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Abstract 
 
In this article, approximate solutions of the time-fractional Korteveg de Vries (KdV) 
and modified version of it is obtained by using the residual power series method 
(RPSM). Numerical results are given and then they are compared with the exact 
solutions both numerically and graphically. The results show that the present method is 
very successful, effective and reliable. 
 
Keywords: Residual power series method, KdV equation, Caputo fractional derivative, 
Fractional partial differential equation. 
 
 

Zaman kesirli KdV denklemlerinin residual kuvvet serisi  
yöntemi ile yaklaşık çözümü 

 
 
Özet 
 

Bu çalışmada zaman-kesirli Korteveg de Vries (KdV) denkleminin ve modifiye edilmiş 
halinin rezidual kuvvet serisi metodu (RPSM) ile yaklaşık çözümü elde edilmiştir.  
Nümerik sonuçlar verilmiş ve bu sonuçlar tam çözümle nümerik ve grafiksel olarak 
karşılaştırılmıştır.  Bulunan sonuçlar kullanılan yöntemin gayet başarılı, etkili ve 
güvenilir olduğunu ortaya koymaktadır. 
 
Anahtar kelimeler: Residual kuvvet serisi yöntemi, KdV denklemi, Caputo kesirli türevi, 
Kesirli kısmi diferansiyel denklem. 
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1.  Introduction 
 
In recent years, fractional calculus has found countless applications in different 
branches of engineering and science such as fractional differential equations (FDE), 
fluid flow, electrical network, mathematical physics, biology, image and signal 
processing, viscoelasticity and control.  
 
There are some common methods that are used to obtain approximate or analytical 
solutions of nonlinear fractional partial differential equations in literature.  Adomian 
decomposition method (ADM) [1], Laplace analysis method (LAM) [2], homotopy 
analysis method (HAM) [3], homotopy perturbation method (HPM) [4], differential 
transformation method (DTM) [5] and perturbation-iteration algoritm (PIA) [6] are 
among them. 
 
In this article, a new technique, namely, Residual power series method (RPSM) [7-14], 
is used to obtain approximate solution of time- fractional KdV equation.  In this method, 
the coefficients of the power series are calculated by means of the concept of residual 
error with the help of one or more variable algebraic equation chains, and finally, in 
practice, a so-called truncated series solution is obtained [7]. 
 
The main advantage of this method over other methods is that it can be applied directly 
to the problem without linearization, perturbation or discretization and without any 
transformation by selecting appropriate initial conditions [8].  
 
There are a few definition of fractional derivative of order 	� > 0. The most widely 
used are the Riemann-Liouville and Caputo fractional derivatives. 
 
1.1.  Definition  The Riemann –Liouville fractional derivative operator D���x� for � > 0 and � − 1 < � < �  defined as [15]: 
 ������ = 	�	�� 
 1��� − ��� ����� − �������

�
	� .																																																																			(1) 

 
1.2.  Definition  The Caputo fractional derivative of order � > 0 for nϵℕ, � − 1 < � <�	, �∗

�, defined as [15]: 
 �∗

�f��� 	= J	���		���� = 1��� − ����� − �	���� � 		�	 ���	.																														(2)
�

�
 

 
The relation between Riemann-Liouville and Caputo fractional derivatives is expressed 
in the following theorem. 
 
1.3.  Theorem  Let > 0,			� − 1 < � < � , for � ∈ ℕ. Then [11]: 
 �∗

����� = ������ − � �
���(� − � + 1)�
��0�.																																																																(3)		��


��
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1.4.  Definition  The Power series expansion of the form [8]: 
 ∑ �� − ��� = �� + ��� − ��� + ��� − ���� + ⋯ , 0 ≤ � − 1 < �	 ≤ �,��� ≥ �																																																																																																																																																																																																					(4) 
 
is called fractional power series about  = �.  
 
1.5.  Theorem  For the fractional power series   ∑ ���� � for  ≥ 0 there are only 
three cases [10].  
1) The series converges only when  = 0, 
2) The series converges for each  ≥ 0	, 
3) There is a positive real number � such that the series converges whenever 0 ≤  < � 
and diverges whenever 	 ≥ �. 
 
1.6.  Theorem  Suppose that �  has a FPS representation at of the form [10]: 
 ��� = ��	� − ��	�∞

	��
,			0 < � − 1 < � ≤ �, � ≤  < � + �																										(5) 

 
If ��� ∈ ���, � + �� and ���

	��() ∈ ���, � + �� for � = 0,1,2, … 
then the coefficients  �	 will take the form: 
 �	 = ���

	��(�)���� + 1� , ���
	� = ���

� .���
� 	.���

� …���
� 	(� − ����)																																									(6) 

 
 
2.  Residual power series algorithm 
 
To illustrate the basic idea of RPSM, let's take a nonlinear fractional differential 
equation of the form: 
 ��	����, � + �������, � + �������, � =  ��, �, > 0, � ∈ �,� − 1 < �� ≤ �																																																																								(7) 
 
expressed by initial condition 
 ����� = ���, 0� = ����																																																																																																														(8) 
 
which is �[�] is a linear operator and �[�] is a non-linear operator and  (�, ) are 
continuous functions. 
The RPSM method consists of expressing the solution of the equation given below as 
the fractional power series expansion around  = 0. 
 �	����� = ��

�	�������, 0� = ℎ���																																																																																											(9) 
 
The expansion form of the solution is given by: 

 



ŞENOL M., ATA A. 

433 
 

���, � = ��	�

	��
��� 	���1 + ��� , 0 < � ≤ 1,			� ∈ !,				0 ≤  < �																																		(10) 

 
In the next step, the k. truncted series of  ���, �, that is  �
��, � can be written as: 
 �
��, � = ��	��� 	���1 + ��� , 0 < � ≤ 1, � ∈ !, 0 ≤  < �,




	��� = 1,2,3, … 																																																																																																					(11) 
 
If the 1. RPS approximate solution ����, � is written as: 
 ����, � = ���� + ����� ���1 + ��																																																																																								(12) 

 
then �
��, � could be reformulated as: 
 �
��, � = ���� + ����� ���1 + ��

+ ��	��� 	���1 + ��� , 0 < � ≤ 1, � ∈ !, 0 ≤  < �,



	��� = 2,3,4, … 																																																																																																					(13) 
 
First we define the residual function as: 
 �����, � = ��	����, � + �������, � + �������, � −  ��, �																																				(14) 
 
and the �. residual function as: 
 ���
��, � = ��	��
��, � + �����
��, � + �����
��, � −  ��, �, � = 1,2,3, … 		(15) 
 
It is clear that �����, � = 0 and lim
→� ���
��, � = �����, � for each � ∈ ! and  ≥ 0. In fact this lead to ��

�	�������
��, �� for � = 1,2,3, … , � because the fractional 
derivative of a constant is zero in the Caputo sense. 

Solving the equation ��
�	�������
��, 0� = 0 gives us the desired �	��� coefficients. 

Thus the �	��, � approximate solutions can be obtained respectively. 
 
 
3.  Application of the RPSM for fractional KdV equations 
 
3.1.  Example Consider the time-fractional Korteveg de Vries (KdV) equation [15]: 
 ���� + 6��� + ���� = 0, 0 < " ≤ 1																																																																																			(16) 
 
with the initial condition: 
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���, 0� = 1
2 ���ℎ� �1

2 ��																																																																																																										(17) 

 
The known exact solution of the problem for � = 1 is: 
 ���, � = 1

2 ���ℎ� #1
2 �� − �$																																																																																															(18) 

 
For residual power series 
 ���, � = ��	��� 	���1 + "��

	��
																																																																																																	(19) 

 
and �. truncated series 
 �
��, � = ��	��� 	���1 + "�


	��
																																																																																															(20) 

 
the �� th residual function for the KdV equation is: 
 ����
��, � = ������, � + 6���, �����, � + ������, �, � = 1,2,3, … 																					�21� 
 
So the fractional power series expansion of ���, � about  = 0 is 
 �
��, � = ���� + ����� ���1 + "� + ��	��� 	���1 + "� , � = 2,3,4, … 													�22�


	��
 

 
To determine the first unknown coefficient	�����, in the expansion of 	�2.7� we 
substitute the 1th truncated series ����, � into the 1th residual function �������, � to 
get 
 �������, � = �������, � + 6����, �(��)���, � + (��)�����, �																																(23) 
 

Since ����, � = ���� + ����� ��
������, the Eq. (23) leads to: 

 �������, � = ����� + 6#���� + ��������1 + ��$#����� + ���������1 + ��$ + �������
+ �����������1 + �� 																																																																																																				(24) 

 
Now for the substitution of  = 0 through Eq.(24) we obtain: 
 
Res�(�, 0) = ����� + 6��������� + �������																																																																						(25) 
 
Thus for Res�(�, 0) = 0 
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����� = 4csch�(�)sinh� %�2&																																																																																																	(26) 

 
Hence, the 1st RPS approximate solution of Eq.	(16) can expressed as: 
 ��(�, ) =

��1 + �� + �tanh %�2&
(1 + Cosh(�))��1 + ��																																																																																						(27) 

 
In the same manner, to obtain second unknown coefficient	�����, we substitute the 2nd 

truncated series ����, � = ���� + ����� ��
������ + ����� ���

�������, into the 2nd residual 

function �������, � = �������, � + 6����, �(��)���, � + (��)�����, � and we get: 
 �������, � = ����� + 6��������� + 6�������������1 + �� + 6��������������1 + 2��

+ 6�������������1 + �� + 6���������������1 + ��� + 6���������������1 + ����1 + 2��
+ 6��������������1 + 2�� + 6���������������1 + ����1 + 2�� + 6���������������1 + 2��� + �������
+ �����������1 + �� + ������������1 + 2�� 																																																																									(28) 

 
Now applying ��� on both sides of Eq.	(28) and equating it to 0 for  = 0 gives: 
 ����� = 1

4 '−2 + cosh���(sech� %�2&																																																																																		(29) 

 
Therefore, the 2nd RPS approximate solution of Eq.	(16) is obtained as: 
 ����, � = 1

4 sech� %�2& (2 +
��(−2 + cosh(�))sech� %�2&�(1 + 2�) +

2�tanh %�2&�(1 + �) )													(30) 

 
Similarly, by applying the same procedure for � = 3,4,5 we obtain the following results 
respectively, 
 ����� = ((39 − 32cosh	(�) + cosh	(2�))��1 + ���

16��1 + ���
+

12(−2 + cosh	(�))�[1 + 2�])sech� %�2& tanh %�2&
16��1 + ��� 																										(31) 

����, � = 1
2 sech� %�2& +

��'−2 + cosh���(sech� %�2&
4��1 + 2�� +

4�csch����sinh� %�2&��1 + ��
+ ��((39 − 32cosh(�) + cosh(2�))��1 + ���

16��1 + �����1 + 3��
+

12(−2 + cosh(�))��1 + 2��)sech� %�2& tanh %�2&
16��1 + �����1 + 3�� 																										(32) 
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and so on. Other iterations are not given for brevity but fifth iteration solution ����, � 
is calculated in this manner. Using a symbolic computation program like Mathematica, 
the other iterations can be calculated. In Table 1, the fifth order approximate RPSM 
results and the exact solutions are compared. Also in Figure 1 they are compared 
graphically. 
 
3.2. Example Consider the time-fractional modified Korteveg de Vries (mKdV) 
equation [16]: 
 ���� + 6���� + ���� = 0, 0 < " ≤ 1																																																																																		(33) 
 
with the initial condition: 
 ���, 0� = √�sech(� + √��)																																																																																																			(34) 
 
The known exact solution of the problem for � = 1 is: 
 ���, � = √�sech(� + √��� − ��)																																																																																						(35) 
 
Following the same manner as in the previous example, we obtain the successive 
iterations as: 
 ����� = ��sech'� + √��(tanh'� + √��(																																																																										(36) 
 ����, � = √�sech'� + √��((�[1 + �] + �� �⁄ �tanh'� + √��()�(1 + �) 																													(37) 

 ��(�) = 1
2 �� �⁄ (−3 + cosh	(2'� + √��()sech�'� + √��(																																												(38) 

 ����, � = √�sech'� + √��((1 −
���� %−1 + 2sech�'� + √��(&�(1 + 2�)

+ �� �⁄ � tanh'� + √��(�(1 + �) 																																																																													(39) 

 ��(�) = 1
8�(1 + �)��(1 + 2�) ��((315 − 164cosh[2(� + √��)] + cosh[4(�

+ √��)])�(1 + �)� + 24(−7 + 3cosh[2(�
+ √��)])�(1 + 2�)�)sech�'� + √��(tanh'� + √��(																								(40) 

 ����, � = 1�8�(1 + �)��(1 + 2�)�(1 + �)� (√�sech	(� + √��)(8�(1 + �)��(1
+ 2�)�(1 + 3�) + 4����(−3 + cosh	[2(� + √��)])��1 + ����(1
+ 3�)sech�'� + √��( + 8�� �⁄ ��(1 + �)�(1 + 2�)�(1
+ 3�)tanh	(� + √��) + �� �⁄ ��((315 − 164cosh[2(� + √��)]
+ cosh[4(� + √��)])�(1 + �)� + 24(−7 + 3cosh[2(�
+ √��)])�(1 + 2�)�) sech(� + √��)� tanh(� + √��)))																			(41) 
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Following this manner the other iteration results could be calculated.  In Table 2, the 
third order approximate RPSM results are compared with exact solutions numerically 
and absolute errors of RPSM solutions are computed by different values of α and for 
different time points.  In fact, the results show competitive solutions of RPSM.  Figure 2 
is extracted based on illustrating approximate solutions of RPSM in the similar manner 
and by choosing equal parameters and also as seen, they have similar patterns with 
exact solutions. In addition, they prove that both PIA and RPSM give remarkably 
approximate results. 
 
 

Table 1.  Comparison of numerical values of ��(�, )  in 3.1. Example for � = 10. 

 � = 0.25 � = 0.50 � = 0.75 � = 1.00 

� ��(�, �) ��(�, �) ��(�, �) ��(�, �) Exact solution Absolute error 
0 9.07616E-5 9.07616E-5 9.07616E-5 9.07916E-5 9.07916E-5 0 

0.1 2.10313E-4 1.34953E-4 1.10732E-4 1.00339E-4 1.00339E-4 1.84812E-13 

0.2 2.61221E-4 1.63130E-4 1.27525E-4 1.10890E-4 1.10890E-4 1.00999E-11 

0.3 3.04835E-4 1.90686E-4 1.44887E-4 1.22551E-4 1.22551E-4 1.09388E-10 

0.4 3.44949E-4 2.19003E-4 1.63411E-4 1.35438E-4 1.35439E-4 6.02626E-10 

0.5 3.82956E-4 2.48619E-4 1.83425E-4 1.49678E-4 1.49681E-4 2.283610E-9 

0.6 4.19542E-4 2.79821E-4 2.05178E-4 1.65413E-4 1.65420E-4 6.819710E-9 

0.7 4.55102E-4 3.12787E-4 2.28887E-4 1.82797E-4 1.82815E-4 1.726760E-8 

0.8 4.89888E-4 3.47646E-4 2.54761E-4 2.01999E-4 2.02037E-4 3.873280E-8 

0.9 5.24070E-4 3.84494E-4 2.83004E-4 2.23202E-4 2.23281E-4 7.918610E-8 

1.0 5.57768E-4 4.23410E-4 3.13820E-4 2.46608E-4 2.46758E-4 1.504510E-7 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The surface graph of ��(�, ) and exact solution of 3.1. Example. 

 

 

RPSM solution
Exact solution
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Table 2.  Comparison of numerical values of ��(�, ) in 3.2. Example for � = 10. 

 � = 0.25 � = 0.50 � = 0.75 � = 1.00 

� ��(�, �) ��(�, �) ��(�, �) ��(�, �) Exact solution Absolute error 

0 9.07999E-5 9.07999E-5 9.07999E-5 9.07999E-5 9.07999E-5 0 
0.1 1.99357E-4 1.34439E-4 110679E-4 1.00341E-4 1.00349E-4 7.95268E-9 
0.2 2.36952E-4 1.60889E-4 127173E-4 1.10836E-4 1.10903E-4 6.68370E-8 
0.3 2.66246E-4 1.85381E-4 143856E-4 1.22330E-4 1.22567E-4 2.36879E-7 
0.4 2.91337E-4 2.09199E-4 161181E-4 1.34868E-4 1.35457E-4 5.89415E-7 
0.5 3.13772E-4 2.32797E-4 179326E-4 1.48496E-4 1.49704E-4 1.20806E-6 
0.6 3.34328E-4 2.56387E-4 198387E-4 1.63258E-4 1.65448E-4 2.18998E-6 
0.7 3.53465E-4 2.80084E-4 218419E-4 1.79201E-4 1.82848E-4 3.64737E-6 
0.8 3.71481E-4 3.03954E-4 239464E-4 1.96370E-4 2.02079E-4 5.70897E-6 
0.9 3.88580E-4 3.28038E-4 261548E-4 2.14810E-4 2.23332E-4 8.52185E-6 
1.0 4.04912E-4 3.52361E-4 284694E-4 2.34566E-4 2.46820E-4 1.22533E-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The surface graph of ��(�, ) and exact solution of 3.2. Example. 

 
 
4.  Conclusion 
 
In this study, residual power series method was introduced to obtain approximate 
solutions for time-fractional Korteveg de Vries (KdV) and modified KdV partial 
differential equations.  Numerical results and comparison with the exact solutions show 
that the present method is very powerful and reliable technique and producing highly 
approximate results.  Comparing to other tecniques the method is very simple to apply 
without linearization, perturbation or discretization or any transformations.  Also it is a 
good tool to use to calculate the approximate solutions of a wide range of fractional 
partial differential equations. 

RPSM solution
Exact solution
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