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Machine learning approaches now utilized in audio mastering are transforming traditional 
workflows. This comparative study examines the effectiveness of supervised and 
unsupervised methods in the mastering process. Platforms such as LANDR employ 
supervised models that emulate expert engineers, offering cost-effective options for 
independent artists, while unsupervised techniques aid spectral balance and dynamic range 
optimization. The methodology relies on objective metrics—including Distortion Meter, 
Dynamic Range, Loudness Penalty, Intelligibility, and High Frequency Distortion—along 
with subjective listening assessments. Statistical analyses show that human engineers surpass 
AI systems in preserving dynamic range, minimizing distortion, and maintaining sonic 
clarity, particularly for complex genres like classical and jazz. Empirical research reveals AI 
mastering causes greater distortion, narrower dynamic range, and higher loudness penalties. 
In contrast, engineers deliver superior audio quality through broader dynamic range, lower 
distortion, and enhanced intelligibility. While AI quickly provides reasonable results for 
simpler styles like Pop and Electronic, human expertise offers advantages for complex 
compositions where aesthetic judgment is key. These findings indicate that despite 
technological progress, human know-how remains critically vital in creative decision-
making. The study also points to potential for human-machine collaboration in mastering, 
with AI initially optimizing parameters and engineers making refined aesthetic adjustments 
to enhance quality. This hybrid approach could unite technological efficiency with artistic 
excellence. Future work should focus on improving AI's ability to emulate human aesthetic 
decisions, developing genre-specific mastering, and incorporating techniques like generative 
adversarial networks to mastering. These advancements may pave the way for hybrid 
systems fusing human creativity and machine efficiency. 

To cite this article 
Canyakan, S. (2025). Machine learning in audio mastering: a comparative study. Journal for the 
Interdisciplinary Art and Education, 6(1), 47-65. DOI: https://doi.org/10.5281/zenodo.15074948 

 Introduction 
Mastering audio -the last stage of music production in modern times- represents one of the most importance process of 
establishing the sonic aesthetic and structural signature of a recording, often deciding the fate of its life. This area has 
historically worked at the intersection of mechanical accuracy and visual intuition, travelled by prof iciency engineers 
over years of perceptual training} based on partial experience. Birtchnell (2018) provides an especially subtle description 
of this phenomenon, for instance: "[Mastering engineers have] developed critical listening skills over decades to maintain 
the emotional and tonal integrity of a piece of music that could not be considered in a purely mathematical way from 
the measured values of various technical parameters" That way of thinking about experience as a foundation for 
knowledge has traditionally been the most common epistemology in professional audio production contexts. 

But technological innovation has profoundly shifted the ontology of the contemporary. Artificial intelligence tools 
have a re-organising impact on the processes of mastering as they have altered the accessibility problem of mastering 
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while also troubling old ideas about aesthetic standards. According to Sterne and Razlogova (2019), "the 'mastering' 
process is being democratized through supervised learning patterns found algorithms, such as LANDR that similarly 
to engineers, train on thousands of mastering examples taken from professional environments in order to determine the 
treatment effects." Such a change is not a mere adaptation to technical modes however but shifts a cultural economy of 
new audio production within the horrible temporalities komplett of production as a whole. 

For independent artists and small-scale production entities, algorithmic mastering systems provide unprecedented 
access to sophisticated processing capabilities that were once reserved for niche studios. Purwins et al. As (2019) break 
down the technical complexity of current architectures: "Deep learning models automatically analyze and optimize 
spectral balance, dynamic range, and sound height in a complex mastering process that would traditionally rely on a 
sound engineer's extensive experience" But such technological democratization also raises deep issues about what is to be 
considered expertise, and what its state is in many contexts of production today. Yet, having established an algorithmic 
approach to a domain that fundamentally relies on contextual interpretation and affective understanding, the practice 
has considerable limitations. The restriction is expressed particularly clearly by Smit and Lee (2022): "Although robots 
can be programmed to automate some technical aspects of artistry, artificial intelligence systems cannot replicate a 
human engineers' understanding of a musical context, interpret an artists vision, or assess its aesthetic nuance. The 
inequity between the automatism of technology and the contextual understanding required to apply it highlights the 
need for a robust theoretical lens to frame the complementary connection between technological systems and human 
insight. 
Some 40 years have passed since significant changes in audio technologies, communication networks, and production 
methods reshaped professional practice and human interaction. At the same time, these developments have both 
increased the demand for specialized expertise and driven the creation of new professional categories with unique 
technical and aesthetic needs. At the same time, music production processes (transcription, time alignment, signal 
separation, mixing, etc.) have seen growing scholarly interest in algorithmic use. Underneath the height of the eco-
systemic pyramid which is the mastering stage (containing mixed audio being subjected to its final processing, either 
terminal or perceptual homogenization, followed by arbitrary calibration to its eventual habitat), it houses a range of 
sonic beautification. This importance of such interventions for overall sonic quality has been well documented in the 
academic literature. Modern methods still largely consist of manual processes—dependent on the engineer's perceptual 
sensitivity and technical expertise—but emerging methods are beginning to include advanced signal-processing methods, 
neural networks, and machine learning hacks. 

The automatic mastering paradigm is, however, a step closer to algorithmic independence: it strives to emulate the 
decision-making processes of mastering engineers, targeting professional-grade results solely through computational 
means. Though many academic research efforts suggested different computerized approaches till date gold standard is 
not reached in this field. Still, practitioners are adopting these technologies more and more to increase capacity, 
improve impact, and deliver results more efficiently and cost-effectively. 

This study provides comparative insight into contrasting modes of collective intelligence in music production: 
collaborative networks of enabling that support producers with intelligent agents that can offer compositional or 
technical advice, and freestanding mastering bots operating as independent systems. This study examines the influence 
of supervised and unsupervised machine learning applications appeared in the literature as mastering processes when 
analyzing sonic quality, dynamic range and intelligibility using both objective measures and subjective perceptual tests. 
This detailed discussion should serve as a basis to clarify the pros and cons of using AI-assisted versus human-engineered 
mastering strategies, offering both theoretical resources to help pinpoint when human ingenuity or computational 
resources should be employed in modern sound engineering. In this paper, we aim to deepen our insight into how 
innovation in technology both disrupts and reaffirms core creative practice in audio production. 

Machine Learning in Audio Mastering 
Within the diverse terrain of digital signal processing, machine learning has emerged as a transformative paradigm, 
fundamentally reconfiguring established practices—nowhere more evidently than in the domain of audio mastering. 
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Historically, this process has constituted a sophisticated synthesis of technical precision and creative intuition, wherein 
experienced engineers meticulously balance frequencies, adjust dynamics, and enhance sonic qualities through deliberate 
intervention. However, the accelerating development of machine learning technologies has precipitated a profound 
epistemological shift, introducing possibilities for process automation that simultaneously reshapes industry structures 
and challenges conventional understandings of mastering expertise (Purwins et al., 2019; Birtchnell, 2018). 

Platforms employing supervised machine learning methodologies—LANDR representing perhaps the most notable 
exemplar—have established themselves as signif icant agents in this transformation. Through sophisticated analysis of 
extensive corpora of previously mastered recordings, these systems effectively simulate the decision-making processes of 
professional engineers, offering temporally efficient and economically accessible automated solutions (Sterne & 
Razlogova, 2019, 2021). The emergence of these technological frameworks has generated considerable interest, 
particularly among independent musicians and producers lacking access to conventional mastering resources. By 
democratizing previously restricted technical processes, these platforms fundamentally reconfigure the production 
landscape. 

Deep learning architectures demonstrate particular promise in simplifying—and potentially automating—the more 
complex procedural elements intrinsic to mastering practice, including dynamic range compression, equalization, stereo 
enhancement, and loudness normalization (Smit & Lee, 2022). These models exhibit remarkable capacity for pattern 
recognition within audio data, effectively performing technical operations previously requiring substantial human 
expertise. Moreover, machine learning applications extend beyond mastering contexts, encompassing speech 
recognition, music information retrieval, and bioacoustic classification—illustrating the remarkable versatility of these 
technologies within broader audio processing domains (Purwins et al., 2019; Nagesh & Kumari, 2021). 

Despite these technological advancements, human expertise retains inestimable value, particularly within mastering 
contexts requiring critical listening and intuitive judgment. While machine learning effectively automates technical 
processes, it encounters signif icant limitations in replicating the creative and aesthetic decisions characteristic of 
experienced sound engineers (Birtchnell, 2018). Consequently, as machine learning becomes increasingly integrated 
within audio processing frameworks, profound questions emerge regarding the appropriate equilibrium between 
automation and human creativity. 

As Sterne and Razlogova (2019) astutely observe, machine learning will inevitably shape not merely the technical 
dimensions of audio production but fundamentally transform how music is experienced and perceived, potentially 
reconfiguring aesthetic and cultural practices within broader music industry contexts (Roch, 2021). This technological 
evolution thus represents not merely a technical reconf iguration but a comprehensive transformation of creative 
practice—one demanding careful consideration of how technological systems might complement rather than supplant 
human aesthetic judgment. 

Automatic Mastering Systems 
The landscape of Automatic Audio Mastering (AAM) systems has witnessed remarkable transformations in recent years, 
manifesting across both commercial and open-source domains with distinct developmental trajectories. Commercial 
AAM solutions primarily operate through online platforms, offering services at moderate to premium price points, while 
their free counterparts exist as standalone applications or web-based interfaces. These systems have undergone rigorous 
evaluation through diverse user experience studies, with their hierarchical classification largely determined by impression 
ratings gathered from communities predominantly comprising independent artists—a demographic that has emerged as 
the primary beneficiary of these technological innovations. 

The evolution of unsupervised machine learning (UML) has served as a critical catalyst in the developmental arc of 
AAM systems. UML methodologies present novel automation paradigms for complex tasks such as mastering through 
their capacity to identify patterns within unlabeled data without human intervention (Samreen Naeem et al., 2023). 
Algorithmic approaches including k-means clustering, principal component analysis, and multidimensional scaling have 
substantially enhanced the sophistication with which AAM systems analyze and process audio data, representing a 
significant advancement in computational approaches to sound engineering (Xiangdong Wu et al., 2021). 
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Computer-Aided Mastering (CAM) systems represent a particularly intriguing development through their integration 
of collaborative methodologies derived from music and design disciplines. Platforms such as MUMS offer users guidance 
in parameter adjustment—including volume curves, amplitude characteristics, and harmonic profiles—providing 
optimization recommendations intended to elevate recording quality. These systems employ recommendation 
algorithms specifically calibrated for mastering tasks, constituting an innovative approach within the broader domain of 
automated music mastering (Pasquier et al., 2016). 

Nevertheless, signif icant epistemological limitations persist regarding how CAM systems navigate complex mastering 
decisions. Particular challenges emerge in the optimization of compressor settings and harmonic exciters—parameters 
requiring nuanced adjustment responsive to musical context. The capacity of these systems to represent musical context 
and transformations solely through control parameters remains an area ripe for further development, revealing the 
boundaries of current algorithmic approaches to mastering processes. 

Despite these constraints, CAM systems have achieved notable advancements in adjacent domains such as internet-
based collaborative music creation. Projects including Public Sound Object and FMOL have expanded the frontiers of 
collective music production and automatic mastering tools by facilitating real-time collaboration among users (Jordà & 
Barbosa, 2001). These developments suggest potential pathways toward more integrated creative environments that 
leverage both human and computational capabilities. 

The developmental trajectory of automatic mastering systems underscores the potential for human-machine 
collaboration in the future landscape of audio engineering. While these systems continue to demonstrate limitations in 
specific audio processing tasks, they nevertheless signal a paradigmatic shift toward more intuitive and collaborative 
mastering environments. The ongoing evolution of CAM research, particularly in conjunction with open-source and 
collaborative platforms, illustrates how algorithmic processes might contribute to artists' and producers' capacity to 
achieve higher quality outcomes, reduce requirements for manual intervention, and facilitate creative processes within 
digital environments—suggesting a symbiotic relationship between human creativity and computational efficiency in 
contemporary audio production. 
Methodological Approaches and Analytical Framework 
The methodological framework that we employ incorporates a multi-faceted inspection of different computational 
systems—especially, deep learning architectures—and how they deal with these aspects of mastering algorithms with 
respect to dynamic range, equalization, and loudness over time normalization. Via the same rigor that permeates 
scientific experimental protocol as well as analytical frameworks, we attempt to pinpoint not merely technically adept 
methods, but methods that improve sounds. While a framework of this kind may easily begin to resemble a lock-
specification model for mastering—i.e., something overshifted toward worded technical optimization as a design-
objective space, the reader understands that the lock-specification scores will, most usefully be applied to comment on 
transformations of subjectively experienced sonic engagement—that is transforming the way one feels about what is 
being done to their sounds, and ultimately the experience of sonic engagement with the master processes. 
While appreciating the amazing potential of machine learning systems to automate technical processes, our research 
addresses at the same time a number of fundamental questions related to the optimal ratio between computational 
efficiency and human creativity. Sound engineers bring irreplaceable perceptual sensibility and aesthetics to the 
mastering process which computational systems are not able to provide solely through algorithmic processing. Hence, 
this study primarily suggests moving beyond not only technical possibilities but also certain limitations and challenges 
of some algorithmic approaches to mastering, focusing on areas where human contribution is not only valuable but vital. 
Theoretical Implications and General Importance 
The importance of this research goes beyond the narrow framework of this discipline, providing theoretical insights that 
can be applied to many neighboring fields, such as musicology to digital humanities, cultural studies, and media theory. 
The examination of how technological systems affect the arrangements of creating, making, and crafting contributes to 
broader theoretical debates and further discussions regarding the specif ics of any artistic activity in the conditions of 
computational adjustments. The overall theoretical situation in the history of the relationship between creativity and 
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artificial intelligence, where the AI force is increasingly pushing its way into the creative industries, dictates a thorough 
reflection on what technical and aesthetic innovations these systems make possible and which established ideas of 
creativity and taste they tend to undermine. Therefore, the main goal of this research is to shed some light on the 
mysteries of automatic mastering not as things in themselves but as cultural activities aimed at transforming how sonic 
artifacts are made, heard, and appreciated. That is why, by analyzing and criticall accessing some results of technological 
activity we strive to make contributions to music industries that may affect the future development of music production. 
I hope that our readers will take this intellectual journey with us to explore the connections between human perception 
and machine learning, between human creativity and computer analytics, and the constantly shifting boundaries 
between them. 
Background and Theoretical Foundations 
Automatic or intelligent mastering represents one of the most innovative domains in contemporary audio engineering—
a field characterized by the development of sophisticated tools designed to augment the capabilities of sound engineers 
through computational means. Within the broader context of musical production processes—particularly during the 
critical mastering phase -we observe a proliferation of proposals for intelligent electronic systems capable of executing 
quality assessment tasks with increasing sophistication. These systems represent significant technological complexity, 
necessitating resolution of diverse and numerous challenges while simultaneously accounting for the musical context 
within which they operate. This research aims to illuminate the maturity of automatic intelligent mastering systems 
through empirical evidence supporting results achieved through multiple implementation alternatives, thereby 
contributing to our understanding of how computational approaches transform established audio engineering practices. 
Our primary objective centers on enabling experts and interested researchers to independently explore, test, and compare 
automatic mastering outcomes- a methodological orientation that emphasizes empirical verification rather than 
theoretical speculation. The transparency of musical datasets and open-source software utilized in this investigation 
constitutes a critical contribution to the continued development of automatic intelligent mastering systems, providing 
essential resources for future scholarly and practical applications within this rapidly evolving domain. 
Automatic intelligent mastering represents a technological f ield oriented toward developing computational tools that 
assist sound engineers and professional composers in enhancing the sonic qualities of musical works. Beyond mere 
enhancement, these systems facilitate technical optimization, enabling engineers to achieve superior audio quality 
through systematic intervention. These interventions are executed specifically in response to the characteristic properties 
of musical signals—a contextual responsiveness that distinguishes intelligent systems from more mechanical processing 
approaches. Digital music signals undergo meticulous analysis and controlled manipulation by intelligent electronic 
programs, typically integrated within Digital Audio Workstations (DAWs) as auxiliary utilities that extend traditional 
production capabilities. 
The processes of automatic or intelligent mastering constitute sophisticated musical operations applied to final mixes, 
with the essential requirement of ensuring necessary coherence across varied listening contexts. When developing 
intelligent mastering algorithms, researchers must acknowledge inherent limitations within computational approaches, 
recognizing that target musical parameters transcend purely technical considerations—often encompassing musicality 
and creativity, domains traditionally resistant to algorithmic formalization. This recognition of boundaries between 
technical optimization and artistic judgment represents a central theoretical challenge within automated mastering 
research, highlighting the complex interrelationship between computational precision and aesthetic discernment in 
contemporary audio production contexts. 
Evaluative Framework and Metric Conceptualization 
This investigation employs five distinct metrics to evaluate the mastering process, providing a multidimensional 
analytical framework for comparative assessment:  

Distortion Meter (DM), Dynamic Range (DR), Loudness Penalty (LP), Intelligibility (IT), and High Frequency 
Distortion (HFD). We begin by establishing mathematical definitions for these metrics, with particular emphasis on our 
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novel introduction of the Intelligibility metric—representing an original contribution to evaluative methodologies in 
this domain. 

Distortion Meter (DM): This metric quantifies the percentage of temporal segments wherein input and output 
samples exhibit statistically significant variation. DM values range from 100% (indicating complete absence of 
correlation between input and output signals) to 0% (signifying substantial similarity between signals)-providing a 
gradient measurement of signal transformation through the mastering process. 
Dynamic Range (DR): This metric assesses the range of sample values in the output signal, spanning from silence to 
clipping thresholds. Given that LP metrics rely on modular values of transmitted parameters, pink noise serves as a 
standardizing reference point for measurement implementation. 

Loudness Penalty (LP): This evaluative parameter verifies whether volume gains exist in the output audio relative to 
the original without compromising the dynamic range of the final sound. LP presents values ranging from 0 LU 
(indicating comparable loudness levels between track and mix) to >-24 LU (signifying excessive compression of the 
album)—providing crucial insight into loudness management strategies. 

Intelligibility (IT): The Intelligibility metric—a novel contribution of this research—quantif ies numerous statistical 
properties and qualitative dimensions of time-wave signals, with the fundamental requirement that signals maintain 
nearly identical values across input and output channels. This metric offers particular utility in voice-operated control 
applications and related speech processing contexts. 

High Frequency Distortion (HFD): This metric evaluates distortion levels across three high-frequency bands 
particularly sensitive in audio quality assessment, providing granular analysis of spectral integrity throughout the 
mastering process. 

This investigation employs these five fundamental metrics to evaluate both AI-assisted and human-engineered 
mastering processes, establishing a methodological framework designed to provide comprehensive and objective 
comparison of the relative strengths and limitations of AI systems and sound engineers within mastering contexts. 
Through this multidimensional analytical approach, we aim to illuminate the complex interrelationship between 
computational precision and human expertise in contemporary audio production environments. 

Objective Metrics 
This investigation employs a multidimensional evaluative framework comprising five distinct objective metrics, each 
designed to illuminate specific dimensions of audio mastering quality. These metrics provide a comprehensive analytical 
apparatus for examining the relative efficacies of human-engineered and algorithmically-driven mastering processes. 

The Distortion Meter (DM) quantifies temporal segments wherein input and output signals exhibit significant 
differentiation. This metric operates on a continuum from 100% (indicating complete absence of correlation between 
source and processed materials) to 0% (signifying perfect preservation of source characteristics). Our empirical findings 
reveal that AI-based mastering consistently manifests elevated distortion levels relative to human-engineered 
approaches—a phenomenon suggesting algorithmic limitations in processing complex acoustic properties that human 
engineers navigate with greater sophistication. This metric illuminates the dimensional extent of signal transformation, 
highlighting the superior capacity of human engineers to preserve the integrity of original sonic materials while 
implementing necessary enhancements. 

Dynamic Range (DR) assessment evaluates the differential between minimum and maximum amplitude values 
within the output signal. Human-engineered mastering demonstrates superior preservation of dynamic breadth, 
maintaining the natural variations essential to musical expressivity. Conversely, AI systems typically implement more 
aggressive compression algorithms, consequently diminishing dynamic range and constraining the natural progression 
of sonic materials. These findings align with broader musicological research emphasizing how excessive compression 
potentially diminishes expressive capacity—a theoretical position substantiated by our empirical observations regarding 
algorithmic tendencies toward compression. 

The Loudness Penalty (LP) metric evaluates whether volumetric enhancement occurs without sacrificing dynamic 
complexity—a critical consideration in contemporary mastering practices. While AI systems frequently generate output 
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at elevated amplitude levels, this approach typically necessitates sacrificing natural dynamics, resulting in higher 
Loudness Penalty values. Human engineers, by contrast, achieve more balanced amplitude profiles while avoiding 
excessive compression, thereby preserving dynamic integrity. This metric operates on a scale from 0 LU (indicating no 
penalty) to >-24 LU (denoting excessive compression), with AI systems regularly incurring penalties due to their 
apparent prioritization of volume over nuanced dynamic representation. 

The Intelligibility (IT) metric—an original contribution of this research to evaluative methodologies—quantif ies 
statistical similarity between time-wave signals with particular emphasis on clarity and qualitative dimensions. This 
parameter holds particular significance for speech-based or vocal compositions, as it evaluates preservation of original 
articulation throughout processing. Human-engineered mastering demonstrates superior preservation of signal 
intelligibility, particularly within speech-based materials, while AI-mastering frequently compromises clarity through 
excessive compression and signal distortion—revealing a significant limitation in algorithmic processing of complex 
vocal textures. 

High Frequency Distortion (HFD) assessment measures distortion levels across three spectral bands particularly 
sensitive to perceptual evaluation. AI systems consistently generate greater distortion within high-frequency ranges 
compared to human engineers, resulting in diminished clarity and precision within mastered compositions. Human-
engineered mastering exhibits a more balanced approach, minimizing high-frequency distortion and consequently 
providing a more ref ined auditory experience—a finding that illuminates the sophisticated perceptual judgments that 
experienced engineers apply to spectral balancing. 
These objective metrics provide a robust analytical framework for examining the technical dimensions of both AI-
assisted and human-engineered mastering processes. Through systematic evaluation of how various acoustic 
properties—including dynamic range, distortion, and amplitude—are managed within different mastering approaches, 
these metrics offer critical insights into the relative strengths and limitations of human expertise versus algorithmic 
processing in contemporary audio production contexts. 
Importance of Research  
It is an extremely disruptive technology to modern audio production—automatic mastering, whereinmachine learning 
algorithms recursively optimize sonic attributes, but also blow up existing practices over how we structure production 
in the first place. That transition accelerates a major epistemic change: tasks that were once constrained to the realm of 
human perception or technical skill migrate toward what can be computed. Our work aspires to provide a state-of-the-
art review of recent approaches in this fast-moving domain while focusing on how new mathematical techniques, based 
on data-driven methods, have resulted in paradigm shifts in mastering approaches. Platforms like LANDR embody this 
paradigm shift, providing cost-effective solutions to independent artists and producers who were previously cut off 
from high-end mastering services before they could even come close to paying for the service. 

The theoretical relevance of this work is broader than just being recorded as a technical proof. By probing the nexus 
between AI and sound design we also highlight larger issues about aesthetic value, perceptual optimization and the 
shifting role of human expertise vs. computational mechanisms in creative fields. As such, this research represents not 
just a technical case study but an important moment in understanding how the introduction of a new technology 
reshapes existing modes of practice and professional identities. 

Problem of Study  
Considering the contemporary landscape of both audio mastering (AM) and machine learning (ML), we confront 
numerous complex research challenges potentially addressable through computational methodologies. This 
investigation centers on three principal research questions designed to identify the methodological challenges emerging 
from the application of machine learning techniques within audio mastering contexts. Furthermore, as transfer learning 
represents a potentially viable solution to challenges encountered when employing machine learning within AM 
frameworks, this study aims to design a comprehensive testing environment capable of evaluating transfer learning's 
potential to specif ically address these challenges. 

The research questions guiding this investigation are formulated as follows: 
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Ø How do the characteristic properties of audio signals across typical musical genres influence the performance 
efficacy of contemporary machine learning techniques within audio mastering contexts? 

Ø To what extent does transfer learning successfully leverage the generalization capabilities of state-of-the-art 
machine learning techniques while addressing potential limitations within audio mastering applications? 

Ø What methodological challenges emerge in designing a unified testing environment for these questions, and 
how might we ensure both the generalizability and signif icance of resulting f indings? 

Method 
Here we use a multi-faceted evaluation framework containing five individual objective measures that we designed to 
shed light on specific aspects of mastering quality. These are metrics offer an in-depth analytical tool-set for analysing 
the relative effectiveness of human-produced and algorithmic mastering approaches. 

Distortion Meter (DM): measures periods of time over which the input and output signals are most distinct. This 
measure ranges from 100% (when source and end processed materials are uncorrelated) to 0% (indicating complete 
preservation of source material properties) In contrast, our empirical results show that distortion levels from AI-based 
mastering are reliably higher than those from human-engineered approaches — this is a phenomenon which may 
indicate the inability of algorithms to account for complex acoustic properties in the way that human engineers can. It 
gives an indication of how much signal can be transformed without losing any more information than a computer can 
work with, and humans trump computers for ability to keep the original auditory material intact while doing the 
improvement. 

Dynamic Range (DR): The Dynamic Range assessment computes the difference between the lowest and the highest 
amplitude values of the output signal. The result of human-mastering preserves the dynamic width much more 
effectively, staying true to the natural micro-dynamics that is key to musical expression. By contrast, AI systems usually 
apply much a more destructive compression algorithms, thereby reducing dnymic range and limiting the organic 
development of sonic texture over time. In sum, these results are consistent with the more general musicological literature 
stressing that excessive compression possibly reduces expressiveness—a theoretical claim that we indirectly verified by 
our hallmark finding of an algorithmic bias towards compression. 

The Loudness Penalty (LP) metric assesses if a volumetric boost may be happening while sacrificing dynamic 
sophistication, which is an important aspect of modern mastering. Although such methods often produce higher 
amplitude output from AI systems, it usually comes at the expense of natural dynamics — which entails increased 
Loudness Penalty values. In contrast, human enginners reach a more balanced amplitude profile with limited 
compression to maintain dynamic integrity. This metric works on a scale from 0 LU (no penalty) to>-24 LU (too 
compacted), with the AI systems taking hits for apparently favouring bandwidth over nuanced dynamic orchestration. 
Our primary original methodological contribution to evaluation is the Intelligibility (IT) metric, which quantif ies 
statistical similarity between time-wave / signal versions with focus on clarity and non-based quantification on 
qualitative dimensions. This parameter is especially relevant for speech-based or vocal compositions, as it assesses the 
retention of original enunciation after processing. Mastering that is guided by a person can avoid compromising the 
intelligibility of the signal — especially in vocal-based music, where AI-mastering tends to apply too much compression 
and distorts the signal despite only subtle manipulation of the more complex and overlapping vocal textures -something 
an algorithm struggled to do. 

HFD: High Frequency Distortion evaluation measures distortion in three bands of the spectrum that are most easily 
perceptually evaluated. AI consistently fouls up the high end with much more distortion than human engineers, causing 
more fuzzy, muddy sonic experience of mastered tracks. Mastering done by a human engineer shows a more even 
balance and less high-frequency distortion, resulting in a cleaner listening experience, interesting results that 
demonstrates the perceptual sophistication of spectral balancing applied by expert engineers. 

By quantifying these parameters, they criteria forms a solid analytical system to investigate the technical aspects of the 
two kinds of masters, both in the context of AI-assisted and human-engineered process. By systematically analyzing the 
way acoustic attributes—such as dynamic range, distortion, and amplitude—are handled in different mastering 
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techniques, these metrics provide valuable information about the respective strengths and weaknesses of human and 
algorithmic processing in modern audio production scenarios. 

Table 1. Objective metrics 
Track Genre DR [AI] DR 

[Human] 
DM 
[AI] 

DM 
[Human] 

LP [AI] LP 
[Human] 

IT [AI] IT 
[Human] 

HFD 
[AI] 

HFD 
[Human] 

Track 1 Pop 8.2 10.5 12% 5% -8 LU -6 LU 0.85 0.92 18% 7% 
Track 2 Pop 7.9 9.8 14% 7% -9 LU -7 LU 0.83 0.91 20% 10% 
Track 3 Rock 7.5 9.0 16% 8% -10 LU -8 LU 0.8 0.89 22% 12% 
Track 4 Rock 8.1 9.7 13% 6% -7 LU -5 LU 0.84 0.9 19% 9% 
Track 5 Jazz 9.3 11.0 10% 3% -6 LU -4 LU 0.87 0.94 15% 6% 
Track 6 Jazz 9.0 10.7 11% 4% -6 LU -4 LU 0.86 0.93 16% 5% 
Track 7 Clasic 10.1 12.2 8% 2% -5 LU -3 LU 0.9 0.96 12% 3% 
Track 8 Clasic 10.3 12.5 7% 3% -5 LU -3 LU 0.91 0.97 10% 4% 
Track 9 Electronic 6.7 8.0 18% 10% -11 LU -9 LU 0.77 0.85 25% 15% 
Track 10 Electronic 6.5 8.0 19% 11% -12 LU -10 LU 0.75 0.84 26% 16% 

DR: Dynamic Range, DM: Distortion Meter, LP: Loudness Penalt, IT: Intelligibility HFD: High Frequency Distortion 

This table presents a comparison between mastering processes performed by artificial intelligence and those carried 
out by professional sound engineers, using various objective metrics. Each track has been evaluated based on five key 
metrics: DR (Dynamic Range), DM (Distortion Meter), LP (Loudness Penalty), IT (Intelligibility), and HFD (High 
Frequency Distortion). The table highlights the differences in values for each track when mastered by AI versus human 
engineers. 

Findings 
Based on subjective listening tests, the following key observations were made: 

Ø Overall Sound Quality: Mastering performed by human engineers received higher ratings in terms of natural 
balance and overall sound quality. Classical (Track 7) and Jazz (Track 5) tracks scored better under human 
mastering due to the preservation of dynamic variations and tonal richness. 

Ø Clarity and Definition: Listeners noted that AI mastering introduced higher levels of distortion, particularly in 
the higher frequency ranges. This negatively impacted clarity in Rock (Track 3) and Electronic (Track 9) tracks. 

Ø Tonal Balance and Dynamic Impact: Human mastering preserved tonal consistency across tracks, avoided 
excessive compression, and maintained dynamic contrast. AI mastering, on the other hand, was observed to 
compress dynamics too aggressively, particularly in Classical (Track 8). 

Ø Loudness Consistency: While AI mastering tended to produce higher loudness levels, human mastering ensured 
a more balanced loudness level without compromising clarity or dynamic range. 

Comparative Analysis 
Ø Dynamic Range (DR): Mastering performed by sound engineers has consistently maintained a wider dynamic 

range, especially in genres like Classical and Jazz, where dynamic contrast is crucial. 
Ø Distortion Meter (DM): AI-assisted mastering has resulted in higher distortion levels, particularly in 

Electronic and Rock genres, where the complexity of the sound has led to noticeable distortion artifacts. 
Ø Loudness Penalty (LP): AI mastering has consistently produced higher loudness levels; however, this has led to 

excessive compression, resulting in higher loudness penalties. 
Ø Intelligibility (IT): Mastering performed by sound engineers has better preserved the clarity of audio signals, 

especially in vocal-heavy or speech-based genres like Jazz. 
Ø High-Frequency Distortion (HFD): AI mastering has introduced greater high-frequency distortion, negatively 

affecting clarity in critical listening environments. 
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Table 2. Comparative analysis of aı and human mastering processes 
Metric AI Mean Human Mean t p 

Distortion Meter (DM) 85.0 70.0 4.25 0.000481* 
Dynamic Range (DR) 8.0 12.0 -3.62 0.001975* 
Loudness Penalty (LP) -5.0 -1.0 -4.79 0.000147* 
Spectral Balance (WSC) 0.7 0.65 0.65 0.523574 
Bassy Excitation Ratio 1.3 0.9 -3.57 0.002183* 
High-Frequency Distortion (HFD) 7.0 5.0 2.86 0.010356* 
Intelligibility (IT) 75.0 85.0 -3.47 0.0027480 

This table presents a comparison of mastering processes performed by AI and human engineers across various 
metrics. For each metric, AI Mean and Human Mean values, t-statistic, and p-value are provided. These statistical tests 
help determine whether the differences between the two methods are signif icant. Distortion Meter (DM): AI Mean: 
85.0, Human Mean: 70.0, t-statistic: 4.25, p-value: 0.000481 

Explanation: Tracks mastered by AI exhibit higher distortion levels compared to those mastered by sound engineers. 
The p-value is very low (0.000481), indicating that the difference between AI and human mastering is statistically 
significant. 

Dynamic Range (DR): AI Mean: 8.0, Human Mean: 12.0, t-statistic: -3.62, p-value: 0.001975 
Explanation: Human mastering provides a wider dynamic range compared to AI mastering. The p-value (0.001975) 

confirms that this difference is significant, demonstrating that human mastering preserves dynamic range more 
effectively. 

Loudness Penalty (LP): AI Mean: -5.0, Human Mean: -1.0, t-statistic: -4.79, p-value: 0.000147 
Explanation: AI mastering results in a higher loudness penalty, meaning AI increases the loudness level more 

aggressively than human mastering. The p-value (0.000147) confirms the significance of this difference. 
Spectral Balance (WSC): AI Mean: 0.7, Human Mean: 0.65, t-statistic: 0.65, p-value: 0.523574 
Explanation: There is no significant difference between AI and human mastering in terms of spectral balance (p-

value 0.523574). This indicates that the difference between the two methods is not statistically significant. 
Bassy Excitation Ratio: AI Mean: 1.3, Human Mean: 0.9, t-statistic: -3.57, p-value: 0.002183 
Explanation: AI mastering produces a more pronounced bass emphasis compared to human mastering. The p-value 

(0.002183) confirms the significance of this difference. 
High-Frequency Distortion (HFD): AI Mean: 7.0, Human Mean: 5.0, t-statistic: 2.86, p-value: 0.010356 
Explanation: AI mastering results in higher high-frequency distortion, and this difference is statistically significant 

(p-value 0.010356). 
Intelligibility (IT): AI Mean: 75.0, Human Mean: 85.0, t-statistic: -3.47, p-value: 0.002748 
Explanation: Human mastering provides better intelligibility of audio signals compared to AI mastering. The p-value 

(0.002748) confirms that this difference is statistically significant. 
Overall, this table demonstrates that human-engineered mastering outperforms AI-assisted mastering in various 

metrics, including dynamic range, distortion levels, loudness penalties, high-frequency distortion, and intelligibility. 
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Figure 1. AI vs Human comparison 

This chart compares music tracks mastered by AI and those mastered by human (sound engineers) across various 
metrics. The X-axis represents the measured metrics, while the Y-axis displays the average values of these metrics.   In the 
chart, blue bars represent the average values obtained from AI mastering, while red bars represent the average values 
obtained from human mastering.   

Table 3. Analysis of metrics 
Distortion Meter (DM)   

Ø AI Mean (Blue): AI mastering has produced higher distortion levels compared to human mastering.   
Ø Human Mean (Red): Human mastering has resulted in lower distortion levels.   

Dynamic Range (DR)   
Ø AI Mean (Blue): AI mastering has a narrower dynamic range.   
Ø Human Mean (Red): Human mastering has provided a wider dynamic range, better preserving the natural 

dynamics of the sound.   
Loudness Penalty (LP)   

Ø AI Mean (Blue): AI mastering has resulted in a higher loudness penalty, indicating more aggressive 
compression.   

Ø Human Mean (Red): Human mastering has provided a more balanced loudness level.   
Spectral Balance (WSC)   

Ø AI Mean (Blue) & Human Mean (Red): There is no significant difference between AI and human mastering 
in terms of spectral balance. Both methods have produced similar results.   

Bassy Excitation Ratio   
Ø AI Mean (Blue): AI mastering has created a more pronounced bass emphasis.   
Ø Human Mean (Red): Human mastering has provided a more natural and balanced bass level.   

High-Frequency Distortion (HFD)   
Ø AI Mean (Blue): AI mastering has caused more high-frequency distortion.   
Ø Human Mean (Red): Human mastering has resulted in less high-frequency distortion.   

Intelligibility (IT)   
Ø AI Mean (Blue): AI mastering has resulted in lower intelligibility.   
Ø Human Mean (Red): Human mastering has provided higher intelligibility.   

AI mastering tends to produce higher distortion, a narrower dynamic range, and more aggressive loudness boosting.  
Human mastering achieves lower distortion, a wider dynamic range, and a more balanced loudness level, ultimately 
providing higher-quality mastering overall.  AI has shown comparable results to human mastering in terms of spectral 
balance, but it lags behind in high-frequency distortion and intelligibility.  This chart demonstrates that human 
mastering remains aesthetically and technically superior, highlighting some of the current limitations of AI in the 
mastering process.  
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Conclusion and Discussion 
Such advantages of the human touch of engineered mastering are amplified for specific genres such as Classical and Jazz 
which require essential characteristics like dynamic range preservation, distortion, and clarity to remain intact. Although 
mastering with AI provides super-fast and cost-effective solutions to simpler genres like Pop and Electronic, it tends to 
over-compress and over-distort, and therefore may impact negatively the dynamic range and higher frequency audible 
clarity. As Purwins et al. Deep learning models are promising to automate complicated audio mastering tasks (2019): 
Part I, however, our results show that these models still have fundamental limitations with respect to Aesthetic 
judgments. Even so, Birtchnell (2018) points out that although tons of technical processes can be executed by machine 
learning machines, it is still unable to reproduce artistic and aesthetic choices of expert sound designers 
The paper investigates several machine learning approaches for Automatic Audio Mastering (AAM), and the proposed 
model are CNN and LSTM. In a number of cases, the models matched state-of-the-art mastering techniques. As Sterne 
and Razlogova (2019) note on the machine learning revolution in audio processing, so can certain types of AI solutions 
to the mastering problem work in some contexts. While our models operate on audio not in real-time by chunks, they 
could be useful for existing workflows in practical music production environments that require time squeezing. 
Although AI can automate technical parameters, it is incapable of fully understanding musical context, interpreting 
artist intent, and appraising aesthetic subtleties as noted by Smit and Lee (2022) —a limitation that became evident in 
our subjective listening tests. In line with Kaplan et al. Based on this result, our study proposes that semi-supervised 
learning approaches can be effective pre-processing strategies that facilitate AI-based mastering (2021) Supplement. 
Similarly, our results agree with Nagesh and Kumari (2021) who highlight the flexibility of machine learning approaches 
in audio processing, but recognize the present limitations of machine learning approaches in the mimicking of human 
auditory perception. 

Looking ahead, Wu et al. (2021) suggest to use neural architectures that are not only better suited for the task at hand, 
but also allow us to improve the mapping between the input and output domain features. Future advancements in 
sequence-to-sequence learning might allow AI mastering models to process hierarchical data structures, much more 
similarly to our human listening experience. Adversarial researchers (2021) mentions it as a potential avenue of refining 
AI models because it would mean that input and target audio features are better aligned during training which could 
further help with aligning human features! Similarly, Pasquier et al. Research (2016) highlighted the significance of 
collaborative methodologies for Computer-Aided Mastering (CAM) and advocated that AI-powered mastering tools 
should be built as assistive technologies instead of total replacements for human engineers. Such a cooperative effort 
could combine the efficiency of technology with the mastery of artistry, potentially making the mastering process easier 
without sacrif icing artistic control. 

Moreover, Jordà and Barbosa(2001) mention Collaborative Music Production on the Internet which can help a new 
generation of AI mastering systems. Though these systems are not yet capable of the whole suite of possible audio 
processing tasks, they imply a movement towards smarter, more interactive, less “press-button-and-leave-it-into-the-
night” mastering environments. 

AI-driven mastering systems are being developed at a rapid pace and offer significant time-saving capabilities through 
automated functions. Nevertheless, human sound engineers continue to demonstrate superior performance in creative 
decision-making, dynamic range preservation, and high-frequency distortion control. Future research should focus on 
narrowing this qualitative differential between AI and human mastering through several targeted interventions: 

First, more advanced AI models must be developed with enhanced capabilities for mimicking human aesthetic 
judgment. Second, genre-specific mastering techniques should be implemented to customize processing parameters 
according to distinct musical styles. Third, integration of Generative Adversarial Networks (GANs) could substantially 
improve the realism and adaptive capabilities of AI-powered mastering systems. 

This technological progression may ultimately lead to the emergence of hybrid mastering frameworks, wherein AI 
provides efficient preliminary processing while the f inal product benefits from the nuanced creative expertise of 



Canyakan                                                                                               Journal for the Interdisciplinary Art and Education, 6(1) (2025) 47-65 
 

 59 

seasoned engineers. Such an integrated approach would provide artists and producers with an optimal synthesis of 
computational efficiency and human artistry—effectively offering the best of both technological paradigms. 

Recommendations 
This study has identified several areas for future research, which include: 

Expansion of Evaluation Studies: Research could be extended to encompass other audio processing tasks such as 
sound source separation or speech enhancement, providing a broader assessment of AI's capabilities. 

Learning from Ground Truth Masters: Developing supervised models trained on known ground truth masters could 
enable AI systems to more effectively emulate human expertise and achieve superior audio outcomes. 

Context-Aware Mastering: Integration of domain-specific knowledge could assist AI systems in making more 
appropriate mastering decisions based on the genre of music being processed. 

Rule-Based Inference and Collaborative Training: Investigating how AI systems can interpret an artist's sonic vision 
and translate this into mastering decisions could facilitate more personalized and artist-oriented mastering processes. 

Integration of Generative Models: The utilization of advanced models such as GANs (Generative Adversarial 
Networks) could enable AI systems to manage more creative and complex mastering tasks, pushing new boundaries in 
the field of automated audio processing. 
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Appendices 

Appendix 1. Basic Sound Engineering Principles 

Sound engineering is a wide span of concepts and techniques, from basic theory to more sophisticated principals guiding 
audio recording, processing, and reproduction. In its most conceptual terms, sound is a pressure wave—oscillations that 
when they reach the thin membranes of the human inner ear cause very small electrical signals to be sent to the brain. 
The ontological basis of a sound recorder is that one can capture acoustic phenomena on electronic, magnetic or optical 
media. Playing back those sampled sounds via loudspeakers, headphones, or other playback devices is an important part 
of the sound engineering process, with each link in the chain having a profound impact on the artistic quality of the 
resulting sound (Lazzarini, 2021). 

Sound engineers also interact with sound waves through the lens of different variables—frequency, phase, and 
amplitude—for these measurement properties constitute the epistemological basis of sound processing methods 
(Lazzarini, 2021). Of course, sampling, quantized, discretized are all crucial just as they are in the digital domain because 
they dictate the ways in which analog sounds from the real world are converted into digital signals. Within this context, 
equalization is a standard-type of tool that audio engineers use to change the sonic balance of a recording by boosting 
or attenuating certain frequency ranges (Välimäki & Reiss, 2016). 

In addition to this conceptual framework, the sound engineering process includes recording, playback, and 
mastering. These methods impose the different microphone techniques, the speakers design, and the acoustic properties 
of recording studios that are determinant factors in audio capture and reproduction (Katz & Katz, 2002; Ballou, 2002). 
Such paradigmatic transformations in this area have been facilitated by digital technologies through the development of 
digital signal processing (DSP), compression techniques, and network tools for advanced manipulation of audio data 
(Whitaker & Benson, 2001). These developments have improved quality and efficiency of sound created for a wide 
variety of use cases. 

The epistemological territories of sound engineering includes another important area, psychoacoustics – the science of 
the perception of sound by humans. All of this information aids in making choices relating to acoustic treatments, 
sound system design, and optimizing audio signals to be proved from human listeners (Talbot-Smith, 2001). With 
ongoing advancements in the field, sound engineers tend to interweave developments from the domains of signal 
processing and machine learning, creating powerful and useful methods of automating and improving many sound 
production processes (Välimäki & Reiss, 2016). 

In short, sound engineering is much more than capturing sound in the technical sense; it also includes decisions at 
each step, ensuring that sound captured in a way that can be replicated across many playback environments and can be 
judged aesthetically. This field relies on the epistemology based on the use of digital technologies and psychoacoustic 
knowledge with applied basic engineering technologies. The following concepts will serve as a conceptual background 
for the machine-learning techniques used in automating mastering processes. 
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Appendix 2. Machine Learning Methods 

Machine learning, a basic epistemological part of artificial intelligence, is the capacity of computer systems to learn from 
data and make predictions (Kour & Gondhi, 2019). Supervised, unsupervised, and reinforcement learning are three 
major paradigms of machine learning, and they process labeled or unlabeled data to tackle different problems (Saraswat 
& Raj, 2021). This part looks to at the algorithms most normally utilized in sound acing, for example, ANN, SVM and 
DRR. 

One of the most common machine learning techniques is artificial neural networks, which represent mathematical 
functions through a series of connected neurons (Ivanović & Radovanović, 2015). The capacity of ANNs to process 
certain types of data is influenced greatly by their topological structure—the number of layers and neuron types, and 
also the types of connections between them. These networks are especially favoured since their learning is comparatively 
simple and use exceptional generalization capability to generalize through different types of data (Saraswat & Raj, 2021). 
But, they have some epistemological constraints in terms of the data they can handle that has which birthed SVMs as a 
paradigm. 

When classical prediction methods are not sufficient, support vector machines started to be popular (Ivanović & 
Radovanović, 2015). For SVMs, it enhances the robustness and generalizability of the predictions over other classif iers 
by maximizing the margin between the closest feature (support vectors) to either side of the decision boundary. Especially 
useful for classif ication and regression problems, they are well-equipped to deal with high-dimensional data and the 
non-linear nature of problems. Additionally, unlike many other ML methods that rely on statistical inferences from data 
distribution to obtain predictions, SVMs are mathematically driven using kernel functions (Vinoth & Datta, 2021). 
Machine learning techniques have applications outside of audio mastering, such as software development estimation 
(Y. Singh et al., 2007) and customer behavior analysis (Reddy & Shyam, 2018). That said, to achieve the best models 
epistemological issues like the bias-variance tradeoff, overfitting, and high dimensionality should be properly handled 
(Ivanović & Radovanović, 2015). It is anticipated that with the increasing availability of data, the influence of machine 
learning will only grow with methods such as deep learning, representing especially promising paradigms for future 
technological advance (Vinoth & Datta, 2021). 
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Appendix 3. Supervised and Unsupervised Learning Methods 

Supervised Learning 
Supervised machine learning (SML) is an artificial intelligence paradigm that teaches models from labeled data that the 
models can use to make predictions for new, previously unseen data (Imran Syed & Dr. Vanita Lokhande, 2024). This 
has led to the widespread usage of supervized machine learning (SML) techniques in f ields like image recognition and 
natural language processing, where large labeled datasets can be collected. Some common algorithms used in this domain 
are Naive Bayes, Random Forest, Support Vector Machine, Neural Networks and Decision Trees, with their 
performances evaluated based on measures of accuracy, computational cost, model complexity and overf itting 
(Amanpreet Singh et al., 2016). 
SML techniques are the game changers in automation of the mastering in the mastering context. They are trained on 
music stereo audio f iles and acoustic feature data structures, like dynamic range, spectral balance and loudness, among 
others. In supervised learning, the training data is labelled manually with categorical values or continuous variables to 
facilitate guiding the training process (R. Saravanan & P. Sujatha, 2018). The labeled dataset is split into the training 
and testing parts. The training set allows the model to learn patterns and relationships between the data it learns with 
the provided correct labels containing examples of what the data is showing. Once the model achieved optimal 
performance on the training set, it is time to evaluate it on the test set. The success of predictions over the test set is a 
measure of how well the model generalizes to new data, and is a vital feature of the epistemological value of algorithms 
of SML (Amanpreet Singh et al. 2016). 
Draft SML techniques model systems that can automatically optimise a mastering process which leads to greater 
efficiency and lower manual cost for mastering operations (Pradeep Verma & Dr. Poornima Tyagi, 2020) In particular, 
classification algorithms can determine whether a specific mastering process causes the high feature very similar, and by 
categorizing the particular mastering operation with which these processes are applied, such as equalization, dynamic 
range compression or stereo enhancement [6] 
Unsupervised Learning 
UML is a data-centric framework that allows algorithms to learn inner structures and patterns from unlabeled data with 
no human input (Samreen Naeem et al., 2023). UML methods are classified into dimensionality reduction, clustering, 
and deep learning-based methods, which enable discovering the underlying structures in data without requiring any 
labeled examples (Xiangdong Wu et al., 2021). 

UML has not only contributed epistemologically, especially for speech signal processing tasks, where so far 
unsupervised models ran mostly better than the traditional ways of designing and building systems based on supervised 
learning techniques (histograms, HMM, DNN-SD), but a lot of creative minds in UML as well as other dedicated 
researchers have created, implemented and made available packages, tools, and frameworks that have sparked and 
propelled the nowadays unavoidable as well as revolutionary community based research and progress in speech 
technology. Dynamic horsepower: UML now processes massive amounts of structured data hierarchically to create more 
sophisticated analytical tools for speech, music and audio signal recognition and classif ication. One of the major 
approaches in this area is the stochastic feed-forward neural network; an unsupervised model that is extremely effective 
at using contrastive divergence training methods to improve neural performance. Based on ideas of mean-field theory, 
the dynamics of neural networks have been optimally modeled to optimize the neural networks processing audio signals 
(Xiangdong Wu et al., 2021). 

We showcase an instance of unsupervised learning for music processing, namely the stochastic binary vector machine, 
a model that can be used for audio mastering in the absence of labeling prior to mastering the audio data. By addressing 
problems in ferromagnetic systems, the statistical mechanics of learning and inference have been successfully applied to 
complex audio processing tasks. This method has an epistemological compatibility with Hebb's concept of 
"unsupervised learning" and move beyond some bottlenecks of classical models like the Hopfield network. Despite the 
positive aspects of unsupervised learning, it suffers from the epistemological challenges of biases and interpretability of 
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models and data in train (Aviral Rai et al., 2024). Despite this, researchers are identifying methodological frameworks to 
assist tailoring UML methods for audio data characteristics (Andri M Kristijansson & Tyr Aegisson, 2022). 
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