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Abstract: The pine processionary moth, widely found in Southern and Central Europe, North Africa, and the Middle East, causes 

significant economic and ecological losses in forests. This pest feeds on the needles of pine species, posing a greater threat than forest 

fires in Türkiye, where a large portion of the timber resource is made up of pine trees. This study aims to detect nests of the pine 

processionary moth residing on trees. A custom dataset was created using aerial images of infested pine trees. A deep learning model 

was trained using this dataset to facilitate nest detection. Using the YOLOv7 network, training and testing were performed on two 

datasets of different sizes. The analysis revealed that the dataset with a larger number of images yielded better performance in 

detecting pine processionary moth nests. The detection success of the model for nests was measured as 92.5% based on the mAP@0.5 

metric. The findings of this study demonstrate the effectiveness of the proposed method for accurate and high-resolution detection of 

pine processionary moth nests in forestry applications. Moreover, these findings highlight the method’s potential to support pest 

density monitoring and the identification of intervention priority areas. Future research should investigate the applicability of the 

proposed approach to other pest species and explore its integration into real-time monitoring and pest management systems for large-

scale operations. 
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1. Introduction 
Forest pests can significantly hinder forest development. 

While fires are often considered the greatest threat to 

forests, insects can cause damage that exceeds the harm 

inflicted by fires both globally and in Türkiye (Özdal, 

2002). 

The Pine Processionary Moth (PPM), prevalent in the 

Middle East, Central and Southern Europe, and North 

Africa, has emerged as one of the most destructive pests 

in Türkiye. Its presence persists in Mediterranean, 

Aegean, Black Sea, and Marmara regions. The PPM 

damages several pine species, including red pine (Pinus 

brutia), black pine (Pinus nigra), Scots pine (Pinus 

sylvestris), Aleppo pine (Pinus halepensis), maritime 

pine (Pinus pinaster), and stone pine (Pinus pinea) 

(Özay, 2004).  

PPM primarily damages trees during its larval stage, 

where the larvae feed on the needles of pine species. 

When their numbers reach sufficient levels, they can 

defoliate the trees completely. Trees infested with PPM 

larvae exhibit significantly reduced photosynthesis 

compared to non-infested counterparts due to their lack 

of leaves (Babur, 2002). 

Larvae of PPM can typically be observed in higher 

elevations after the first half of August. These caterpillars 

feed on the nearest needles, forming silken nests. As the 

larvae develop, they may shift to new shoots, feeding on 

additional needles and forming sturdier, larger second 

nests. This cycle continues until the formation of a fourth 

nest. By this stage, the larvae have consumed all the 

needles, leaving only the stubs. With 150 to 300 larvae 

found in these nests, caterpillars rest during the day and 

emerge at night to feed. The increase in needle 

consumption occurs as the larvae molt five times 

throughout the fall and winter, leading to greater damage 

to the trees. The transition of larvae to the pupal stage 

begins in higher elevations by the end of March and 

occurs in lower elevations by May (Çanakçıoğlu, 1993; 

Yüksel, 2019). 

Significant damage from PPM has been reported, 

reducing tree development by 24% in diameter, 36% in 

height, and 54% in total growth (Carus, 2004). Similarly, 

annual growth in slash pine forests has decreased by 

34.6% to 39.7%, with subsequent years showing a 

decline of 43.1% to 58.3% (Avcı and Altunışık, 2016). In 

another study analyzing the loss in diameter and volume 
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growth of red pine trees affected by PPM, three different 

test sites were identified. The analysis showed that the 

loss in height and diameter growth at breast height was 

35%, 50%, and 55% for the three sites, respectively. 

Similarly, the loss in volume growth was found to be 

17%, 37%, and 44% (Erkan, 2011). In a separate study 

conducted to understand the impact of PPM on biomass 

growth, 30 maritime pine samples were analyzed. The 

reduction in biomass growth caused by PPM was 

reported to range between 37% and 73% on average 

(Arnaldo et al., 2010).  In Türkiye, approximately 56% of 

forest areas consist of pine trees. Given that PPM 

negatively impacts the development of these forests, 

effective combat against the pest is of vital importance 

(Özay, 2004). Control measures against PPM include 

mechanical, chemical, biological, and biotechnical 

methods. Mechanical control involves removing the pest 

from its environment regardless of its life stage, typically 

by collecting egg sacs and winter nests and disposing of 

them far from their host trees. Biotechnical control aims 

to capture PPM using pheromone traps during the adult's 

active period from July to September. Chemical control 

seeks to eliminate PPM when it spreads across large 

areas, employing stomach and contact insecticides. 

Various chemicals are used for this purpose. Biological 

control involves utilizing natural enemies such as fungi, 

viruses, bacteria, birds, insects, plant oils, parasitoids and 

predators, and microbial pathogens to curb the pest 

population (Cebeci et al., 2010; Anonymous, 2016). 

Timely detection of harmful species is crucial in the fight 

against forest pests. Early identification of harmful 

species helps protect tree health and maintain ecological 

balance by facilitating the implementation of necessary 

preventive measures. Further, the surveillance of 

temporal and spatial effects of pests is required for 

maximizing the efficiency of control tactics and for 

priority setting. In this strategy, a number of studies are 

being carried out that employ a range of techniques and 

methodologies, with particular focus on aerial 

photography analysis. 

Gooshbor et al. (2016) analyzed the invasion of the green 

oak leaf roller (Tortrix viridana) in Zagros oak forests. 

Landsat satellite images were used for this purpose. The 

NDVI (Normalized Difference Vegetation Index) values 

from pre- and post-invasion periods were compared. The 

results showed a significant decrease in NDVI values 

during the post-invasion period compared to the pre-

invasion period. The analysis demonstrated that NDVI 

values can be effectively used to monitor green oak leaf 

roller infestations. 

Cardil et al. (2017) conducted a study in a pine forest in 

Spain to assess tree damage caused by PPM. Images 

captured using a drone equipped with an RGB (Red, 

Green, Blue) sensor were analyzed. Image processing 

was performed with the help of the "Agisoft Photoscan 

Professional" software. Using MLC (Maximum Likelihood 

Classification), trees were classified based on the extent 

of leaf damage caused by the infestation. Three different 

classes were defined for tree-based classification: non-

infested, partially infested, and fully infested trees. The 

classification achieved an accuracy rate of 79%. Ziya et al. 

(2018) conducted a study involving image analysis to 

detect the presence and severity of leaf spot disease in a 

sugar beet field. RGB images of the field were captured 

using a drone. The study utilized 12 representative 

classes to determine the severity of the disease. Images 

were taken from a height of 30–60 cm above the ground, 

depending on plant height and lighting conditions, and 

were analyzed using the Matlab image processing library. 

The image processing was performed in the Lab color 

space. Disease severity was determined through 

operations such as K-means clustering, pixel labeling, 

segmentation, and contrast enhancement. The results 

were compared with expert assessments and found to be 

highly consistent. 

Cardil et al. (2019) examined and classified the impact of 

PPM infestation on defoliation in pine and oak trees. The 

study, conducted in Spain, collected aerial images of trees 

using a drone equipped with RGB and multispectral 

sensors. Tree defoliation was analyzed using NDVI and 

ExG (Excess Green) indices derived from the images. For 

tree-based classification, three different classes were 

defined: non-defoliated, partially defoliated, and fully 

defoliated trees. The classification achieved an accuracy 

rate of 81.8%. Kerkech et al. (2020) conducted a study on 

the detection and mapping of mildew disease in 

vineyards located in France. Images were captured using 

a drone equipped with RGB and infrared sensors. The 

proposed method is based on the fusion of RGB and 

infrared images. Deep learning was used to distinguish 

between healthy and diseased areas, as well as shadow 

and ground sections in the images. The study employed 

the SegNet architecture, which was found to be suitable 

for detecting and mapping the disease. The method 

achieved an accuracy rate of 87% at the leaf level and 

92% at the vine level. Chen et al. (2021) developed an 

intelligent pest management system for controlling 

Tessaratom papillosa. This study, conducted in Taiwan, 

utilized an exploratory drone to capture RGB images and 

an agricultural drone for spraying operations. To enable 

real-time image processing, an NVIDIA Jetson TX2 board 

was used to run the Tiny-YOLOv3 deep learning 

algorithm. A spraying map was generated to allow 

farmers to monitor pest distribution in real time and take 

preventive actions. Pest locations detected from the 

images were used to determine the optimal spraying 

route. The proposed model significantly improved 

efficiency compared to conventional spraying methods 

by reducing pesticide consumption, time spent, and total 

labor requirements. The study reported a reduction of 

87.5% in pesticide use, 53% in spraying time, and 50% in 

required labor. 

Akıncı and Göktoğan (2022), in their recent study, 

carried out a study in Eskişehir aimed at identification 

and mapping of PPM nests. A quadcopter equipped with 

four motors and an RGB sensor was used in the study for 
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image acquisition. According to acquired images, 

identifications of nests have been conducted and 

geographical coordinate locations at nest centers have 

been calculated. In training and testing, feature pyramid 

network (FPN) and UNet architectures have been used. 

Conclusions drawn through deep learning-based image 

segmentation revealed that the generated nest map can 

become a beneficial contribution in combating PPM.In 

Kahramanmaraş, the severity of red pine PPM 

infestations was evaluated using Landsat 8 OLI satellite 

imagery and remote sensing techniques. The minimum, 

average, maximum, and sum NDVI values were calculated 

for the years before (2016) and after (2022) the PPM 

infestation. These NDVI values were compared using 

SPSS statistical software and t-tests, and there was a 

significant difference between the values calculated 

before and after the infestation (Özcan and Sivrikaya, 

2022). 

A review of the literature reveals that the detection of 

pine processionary moths and similar forest pests has 

traditionally relied on low-resolution satellite imagery 

and conventional image processing techniques. For 

instance, studies by Gooshbor et al. (2016) and Özcan 

and Sivrikaya (2022) employed NDVI analyses to 

evaluate forest health at the regional scale. Cardil et al. 

(2017, 2019) conducted tree-based classifications 

focused on the severity of damage, reporting accuracy 

rates between 79% and 81.8%. Ziya et al. (2018) applied 

classical image processing techniques to detect leaf spot 

disease but did not incorporate object-based deep 

learning approaches. More recent studies by Kerkech et 

al. (2020) and Chen et al. (2021) implemented deep 

learning-based segmentation methods; however, their 

research focused respectively on mildew detection in 

vineyards and optimization of pesticide spraying in 

agriculture. Akıncı and Göktoğan (2022), on the other 

hand, focused on mapping PPM nests using Unmanned 

Aerial Vehicle (UAV) imagery by applying different deep 

learning architectures. 

Taken together, these studies suggest that object-based, 

high-precision nest detection methods remain relatively 

underrepresented in the current literature. Addressing 

this gap, the present study proposes a method that 

utilizes high-resolution UAV imagery and the YOLOv7 

architecture to detect individual nests, with clearly 

reported accuracy metrics. As part of this study, a custom 

dataset comprising 700 images collected under real-

world conditions was constructed. The model trained 

using this dataset achieved a mAP@0.5 score of 92.5%. 

These findings highlight the potential of the proposed 

approach to contribute to early warning systems, the 

planning of pest management strategies, and the 

development of future autonomous monitoring 

frameworks. 

 

2. Materials and Methods 
In this study, the YOLOv7 model was employed for object 

detection. Since training deep learning models like 

YOLOv7 requires substantial computational resources, 

including high-performance CPUs and GPUs, a cloud-

based platform was preferred. Specifically, Google 

Colaboratory (Google Colab) (Anonymous, 2017) was 

selected due to its widespread use in artificial 

intelligence research, its free access to powerful GPU 

resources, and its compatibility with Python-based deep 

learning frameworks. The platform’s support for the 

NVIDIA Tesla P100 GPU with 16GB memory provided 

sufficient computational capacity for training while 

eliminating the need for dedicated local hardware. 

The necessary YOLOv7 configuration files and 

dependencies were installed within the Colab 

environment. After annotating the custom dataset, the 

image and label files were structured in appropriate 

directories in Google Drive and linked to the Colab 

runtime. A total of 700 annotated images were prepared, 

with 560 used for training. 

2.1. Creating the Dataset 

Utilization of aerial imagery to monitor forest pests is of 

numerous advantages, offering a more effective and 

efficient way of doing this compared to the traditional 

ground-based methods. Getting clear images between 

trees in rugged terrain can be quite hard to obtain. 

Additionally, since PPM nests can be found in the upper 

parts of trees, images were captured using two different 

UAVs: the DJI Mini 2 and the custom-built UAV (Figure 1).  

After identifying the area where the nests were found, 

the drone was flown over the trees, capturing 32 

different videos with an integrated RGB camera. 
 

 
 

Figure 1. The custom-built UAV employed for image 

acquisition. 

 

These videos were recorded onto a memory card. 

Subsequently, a small code written in Python was 

employed to extract images from the video data, resulting 

in a total of 500 images. Of these, 400 images (80%) were 

used for training, while 100 images (20%) were 

designated for testing. To improve the dataset, the 

number of frames was extended from 500 to 700 by 

incorporating additional real images obtained under 

different lighting conditions and angles. This adjustment 

maintained the split of 80% for training and 20% for 

testing. In the final dataset, 560 images were allocated for 
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training, and 140 images were used for testing. Video 

recordings obtained from 50 trees containing nests 

feature a total of 86 different nests. Each frame may 

contain a single nest or multiple nests. During the 

recording process, the position of the drone was 

continually adjusted to capture images from various 

angles. Additionally, by altering the drone's horizontal 

and vertical distances from the nests, images were 

acquired from different elevations and distances. Sample 

images obtained from the same tree at varying angles 

and distances are presented in Figure 2. 

 

 
 

Figure 2. Sample images of the tree and its nests, captured from various angles and distances, representing the dataset 

content. 

 

A dataset was created from a stand located 

approximately 150 meters inside the Isparta-Antalya 

highway at the 23rd kilometer, roughly 3.5 kilometers 

from Güneyce village. The coordinates of the area are 

37.6503026° latitude and 30.7258255° longitude. The 

region, which spans 32 hectares and is situated at an 

elevation of 700 meters above sea level, was scanned. 

The area selected for data collection was identified as the 

starting point of the stand due to the higher density of 

nests present (Figure 3). 
 

 
 

Figure 3. The area from which images were obtained for 

the dataset. 

 

2.2. YOLO 

YOLO, which stands for "You Only Look Once," is a deep 

learning method. Its first version was developed in 2016 

by Joseph Redmon, Ali Farhadi, and Santosh Divvala 

(Redmon et al., 2016). This architecture enables object 

classification and detection through the processing of the 

information in one pass by a convolutional neural 

network (CNN). YOLO formulates object detection as a 

regression problem in which one or more bounding 

boxes and corresponding class probabilities are 

predicted following a single network pass. Consequently, 

visual components are processed once to predict the 

coordinates for every class category (Terven et al., 2023). 

The YOLO network is more efficient and higher 

performing than other approaches. By modifying the 

model size, it can provide a trade-off between 

performance and accuracy; reducing the model size can 

increase speed, and enlarging it can produce more 

precise results (Ali and Zhang, 2024). Figure 4 illustrates 

the architecture of the original YOLO model, which 

includes 24 convolutional layers plus 2 fully connected 

layers (Redmon et al., 2016). 
 

 
 

Figure 4. YOLO architecture (Redmon et al., 2016). 

 

Due to its flexible architecture and ability to balance 

inference speed and detection accuracy, YOLO has 

become a preferred method in many real-time object 

detection tasks, especially in resource-constrained 

environments. In this study, YOLOv7 was selected as the 

detection backbone, given its high accuracy and 

improved computational efficiency compared to earlier 
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YOLO versions and other popular object detectors such 

as Faster R-CNN, SSD, or EfficientDet (Zhang et al., 2024). 

While these alternative architectures demonstrate 

superior detection performance, their increased 

processing time and hardware requirements limit their 

applicability to embedded platforms such as the Jetson 

TX2 or AGX Xavier. Following a detailed comparative 

analysis of available YOLOv7 variants, the YOLOv7-Tiny 

model was chosen due to its balanced performance in 

terms of detection accuracy and real-time suitability for 

embedded systems. As shown in Table 1, YOLOv7-Tiny is 

capable of running at 19 FPS on TX2 and 23 FPS on AGX 

Xavier, making it suitable for real-time deployment in 

UAV-based scenarios (Işilak et al., 2023). 

 

Table 1. YOLOv7 and YOLOv8 model FPS results 

(640×640) on TX2, Xavier, and T4 GPUs. 
 

Platform / 

Model 
TX2 AGX Xavier Tesla T4 

V7-Tiny 52.5ms/19FPS 43.0ms/23FPS 11.1ms/90FPS 

V7-XL 409.5ms/2FPS 82.3ms/12FPS 28.4ms/35FPS 

V8-N  47.8ms/20FPS 10.4ms/96FPS 

V8-XL  176ms/6FPS 34.6ms/29FPS 

 

2.3. YOLOv7 

YOLOv7, released in July 2022, is the seventh generation 

of the YOLO family. This neural network has achieved 

remarkable improvements in detection speed and 

accuracy compared to its previous ancestors because of 

some architectural innovations. YOLOv7 methodology 

attained 56.8% Average Precision (AP) when evaluated 

on the COCO dataset and exhibited an inference speed of 

between 5 frames per second (FPS) and 160 FPS and 

hence a more accurate and faster real-time object 

detection system compared to its predecessors (Nguyen 

et al., 2022; Wang et al., 2022). 

YOLOv7 is designed using Extended Efficient Layer 

Aggregation Networks (E-ELAN). E-ELAN, developed 

based on ELAN architecture, enhances the model's 

learning capacity by increasing the number of features 

added through group convolution. Specifically, it ensures 

efficient parameter utilization through strategies for 

expanding, shuffling, and merging feature maps (expand, 

shuffle, merge cardinality). Figure 5 presents the E-ELAN 

and ELAN architectures (Wang et al., 2022). 

 
 

Figure 5. a) ELAN architecture and b) E-ELAN 

architecture (Wang et al., 2022). 

 

One of the reforms introduced by YOLOv7 is the model 

scaling method. The primary aim of model scaling is to 

adjust the core characteristics of the model to meet 

different application requirements. Through model 

scaling, the model’s width (number of channels), depth 

(number of stages), and resolution (input image size) can 

be optimized. Another innovation is the planned 

reparameterization process. RepConv (Re-parameterized 

Convolution) is a method that combines multiple kernels 

within a single convolutional layer with 1x1 and 3x3 

convolutions along with an identity connection. Yet, the 

identity connection part of RepConv has the potential to 

interfere with the learning mechanisms of other 

components of architectures such as ResNet and 

DenseNet. To solve this problem, a variant known as 

RepConvN was created. RepConvN is a tailored version of 

RepConv that lacks identity connections, thereby 

enabling the preservation of parameter efficiency while 

enhancing model accuracy. Additionally, YOLOv7 has 

optimized the label assignment process, enhancing 

prediction consistency across different layers of the 

model and consequently improving object detection 

accuracy. The creation of object bounding boxes has also 

been refined, particularly in accurately detecting 

overlapping boxes, which is evaluated using the 

Intersection over Union (IoU) metric (Wang et al., 2022). 

For this study, the YOLOv7 framework was implemented. 

The appropriate hyperparameters for the model were 

identified, and the training and testing protocols were 

established. The batch size was set to 16, while the 

number of epochs was 100. The SiLU (Sigmoid Linear 

Unit) activation function was integrated with YOLOv7. 

Data annotation was carried out using the web-based 

platform "makesense.ai" (Anonymous, 2022). 

2.4. Evaluation Metrics 

YOLO network employs the Intersection over Union (IoU) 

metric to calculate how much overlap exists between two 

bounding boxes. During labeling, bounding boxes are 

drawn around the targeted object, referred to as the 

ground truth boxes. As the network begins training, the 

predicted bounding boxes are generated. The YOLO 

network compares the ground truth boxes with the 
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predicted boxes. The greater the overlap between the 

boxes, the higher the IoU value, which leads to improved 

detection quality. Conversely, as the IoU value decreases, 

detection quality declines. The method for calculating IoU 

is illustrated in Figure 6. 
 

 
 

Figure 6. Calculating the IoU Value 

 

For evaluating the training and testing performance of 

the network, various metrics are available. To calculate 

these metrics, the values in the confusion matrix must be 

known. The confusion matrix consists of four values—

True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) which quantify the 

accuracy between actual and predicted classes (Table 2). 

 

Table 2. Confusion Matrix 

Confusion Matrix 
Actual Values 

Positive Negative 

Predicted 

Values 

Positive TP FP 

Negative FN TN 

 

 TP refers to instances that are correctly 

predicted as positive by the model. 

 TN indicates instances that the model correctly 

predicts as negative. 

 FP denotes instances that are incorrectly 

predicted as positive while being negative. 

 FN represents instances that are incorrectly 

predicted as negative while being positive. 

 

Using the values from the confusion matrix, metrics such 

as Precision, Recall, and F1-score can be calculated 

(equations 1, 2, 3). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
     (2) 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
Recall × Precision

Recall + Precision
 (3) 

One of the most common evaluation metrics in deep 

learning-based object detection models is the mean 

Average Precision (mAP) value. The mAP value is 

computed by averaging the precision and recall 

performance across all classes. Initially, the Average 

Precision (AP) for each class is determined using the 

Precision-Recall curve. The Area Under Curve (AUC) is 

calculated to obtain the mean precision. Finally, the 

average of the AP values calculated for all classes yields 

the mAP value (Equation 4). The “N” in Equation 4 refers 

to the number of classes. Different mAP metrics exist 

based on IoU thresholds. For instance, mAP@0.5 

indicates the average precision calculated based on 

results where the IoU value is 0.5 or higher. When 

expressed as mAP@0.5:.05:.95, it refers to the average of 

mAP values calculated for IoU values ranging from 0.5 to 

0.95, with increments of 0.05 (Padilla et al., 2020). 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

                                                     (4) 

3. Results and Discussion 
This study aimed to detect nests containing PPM larvae 

using a deep learning-based YOLOv7 architecture. The 

dataset utilized for this purpose is outlined in Section 2.1. 

Initially, the YOLOv7 network was trained using a dataset 

consisting of 500 images. Of these images, 400 were 

allocated for training and 100 for testing. A total of 123 

annotations were made in the 100 images designated for 

testing. The confusion matrix of the model trained with 

the dataset of 500 images is presented in Figure 7. 

The performance metrics, including Precision, Recall, the 

Precision-Recall curve, and the F1-score graph, of the 

models trained with 500 and 700 images are presented 

in Figures 8 and 9, respectively. 
 

 
 

Figure 7. The confusion matrix of the model trained with 

500 images. 
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Figure 8. The performance metrics of the model trained with 500 images. 

 

  

  
 

Figure 9. The performance metrics of the model trained with 700 images. 
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The model trained with a dataset of 500 images exhibited 

a mean Average Precision at 0.5 (mAP@0.5) value of 

0.867. To assess the impact of the number of images in 

the dataset on success rates, 200 additional images 

captured at different times of the day were incorporated 

into the dataset, increasing the total number of images to 

700. Of the 700 images captured from the videos, 560 

were allocated for training and 140 for testing, following 

an 80% and 20% split, respectively. The confusion matrix 

of the model trained with the dataset of 700 images is 

presented in Figure 10. 
 

 
 

Figure 10. The confusion matrix of the model trained 

with 700 images. 

 

The training and testing processes conducted with 500 

and 700 image datasets revealed that the performance 

metrics varied despite the constant iteration count. The 

achieved performance rates are presented in Table 3. 

 

Table 3. Achieved Performance Metrics 

Images in Dataset mAP@0.5 F1-Skor 

500 0.867 0.83 

700 0.925 0.94 

 

As shown in Table 3, incorporating additional real-world 

images into the dataset led to a significant improvement 

in the model’s overall performance, particularly in mAP 

and F1 scores. The inclusion of 200 additional images 

captured at different times of the day allowed the model 

to better learn environmental variables such as light 

angle and intensity. In the initial dataset, intense light 

reflections occasionally caused the model to misclassify 

bright surfaces as nests or overlook nests due to low 

contrast. Including such examples in the training process 

reduced the model’s sensitivity to lighting conditions and 

improved detection accuracy. However, some limitations 

remained during field applications. Complex 

backgrounds, nest-like natural structures, and 

environmental heterogeneity occasionally led to false 

positives. Therefore, incorporating background images 

without any nests into the training process may enable 

the model to more accurately recognize such patterns, 

thereby reducing misclassifications particularly related 

to background elements. These findings suggest that 

training the model with more diverse and 

environmentally representative datasets could further 

enhance detection performance and generalizability. 

Figure 11 shows sample detections of pine processionary 

moth nests generated by the model. 

From a real-world application perspective, the spatial 

accuracy of the detected nests is particularly important 

for operational use, especially in large forested areas. 

Factors such as flight duration, image resolution, and 

processing capacity must be taken into account in such 

contexts. Therefore, it is recommended that the model be 

integrated with user-friendly interfaces and real-time 

decision support systems to enhance its practical 

usability. Furthermore, this study, which focuses on the 

detection of pine processionary moth nests, could 

provide greater value to forest management practices if 

extended to include quantitative analysis of pest density 

and assessment of damage severity. These enhancements 

would support the development of more comprehensive 

and effective intervention strategies in the field. 
 

 
 

Figure 11. PPMs detected under different lighting levels and environments. 
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4. Conclusion  
The pine processionary moth is a globally prevalent pest 

whose population is rapidly increasing due to climate 

change. In Türkiye, it is commonly found in the 

Mediterranean, Aegean, Marmara, and Black Sea regions, 

particularly along the coastal areas. PPM larvae feed on 

the needles of coniferous trees, causing significant 

economic and ecological losses in forest ecosystems. 

Given that a large portion of Türkiye's forests consists of 

coniferous trees, the risk posed by this pest is 

considerable. In this regard, a deep learning-based 

solution was proposed to contribute to the fight against 

PPM by identifying their nests. 

A preliminary custom dataset of 500 images was 

established to train the YOLOv7 network. The dataset 

contained nest images captured from different distances 

and angles and was divided into 80% for training and 

20% for testing. The YOLOv7 network was trained and 

tested using the Google Colaboratory environment. The 

dataset of 500 images yielded an mAP@0.5 of 0.867 and 

an F1-score of 0.83. To develop the model further, an 

additional 200 images captured in different light 

intensities were included, and the results obtained 

showed mAP and F1-score improvements. With the 

increased dataset of 700 images, the mAP@0.5 was 0.925 

and the F1-score was 0.94. 

The uncontrolled spread of forest pests poses a 

significant threat to ecosystem health, making their 

timely and precise detection critically important. This 

study demonstrates that the developed deep learning-

based model can accurately detect PPM nests. Although 

the current implementation is limited to a single pest 

species, the model could be extended in future studies to 

identify multiple pest types by training it on more 

diverse datasets. Such an enhancement could lay the 

groundwork for an integrated forest pest monitoring 

system. In addition, the use of long-term image data may 

enable the observation of spatial and temporal changes 

in pest distribution, thus supporting more data-driven 

intervention planning. Future work should aim to 

improve the model’s generalizability across diverse 

environmental conditions, reduce false detections 

through architectural optimizations, and integrate the 

system with real-time decision support mechanisms. 

Field testing of the proposed method over larger areas 

would further contribute to evaluating its operational 

effectiveness in real-world forestry applications. 
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