Timoshenko beam models using nonlocal elasticity theory 
[7]. The Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam theories have been 
reformulated using Eringen's nonlocal elasticity theory. Analytical solutions for bending, 
vibration and buckling problems are provided. The influence of nonlocal behavior on 
displacements, buckling loads, and natural frequencies is also discussed [8].  Axial free 
vibration analysis of nanoscale rods based on the theory of nonlocal elasticity has been carried 
out [9].  Axial and torsional vibration analyses of nanorods composed of carbon nanotubes or 
microtubules were performed using different beam theories [10-20]. Nonlocal free vibration of 
axial rods embedded in elastic medium is examined by utilizing Love–Bishop rod theory. Size–
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dependent finite element formulation is presented based on Weighted Residual Method [21]. 
The time-dependent torsional vibration of a single-walled carbon nanotube (SWCNT) under 
linear and harmonic external torque is investigated based on Eringen's theory of nonlocal 
elasticity and Hamilton's principle is used to derive the boundary conditions [22]. Nonlinear 
torsional vibrations of nanorods in an elastic medium under three-dimensional thermal stresses 
are investigated. The equation of motion is extended with scale effect using nonlocal theory 
[23]. The applicability of nonlocal elasticity theory has been discussed for the case where the 
material properties of functionally graded porous nanotubes vary in the radial direction 
according to a rule of mixture [24]. 

This paper presents a finite element solution for the axial vibration of ring cross-section rods 
based on nonlocal elasticity theory. The first section discusses the importance of size effects 
and provides examples of previous studies related to nonlocal elasticity theory that takes size 
effects into account. In the second section, the formulation of this theory is explained. The third 
section derives the governing equation for the axial vibration of ring rods. The fourth section 
presents the nonlocal finite element formulation.  

2. Nonlocal Elasticity Theory (NL) 

The nonlocal stress tensor at point x is expressed as [5]: 

𝜎𝜎𝑘𝑘𝑘𝑘(𝑥𝑥) = �𝐾𝐾(|𝑥𝑥′ − 𝑥𝑥|,𝛼𝛼)𝜏𝜏𝑘𝑘𝑘𝑘(𝑥𝑥′)𝑑𝑑𝑑𝑑(𝑥𝑥′),
𝑉𝑉

 (1) 

where 𝐾𝐾|𝑥𝑥 − 𝑥𝑥′| represents the distance in Euclidean form and defines the strain effect of the 
stress value of the elastic body at point 𝑥𝑥 at point 𝑥𝑥′. 𝛼𝛼 is a material constant that depends on 
the ratio (𝑒𝑒0𝑎𝑎

𝑙𝑙
 ). Here, 𝑒𝑒0 is specific to the atomic structure and is determined experimentally; 𝑎𝑎 

represents the internal characteristic length of the atomic structure (granular distance or the 
distance between C-C molecules), and 𝐿𝐿 denotes the external characteristic length. 𝜏𝜏𝑘𝑘𝑙𝑙(𝑥𝑥′) is 
the local fourth-order elasticity tensor of the body at point  𝑥𝑥′ and 𝑉𝑉 is the volume occupied by 
the elastic body. The nonlocal constitutive formulation is [5]: 

�1 − (𝑒𝑒0𝑎𝑎)2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝜎𝜎𝑘𝑘𝑘𝑘 = 𝜏𝜏𝑘𝑘𝑘𝑘   (2) 

2.1. Axial Vibration Analysis of Ring Rods 

In this section, the equation of motion for free vibration of axial micro and nanoscale rods with 
ring cross-section will be obtained by nonlocal elasticity theory. For this purpose, the 
displacement at any point x and at any instant t in the rod section is considered as u (Fig.1).  

The dynamic equilibrium in the x direction for this rod is as follows: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥, 𝑡𝑡)   (3) 
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As can be inferred from this, only 𝜎𝜎𝑥𝑥𝑥𝑥  stress occurs in the rod, and Eq (2) is rearranged as 
follows: 

𝜎𝜎𝑥𝑥𝑥𝑥 − (𝑒𝑒0𝑎𝑎)2
𝜕𝜕2𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥   (4) 

here, 𝐸𝐸 is the elasticity modulus, and 𝜀𝜀𝑥𝑥𝑥𝑥 is the deformation occurring in the x-direction. 
Multiplying z on both sides of Eq. (4) and integrating over the cross-sectional area (A) of the 
rod, we obtain 

�𝑁𝑁𝑛𝑛𝑛𝑛 − (𝑒𝑒0𝑎𝑎)2
𝜕𝜕2𝑁𝑁𝑛𝑛𝑛𝑛

𝜕𝜕𝑥𝑥2 � = 𝐸𝐸𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥 = 𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

   (5) 

Axial vibration of 𝑁𝑁𝑛𝑛𝑛𝑛 continuous systems is as follows: 

𝜕𝜕𝑁𝑁𝑛𝑛𝑛𝑛

𝜕𝜕𝜕𝜕
= 𝑚𝑚

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

   (6) 

here, 𝑚𝑚 = 𝜌𝜌𝜌𝜌 equals and defines the mass per unit length. Substituting Eq. (6) into (5), we get 

𝐸𝐸𝐸𝐸
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

− 𝜌𝜌𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ (𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕4𝑢𝑢

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
= 0   (7) 

The equation of motion for the free vibration of an axially nano rod with a circular cross-section, 
including the size effect, is obtained. When 𝑒𝑒0𝑎𝑎 = 0 in Eq. (7), the equation of motion for the 
classical rod is obtained. 

 
Fig. 1. Axial vibration of ring rod 

2.1.1. Continuous System 

The solution of the main Eq. (7) for nonlocal axial vibration is analyzed using the following 
transformation, 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈(𝑥𝑥)𝑇𝑇(𝑡𝑡),     𝑇𝑇(𝑡𝑡) = sin (𝜔𝜔𝜔𝜔 − 𝜃𝜃)   (8) 
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The derivatives of the 𝑢𝑢 term in Eq. (7) are as follows: 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

=
𝑑𝑑2𝑈𝑈
𝑑𝑑𝑥𝑥2

sin(𝜔𝜔𝜔𝜔 − 𝜃𝜃)    

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= −𝜔𝜔2 sin(𝜔𝜔𝜔𝜔 − 𝜃𝜃)𝑈𝑈 

𝜕𝜕4𝑢𝑢
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= −𝜔𝜔2 𝑑𝑑
2𝑈𝑈
𝑑𝑑𝑥𝑥2

sin (𝜔𝜔𝜔𝜔 − 𝜃𝜃) 

  (9) 

The expressions in Eq. (9) are substituted into Eq. (7), yielding the following form, 

𝑈𝑈′′ + 𝛼𝛼2𝑈𝑈 = 0   (10) 

𝛼𝛼2 =
𝜌𝜌𝜌𝜌𝜔𝜔2

𝐸𝐸𝐸𝐸 − (𝑒𝑒0𝑎𝑎)2𝜌𝜌𝐴𝐴𝐴𝐴2 (11) 

The solution of Eq. (10) is performed using the 𝑈𝑈(𝑥𝑥) = 𝐶𝐶𝑒𝑒𝑘𝑘𝑘𝑘 transformation, yielding the 
following result, 

𝑈𝑈(𝑥𝑥) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵   (12) 

This equation determines the mode shape and frequency of the bar. The coefficients A and B in 
the equation are obtained from the boundary conditions. 

2.2. Nonlocal Finite Element Method (NL-FEM) for Axial Vibration 

Finite element method is based on defining approximate functions to obtain the exact solution 
with approximate values. The exact solution of the axial vibration, as given in Eq. (7), requires 
that the right-hand side of the equation be equal to zero. When the axial displacement u is solved 
using an approximate method, the right-hand side of the equation does not equal zero. In this 
case, the finite element method attempts to make the average weighted residual zero in the rod 
of length L. To do this, the expression is multiplied by the weight function 𝑤𝑤(𝑥𝑥,𝑦𝑦) and the 
integral over the length is taken, 

𝐼𝐼 = �𝑤𝑤 �𝐸𝐸𝐸𝐸
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

− 𝜌𝜌𝜌𝜌
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ (𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕4𝑢𝑢

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
� 𝑑𝑑𝑑𝑑

𝐿𝐿

0

 (13) 

Eq. (13) can be divided three integral expressions,  

𝐼𝐼 = �𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

− �𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

𝑑𝑑𝑑𝑑 + �𝑤𝑤(𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕4𝑢𝑢

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
𝑑𝑑𝑑𝑑

𝐿𝐿

0

𝐿𝐿

0

 (14) 
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The method of partial integration is applied to the divided integrals, 

�𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

= 𝑤𝑤𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�0

𝐿𝐿

− �𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝐿𝐿

0

 

�𝑤𝑤(𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕4𝑢𝑢

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
𝑑𝑑𝑑𝑑

𝐿𝐿

0

=  𝑤𝑤(𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡2

�
0

𝐿𝐿

− �(𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡2

𝑑𝑑𝑑𝑑
𝐿𝐿

0

 

(15) 

Substituting Eqs. (15) into Eq. (14), the weak formulation of differential equation of nonlocal 
axial vibration is acquired as: 

�  �−𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−(𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡2

−  𝑤𝑤𝑤𝑤𝑤𝑤
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

� 𝑑𝑑𝑑𝑑
𝐿𝐿

0

 (16) 

Under boundary conditions, the weighted average of the displacement is expressed as follows: 

𝑤𝑤�𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑒𝑒0𝑎𝑎)2𝜌𝜌𝜌𝜌
𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡2�

�
0

𝐿𝐿

= 0 (17) 

The finite element formulation for the displacement at each node of a two-node bar element is 
as follows: 

𝑢𝑢 = 𝑁𝑁1𝑢𝑢𝑖𝑖 + 𝑁𝑁2𝑢𝑢𝑗𝑗 (18) 

here, 

𝑁𝑁1 = 1 −
𝑥𝑥
𝐿𝐿

,     𝑁𝑁2 =
𝑥𝑥
𝐿𝐿

 (19) 

are the shape functions for of 𝑖𝑖 and 𝑗𝑗 ends. The appropriate weight function can be selected as 
𝑤𝑤 = 𝜑𝜑𝑇𝑇. Moreover, the following equations are used to arrange Eq. (16): 

𝑤𝑤 = 𝜑𝜑𝑇𝑇 ,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐵𝐵𝑇𝑇 ,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐵𝐵𝐵𝐵,    𝐵𝐵 = 𝐷𝐷𝑘𝑘𝑁𝑁,
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

= 𝑁𝑁𝑢̈𝑢 (20) 

where 𝐷𝐷𝑘𝑘 = 𝜕𝜕(∗)/𝜕𝜕𝜕𝜕 is kinematic operator, N is shape function vector. Eq. (16) can be 
rewritten as: 

�  𝐸𝐸𝐸𝐸(𝐵𝐵𝑇𝑇𝐵𝐵)𝑢𝑢𝑢𝑢𝑢𝑢 +  �𝜌𝜌𝜌𝜌[(𝑒𝑒0𝑎𝑎)2𝐵𝐵𝑇𝑇𝐵𝐵 + 𝜑𝜑𝑇𝑇𝑁𝑁]𝑢̈𝑢𝑑𝑑𝑑𝑑 = 0
𝐿𝐿

0

𝐿𝐿

0

 (21) 
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�𝐸𝐸𝐸𝐸 �
𝑁𝑁1′

𝑁𝑁2′
� [𝑁𝑁1′ 𝑁𝑁2′] �

𝑢𝑢𝑖𝑖
𝑢𝑢𝑗𝑗� 𝑑𝑑𝑑𝑑 + 𝜌𝜌𝜌𝜌 �(𝑒𝑒0𝑎𝑎)2 �

𝑁𝑁1′

𝑁𝑁2′
� [𝑁𝑁1′ 𝑁𝑁2′] + 𝜑𝜑𝑇𝑇𝑁𝑁 �𝑁𝑁1𝑁𝑁2

� [𝑁𝑁1 𝑁𝑁2]�  𝑑𝑑𝑑𝑑 �
𝑢𝑢𝚤𝚤̈
𝑢𝑢𝚥̈𝚥
�

𝐿𝐿

0

 (22) 

Eq. (22) in general form is as follows: 

𝐾𝐾𝐾𝐾 + (𝑄𝑄𝑐𝑐 + 𝑄𝑄𝑛𝑛𝑛𝑛)𝑢̈𝑢 = 0 (23) 

here,  

𝐾𝐾 =
𝐸𝐸𝐸𝐸
𝐿𝐿 � 1 −1

−1 1 � ,      𝑄𝑄𝑐𝑐 =
𝐸𝐸𝐸𝐸𝐸𝐸

6 �2 1
1 2� ,    𝑄𝑄𝑛𝑛𝑛𝑛 =

𝐸𝐸𝐸𝐸(𝑒𝑒0𝑎𝑎)2

𝐿𝐿 � 1 −1
−1 1 � (24) 

𝐾𝐾 is the axial stiffness matrix of the finite element, 𝑄𝑄𝑐𝑐 is the classical mass inertia and 𝑄𝑄𝑛𝑛𝑛𝑛 is 
the nonlocal mass inertia matrix. The transformation 𝑢𝑢 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is applied to Eq. (23), and for an 
element divided into 𝑛𝑛 parts, it is as follows: 

det([𝐾𝐾] − 𝜂𝜂2[𝑄𝑄𝑟𝑟]) = 0, [𝐾𝐾,𝑄𝑄𝑟𝑟] = �{𝐾𝐾, ([𝑄𝑄𝑐𝑐] + [𝑄𝑄𝑛𝑛𝑛𝑛])}
𝑛𝑛

𝑖𝑖=1

  (25) 

Figure 2 presents a flowchart outlining the sequence and interaction of the steps in the solution 
process. 

 

 
Fig. 2. Flowchart of the solution process 
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3. Concluding Remarks 

In this paper, the derivation of the governing equation for axial vibrations of rods with ring 
cross-section using the theory of nonlocal elasticity and its relationship with nano dimensions 
is investigated. The governing equation is derived through the application of specific 
transformations, leading to an equation that provides the frequency and mode shapes dependent 
on the boundary conditions. Furthermore, by using the weighted residual method, a nonlocal 
finite element formulation for the bar is comprehensively developed and presented. The 
equations obtained clearly reveal the effect of the size effect parameter on axial vibration. 
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