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Abstract: Fuzzy Logic Models are practical solutions to reach a definite conclusion in data sets 

with uncertain, complicated, and incomplete input data.  Owing to these models, achieving the 

desired outputs with very low error in large data sets obtained theoretically or experimentally 

is possible. In this study, a subtractive clustering based fuzzy model approach has been 

presented to analyze the ultrasonic polymer degradation. Fuzzy models include obtaining 

cluster centers from the data set, preparing a fuzzy rule-based linear equation system, and 

optimizing parameters for the least error. The designed fuzzy models have high accuracy and 

clearly express ultrasonic degradation behavior. 
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1. INTRODUCTION 

According to frequency range, ultrasound has various usage areas. In the 16 kHz—1 MHz 

frequency range, ultrasound can interact with the material and cause physical and chemical 

changes in the relevant material. In this range, known as the sonochemistry region, ultrasound 

is utilized in many physical and chemical applications [1]. 

Ultrasonic polymer degradation is a degradation process that occurs due to the mechanical, 

chemical and thermal effects created by high-frequency sound waves on polymer chains. [2]. 

This process is based on the acoustic cavitation phenomenon, which is caused by microscopic 

gas bubbles that form in a liquid medium and collapse rapidly. The sudden release of energy as 

the bubbles collapse causes the polymer chains to break by creating excessive heat and pressure 

[3]. This method has the advantages of reducing the need for chemical reactors and providing 

an environmentally friendly alternative, while providing controlled degradation of polymers. 

This technique, which is especially preferred in biomedical applications, plastic recycling 

processes and chemical synthesis studies, stands out as a more sustainable option in cases where 

the use of solvents is not required [4-5].
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Simulating reactions such as ultrasonic polymer degradation is of great importance in providing 

a better understanding of the process and reducing experimental costs. While experimental 

studies are often time-consuming and costly, computer-aided simulations can help determine 

how polymer chains are broken down, which parameters affect the degradation rate, and 

optimum operating conditions. In addition, simulations can help predict the effects on different 

polymer types, preventing unnecessary trials. This provides a great advantage, especially in 

polymer recycling processes critical for biomedical applications and environmental 

sustainability. In addition, free radical mechanisms and acoustic cavitation effects that occur 

during ultrasonic degradation can be analyzed in detail, allowing more controlled and efficient 

processes to be designed [6-8]. Cluster analysis is a collection of methods for separating data 

stacks whose groupings are unknown in a data set into similar subsets. Considering the distance 

between each data in a large data set, collecting similar data in the same clusters, and estimating 

which group the newly added data belongs to constitute cluster analysis's basis. Clustering 

aggregates data, increasing process speed and allowing to evaluate data set under a more general 

structure. Clustering procedures aim to determine the most suitable cluster centers to represent 

the data set using the distances between the data [9-10]. 

 

Fuzzy models are solution tools for defining the relationships between input and output 

variables with the help of fuzzy rules. The most important difference between fuzzy models 

and other black box models (e.g., artificial neural networks, genetic algorithms) is that they 

simplify system identification and allow for transparent analysis [11]. Due to the success of 

usage in plenty of areas, there has been an increase in data-based fuzzy modeling studies in 

recent years. Fuzzy models are mostly designed using the Fuzzy Inference System (FIS) 

technique called Takagi–Sugeno–Kang (TSK) type-1 FIS. FIS is a collection of numerical 

methods based on membership functions, fuzzy rules, and fuzzy thinking, divining the 

relationship between input and output data [12-13]. Moreover, there is Mamdani-type FIS, in 

which if-then rules are used with linguistic antecedents and consequences [14]. However, TSK 

type-1 FIS is more suitable than Mamdani-type fuzzy modeling because it allows local 

predictions in system control and can be used with clustering algorithms [15]. TSK type-1 FIS 

rules include linguistic antecedents, but the result is obtained as a linear function of the input 

variables. Therefore, the result of each rule has design dimensions as a linear function of our 

design definitions. It has been shown that models using TSK type-1 FIS rules can accurately 

describe complicated behavior with only a few rules, thus significantly reducing the complexity 

of the system [16]. 
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Subtractive Fuzzy Clustering (SFC) is a fuzzy logic technique in which fuzzy rule assignment 

is performed from cluster centers. Each cluster center obtained by clustering numerical data 

groups is a system feature in this method. In this way, a linear equation system depending on 

the input variables is constituted from the cluster centers, which correspond to the fuzzy rules. 

With the use of SFC, the processing intensity is significantly reduced [17]. 

 

In this study, subtractive clustering-based fuzzy models were established using experimental 

data of ultrasonic polymer degradation. Then, the accuracy of each model was tested by 

performing error analyses, and the results were compared with the experimental results from 

the literature to show their validity. As a result of the comparison, the success of the models is 

at a satisfactory level. 

2. SPECIFICATION OF CLUSTER CENTERS BY EMPLOYING THE SFC 

METHOD 

Clustering is a technique for finding similar groups in large data. It aims to define the system's 

behavior simply by classifying large data collections. To determine the cluster numbers and 

centers, a simple and effective algorithm called the Mountain Method (MM) has been 

introduced [18]. The proposed method is based on generating a mesh network in the data space, 

determining the grid points, and achieving the potential values of these grid points according to 

their distances from the real data points.  

This study used Subtractive Fuzzy Clustering (SFC), an improved version of the Mountain 

Method. In the SFC method, data points are specified as potential cluster centers instead of grid 

points, and the number of data points is worked up to equal the number of grid points. In this 

way, calculations based on grid points are unnecessary, and the processing density is 

remarkably reduced [19].  

SFC is a technique that fulfills fuzzy rule assignments by automatically specifying groups of 

similar data. This method acquires the most appropriate cluster centers representing the data 

sets by considering the distance between the data groups. Utilizing SFC, the cluster centers are 

determined according to the potential of the data points in the dataset. As a result of the potential 

computation around the data points, the points with the highest potential are selected as cluster 

centers. SFC algorithm is started by evaluating the distances of each data point to other data 

points and calculating the potential value resulting from this process. The potential value is 

usually computed with an equation similar to Gaussian function as follows: 
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In this procedure, .  represents the Euclidean distance, while rα is a positive constant denoting 

the neighborhood radius. This process selects the data point with the highest potential as the 

first cluster center. The data point with the maximum *

1P the potential value is designated as the 

initial cluster center *

1x . To eliminate the impact of the first cluster center when identifying 

subsequent cluster centers, the potential formula for the data points is adjusted as follows: 
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The squash factor, represented by η, expresses the separation between cluster centers and 

ensures that they are not close to each other. This procedure continues until a sufficient number 

of cluster centers are attained, as stated by the specified criterion [19]. 

3. DEVELOPMENT OF FUZZY MODEL BASED ON SFC 

In fuzzy logic systems, fuzzy rules that include linear functions are used to connect the 

antecedent and consequent parts. These rules link input and output data through IF-THEN 

statements. In this research, a type-1 Takagi-Sugeno-Kang (TSK) Fuzzy Inference System 

(FIS) was employed to model ultrasonic degradation data. Models based on TSK-type rules 

have proven effective in accurately capturing complex behaviors with a minimal number of 

rules, thereby greatly simplifying the system's complexity [20]. The structure of the FIS is 

depicted in Figure 1. 
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Figure 1. Fuzzy inference system architecture 

As can be seen from the block diagram above, FIS consists of six main components: 

Input Variables: Raw inputs are received into the system. 

Fuzzification: Input variables are transformed into fuzzy sets using appropriate membership 

functions. 

Fuzzy Knowledge Base: This section consists of fuzzy rules in IF – THEN. 

Fuzzy Inference Engine: This part generates fuzzy results by evaluating the rules. The rules' 

weights are determined with AND (min) or OR (max) operators. 

Defuzzifier: Since the results in Sugeno-type systems are usually described as linear functions, 

a crisp output is achieved by directly computing the weighted average, unlike classical fuzzy 

systems. 

Output: In Sugeno type FIS the output is attained as a crisp value. 

In such systems, the outputs of the rules are no longer represented by fuzzy sets but are instead 

defined as linear functions. As a result, the relationships between inputs and outputs, as well as 

the output functions, can be described using the following equations: 
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j j
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j j

IF x is A x is A x is A THEN

y is B y is B y is B
 (3) 
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jB c c x c x= + + +  (4) 

Here, the jth input variable is denoted as xj, and the jth output variable is represented as yj, with 

k indicating the total number of rules. The linear equation system, referred to as 
k

jB , is 

formulated based on the input variables. By implementing the SFC algorithm, a specific number 
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of cluster centers ( (1)* (2)* ( )*, ,..., kx x x ) are determined. The input fuzzy set k

iA  is defined using a 

Gaussian membership function for the kth rule, as depicted in the following form: 
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To identify the most appropriate FIS configuration, it is essential to calculate the Gaussian 

function's center and standard deviation values. The output of the FIS is obtained by computing 

a weighted average of the outputs from each rule, similar to the centroid defuzzification method, 

as illustrated below: 
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Here, c represents the number of rules, j denotes the index of the data pair, and yij corresponds 

to the linear equation. In the final stage, the coefficients of the linear equation are determined 

by implementing the least squares approximation to the SFC method. The neighborhood radius 

rα, the squash factor η, and the parameters for deciding new cluster centers (εup and εdown) 

significantly impact the number of rules and the error values in the designed fuzzy system. The 

SFC algorithm concludes by identifying the optimal parameter values for the fuzzy system and 

computing the coefficients of the linear equation [19]. As a result of integrating the SFC 

algorithm with the least squares method, both the equation coefficients that capture the 

problem's characteristics are achieved, and a fast, high-accuracy fuzzy model is built. 

 

4. FUZZY MODEL DESIGNS FOR ULTRASONIC POLYMER DEGRADATION 

In this study, first, a single input—single output fuzzy model design illustrated in Figure 2 was 

made using experimental data on ultrasonic polymer degradation from a reference [21]. 3439 

experimental data pairs giving the time-dependent viscosity change were evaluated to establish 

a model. 

 

Figure 2. Fuzzy model for ultrasonic polymer degradation data [21] (One input, one output) 
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Out of the total 3439 experimental data pairs, 2000 were utilized for training the fuzzy model, 

while 1439 were employed to confirm the model's accuracy. Root mean square error (RMSE) 

was used to assess the errors associated with the training and control data pairs. To optimize 

the system, the main parameters rα and η along with the cluster center criteria εup and εdown, were 

carefully analyzed. In order to determine the optimum error value in this model, the error change 

depending on the rα value of both training and control data was examined at fixed values of η, 

εup and εdown parameters as depicted in Figure 3. The rα value that gives the lowest common 

error value of training and control data was determined as the most suitable parameter value. 

 

Figure 3. Distribution of viscosity error for training and control data of ultrasonic polymer 

degradation model depending on rα while η = 0.25, εup = 0.45 and εdown = 0.2 

RMSE errors for both the training and control data obtained using the optimal input criteria for 

the ultrasonic polymer degradation model are presented in Table 1. Additionally, this table 

displays the neighborhood radius, squash factor, and input criteria values associated with the 

optimal result, along with the corresponding number of rules. The time-dependent distribution 

of the model output and the real experimental results at the rα radius value corresponding to the 

optimum value are illustrated in Figure 4. It is seen that the fuzzy model results shown with 

symbols coincide with the experimental data shown with lines. 

Table 1. Rms error values together with optimum input criteria and number of rules  

RSML Model Error Values && Optimum Input Criteria 

RMS 

Error Values 

Train Data Control Data 

0.510 0.509 
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Optimal Parameter 

Values and Number of 

Rules 

rα η εup εdown 
Number 

of Rules 

4.5 0.25 0.45 0.2 20 

 

 

Figure 4. Comparison of polymer degradation model results with experimental data [21] 

 

In the next stage, a fuzzy model design shown in Figure 5 was made in the form of three inputs 

- one output, evaluating the experimental data of ultrasonic polymer degradation taken from 

[22]. In the second fuzzy model, time, temperature and concentration were taken as inputs and 

specific viscosity as output. A total of 84 data pairs were utilized in model setup. 

 

Figure 5. Fuzzy model for ultrasonic polymer degradation [22] (Three inputs, one output) 

 

Out of the data pairs collected for model setup, 50 were utilized as training data, while 34 were 

employed to evaluate the model's validity. To identify the optimal parameter values for the 

second model, the specific viscosity error was computed in terms of RMSE by varying the 

neighborhood radius rα, while keeping the parameters η, εup and εdown fixed at specific values as 



Onur İnan, Ali Akyüz, Yalvaç Akademi Dergisi, 10-1 (2025) 41-52 

49 
 

depicted in Figure 6. Once again, the parameter values corresponding to the lowest common 

error of the training and control data were considered the most valid. 

 

Figure 6. Distribution of viscosity error for training and control data of ultrasonic polymer 

degradation model depending on rα while η = 1, εup = 0.5 and εdown = 0.25 

 

Table 2 displays the RMSE errors for both the training and control data, achieved utilizing the 

optimal input criteria for the ultrasonic polymer degradation model. Once again, this table 

includes the most appropriate parameter values together with the corresponding them number 

of fuzzy rules.  

 

Table 2. RMS error values together with optimum input criteria and number of rules  

RSML Model Error Values && Optimum Input Criteria 

RMS 

Error Values 

Train Data Control Data 

0.0714 0.0715 

Optimal Parameter 

Values and Number of 

Rules 

rα η εup εdown 
Number 

of Rules 

3.2 1 0.5 0.25 3 

Figure 7 illustrates the changes in both model output and experimental data over time for 

different temperature values . As can be clearly seen from the graph, although very few rules 

were used in our second model, the model results were acquired at values very close to the 

experimental data. 
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Figure 7. Comparison of polymer degradation model results with experimental data [22] 

 

5. CONCLUSION 

This study applied a SFC-based fuzzy modeling approach to analyze experimental data from 

two different ultrasonic polymer degradation samples available in the literature. The developed 

fuzzy models obtained linear equations describing polymer degradation with fast, reliable, and 

satisfactory error values. Unlike classical methods commonly used in the literature, the 

proposed SFC-based fuzzy modeling approach offers significant advantages, such as 

eliminating the need to determine the number of clusters before clustering and reducing system 

complexity. With these features, the study addresses the uncertainty and complexity challenges 

encountered in ultrasonic polymer degradation analysis, filling a gap in the literature and 

providing an original contribution. 

The primary contribution of the proposed method to the literature is to enhance the effectiveness 

of fuzzy logic-based approaches in the analysis of experimental data and to offer a faster and 

more practical alternative compared to classical methods. Additionally, it has been 

demonstrated that SFC-based fuzzy modeling can better capture nonlinear relationships in the 

modeling of complex physical processes, such as ultrasonic degradation, and facilitates the 

interpretation of experimental data. In this context, the study highlights the potential of fuzzy 

logic-based modeling methods in ultrasonic polymer degradation analysis, offering a new 

perspective for researchers in this field. 

For future studies, it would be beneficial to comprehensively examine the performance of the 

proposed method under different polymer types, ultrasonic frequencies, and various 
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experimental conditions. Furthermore, to improve the accuracy and generalization capability of 

the fuzzy modeling method, the development of hybrid approaches (e.g., integrating fuzzy logic 

with artificial neural networks or machine learning algorithms) is recommended. To evaluate 

the method's applicability in real-time applications, testing it on larger datasets and different 

sensor data is also crucial. Additionally, using advanced optimization techniques, such as 

genetic algorithms, particle swarm optimization, or differential evolution, for optimizing fuzzy 

modeling parameters could further enhance the method's performance. Finally, investigating 

the applicability of the proposed method in different engineering applications (e.g., material 

fatigue analysis, ultrasonic non-destructive testing methods, and quality control processes of 

polymeric materials) would strengthen its position in the literature and expand its application 

areas. Studies conducted in line with these suggestions are expected to contribute significantly 

to the theoretical and practical development of fuzzy logic-based modeling methods. 
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