

Konuralp Journal of Mathematics

A Generalization of The Taxicab Metric And Related Isometries

Harun Barış Çolakoğlu¹

¹Akdeniz University, Vocational School of Technical Sciences, Department of Computer Technologies, 07070, Pınarbaşı, Antalya, TÜRKİYE. **Corresponding author E-mail: hbcolakoglu@akdeniz.edu.tr*

Abstract

In this paper, we define a family of distance functions in the real plane, *m*-generalized taxicab distance function, which includes the generalized taxicab distance and so the taxicab distance functions as special cases, and we show that the *m*-generalized taxicab distance function determines a metric. Then we give some properties of the *m*-generalized taxicab metric, and determine Euclidean isometries that preserve the *m*-generalized taxicab metric.

Keywords: metric, taxicab distance, m-generalized taxicab distance, isometry. 2010 Mathematics Subject Classification: 51K05, 51K99, 51N99.

1. Introduction

The *taxicab metric* was given in a family of metrics of the real plane by Minkowski. Using this metric, taxicab geometry was introduced by Menger [\[5\]](#page-4-0), and developed by Krause [\[4\]](#page-4-1). In the taxicab geometry, circles are squares in which each diagonal is parallel to a coordinate axis. In [\[8\]](#page-4-2), Lawrance J. Wallen altered the taxicab metric by redefining in order to get rid of imperative symmetry, and called it *the* (*slightly*) *generalized taxicab metric*. In the generalized taxicab geometry, circles are rhombuses in which each diagonal is also parallel to a coordinate axis.

In this work, we define a new distance function in the real plane \mathbb{R}^2 , *m*-generalized taxicab distance function $d_{T_g(m)}$, which includes the generalized taxicab distance and so the taxicab distance functions as special cases, and we show that the *m*-generalized taxicab distance function determines a metric in \mathbb{R}^2 . We see that the *m*-generalized taxicab metric can have any rhombus as a circle, instead of rhombuses with diagonal parallel to a coordinate axis. Then we give some properties of the *m*-generalized taxicab metric, and determine Euclidean isometries of the plane which also preserve *m*-generalized taxicab metric. We also see that there are transformations which preserve the *m*-generalized taxicab distance, but not preserve the Euclidean distance for some case.

2. The *m*-generalized taxicab distance in \mathbb{R}^2

The *m*-generalized taxicab distance and the *m*-taxicab distance between two points in the Cartesian plane are defined as follows:

Definition 2.1. Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points in \mathbb{R}^2 . For any real number *m* and positive real numbers *a* and *b*, the function $d_{T_g(m)}:\mathbb{R}^2\times\mathbb{R}^2\to[0,\infty)$ defined by

$$
d_{T_g(m)}(P_1,P_2) = (a((x_1-x_2)+m(y_1-y_2)) + b(m(x_1-x_2)-(y_1-y_2)))/(1+m^2)^{1/2}
$$
\n(2.1)

is called the *m*-*generalized taxicab distance function* in \mathbb{R}^2 , and the real number $d_{T_g(m)}(P_1, P_2)$ is called the *m*-*generalized taxicab distance* between points P_1 and P_2 . As a special case, if $a = b = 1$, then the function $d_{T(m)} : \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ defined by

$$
d_{T(m)}(P_1, P_2) = (|(x_1 - x_2) + m(y_1 - y_2)| + |m(x_1 - x_2) - (y_1 - y_2)|)/((1 + m^2)^{1/2}
$$
\n(2.2)

is called the *m*-*taxicab distance function* in \mathbb{R}^2 , and the real number $d_{T(m)}(P_1, P_2)$ is called the *m*-*taxicab distance* between points P_1 and P_2 .

Remark 1. We are quite familiar to the notation of d_T for the taxicab distance function. In [\[2\]](#page-4-3) and [\[3\]](#page-4-4), d_{T_g} was used to state the generalized taxicab distance. Here, we choose the notation $d_{T_g(m)}$ to state the *m*-generalized taxicab distance function, and $d_{T(m)}$ to state the *m*-taxicab distance function for compatibility. Clearly, there are infinitely many different distance functions in the family of distance functions $d_{T_g(m)}$. depending on values *a*, *b* and *m*. One can find the definition of $d_{T_g(m)}$ not to be well-defined since the *m*-generalized taxicab distance between two points can change also according to values *a* and *b*. To remove this confusion, we have to use values *a* and *b* in the name of the distance, just as we use *m*. This can be done easily; for example by using the notation $m(a, b)$ instead of *m* in phrases $d_{T_g(m)}$ and *m*-generalized taxicab distance. But we keep on using *m* for the sake of shortness, supposing values *a* and *b* are initially determined and fixed, unless otherwise stated.

Remark 2. In \mathbb{R}^2 , the *m*-generalized taxicab distance function involves the generalized taxicab distance and so the taxicab distance functions as special cases: For points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, if $m = 0$ in $d_{T_g(m)}$, then

$$
d_{T_g(0)}(P_1, P_2) = d_{T_g}(P_1, P_2) = a|x_1 - x_2| + b|y_1 - y_2| \tag{2.3}
$$

which is the generalized taxicab distance function d_{T_g} . And if $a = b = 1$ and $m = 0$ in $d_{T_g(m)}$, or if $m = 0$ in $d_{T(m)}$, then

$$
d_{T(0)}(P_1, P_2) = d_T(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2| \tag{2.4}
$$

which is the well-known taxicab distance function d_T . In addition, if $a = b$, then $d_{T_g(m)}$ is equal to the *m-generalized absolute value distance* d_m defined in [\[1\]](#page-4-5). But, if $a \neq b$, then we will see in Section 2 that the *m*-generalized taxicab circle is a *rhombus*, while the *m*-generalized absolute value circle is an *octagon*.

Henceforth, we use equations $a' = a/(1+m^2)^{1/2}$ and $b' = b/(1+m^2)^{1/2}$ to shorten phrases. The following proposition shows that the *m*-generalized taxicab distance function satisfies the metric properties.

Proposition 2.1. The m-generalized taxicab distance function determines a metric in \mathbb{R}^2 .

Proof. Clearly, $d_{T_g(m)}(P_1, P_2) = 0$ if and only if $P_1 = P_2$, and $d_{T_g(m)}(P_1, P_2) = d_{T_g(m)}(P_2, P_1)$ for all P_1 and P_2 in \mathbb{R}^2 . So, we only will show that $d_{T_g(m)}$ satisfies the triangle inequality, that is, $d_{T_g(m)}(P_1, P_2) \leq d_{T_g(m)}(P_1, P_3) + d_{T_g(m)}(P_3, P_2)$ for points $P_i = (x_i, y_i), i = 1, 2, 3$ in \mathbb{R}^2 . This fact can be proven as follows:

 $d_{T_g(m)}(P_1, P_2) = a' |(x_1 - x_2) + m(y_1 - y_2)| + b' |m(x_1 - x_2) - (y_1 - y_2)|$ $= a' |(x_1 - x_3) + m(y_1 - y_3) + (x_3 - x_2) + m(y_3 - y_2)| +$ b' |*m*(*x*₁ − *x*₃) − (*y*₁ − *y*₃) + *m*(*x*₃ − *x*₂) − (*y*₃ − *y*₂)| $\leq a' |(x_1 - x_3) + m(y_1 - y_3)| + b' |m(x_1 - x_3) - (y_1 - y_3)| +$ a' |(*x*₃ − *x*₂) + *m*(*y*₃ − *y*₂)|+*b*['] |*m*(*x*₃ − *x*₂) − (*y*₃ − *y*₂)| $= d_{T_g(m)}(P_1, P_3) + d_{T_g(m)}(P_3, P_1).$

3. Some properties of $d_{T_{\sigma}(m)}$

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be two points in the Cartesian coordinate plane. Let l_{P_1} be the line through P_1 with slope m, and let l_{P_2} be the line through P_2 and perpendicular to the line l_{P_1} . Since the Euclidean distances from P_1 to l_{P_2} and from P_2 to l_{P_1} are $d_E(P_1, l_{P_2}) =$ $|(x_1-x_2)+m(y_1-y_2)|/(1+m^2)^{1/2}$ and $d_E(P_2, l_{P_1}) = |m(x_1-x_2) - (y_1-y_2)|/(1+m^2)^{1/2}$, the *m*-generalized taxicab distance between points P_1 and P_2 can be given by

$$
d_{T_g(m)}(P_1, P_2) = a d_E(P_1, I_{P_2}) + b d_E(P_2, I_{P_1}).
$$
\n(3.1)

If $a \ge b$, let $\frac{b}{a} = (\sec \alpha - \tan \alpha)$ for $\alpha \in [0, \pi/2)$; and if $b \ge a$, let $\frac{a}{b} = (\sec \beta - \tan \beta)$ for $\beta \in [0, \pi/2)$. Then we get the fact that if $a = b$, then $\alpha = \beta = 0$ and the *m*-generalized taxicab distance between points P_1 and P_2 is constant *a* multiple of the Euclidean length of one of the shortest paths from P_1 to P_2 composed of line segments, each parallel to one of lines with slope *m* or $-1/m$; if $a \ge b$, then the *m*-generalized taxicab distance between points P_1 and P_2 is constant *a* multiple of the Euclidean length of one of the shortest paths from *P*₁ to *P*₂ composed of line segments, each parallel to one of lines with slope *m*, $-1/m$, $[m(a^2 - b^2) + 2ab]/[(a^2 - b^2) - 2abm]$ or $[m(a^2-b^2)-2ab]/[(a^2-b^2)+2abm]$; if $b \ge a$, then the *m*-generalized taxicab distance between points P_1 and P_2 is constant *b* multiple of the Euclidean length of one of the shortest paths from *P*¹ to *P*² composed of line segments, each parallel to one of lines with slope *m*, −1/*m*, $[2abm - (a^2 - b^2)]/[m(a^2 - b^2) + 2ab]$ or $[(a^2 - b^2) + 2abm]/[2ab - m(a^2 - b^2)]$ (see Figure 1). Although there exist, in general, infinitely many shortest paths between points P_1 and P_2 , we prefer to use the ones in Figure 1, and call each of them a *basic way*. Also we call each of lines $mx - y = 0$ and $x + my = 0$ an *axis of direction*.

 \Box

Figure 1: The basic ways between points P_1 and P_2 with respect to the *m*-generalized taxicab metric.

Now, we examine the minimum distance set of points P_1 and P_2 in $\mathbb{R}^2_{T_g(m)}$. The *minimum distance set* of P_1 and P_2 , $M(P_1, P_2)$, is defined by

$$
M(P_1, P_2) = \left\{ X : d_{T_g(m)}(P_1, X) + d_{T_g(m)}(X, P_2) = d_{T_g(m)}(P_1, P_2) \right\}.
$$
\n(3.2)

In Euclidean plane, the minimum distance set of P_1 and P_2 is the line segment joining points P_1 and P_2 . It is not difficult to see that the minimum distance set of points *P*¹ and *P*² with respect to the *m*-generalized taxicab metric is generally a rectangular region (or a line segment) with diagonal *P*₁*P*₂ bounded by the lines through *P*₁ and *P*₂ being parallel to an axis of direction, which are $mx - y - mx_i + y_i = 0$ and $x + my - x_i - my_i = 0$ for $i \in \{1, 2\}$, as shown in Figure 2.

Figure 2: Minimum distance set of P_1 and P_2 with respect to the *m*-generalized taxicab metric.

The following two propositions follow directly from Equation (3.1) which is the geometric interpretation of the *m*-generalized taxicab distance.

Proposition 3.1. Let P_1 , P_2 and P_3 be three points in \mathbb{R}^2 such that $P_3 \in M(P_1, P_2)$. Then, $d_{T_g(m)}(P_1, P_3) \leq d_{T_g(m)}(P_1, P_2)$. In addition, $d_{T_g(m)}(P_1, P_3) = d_{T_g(m)}(P_1, P_2)$ *if and only if* $P_3 = P_2$ *.*

Proposition 3.2. Let P_1 , P_2 , P_3 and P_4 be four points in \mathbb{R}^2 . For $a = b$, if $M(P_1, P_2)$ and $M(P_3, P_4)$ are congruent, then $d_{T_g(m)}(P_1, P_2)$ $d_{T_g(m)}(P_3,P_4)$. For $a\neq b$, if $M(P_1,P_2)$ and $M(P_3,P_4)$ are congruent and equal sides of $M(P_1,P_2)$ and $M(P_3,P_4)$ are parallel, then $d_{T_g(m)}(P_1, P_2) = d_{T_g(m)}(P_3, P_4).$

Let us denote the real plane endowed with the *m*-generalized taxicab metric by $\mathbb{R}^2_{T_g(m)}$. Then *m*-generalized taxicab unit circle in $\mathbb{R}^2_{T_g(m)}$ is the set of points (x, y) satisfying the equation

$$
(a|x+my|+b|mx-y|)/(1+m^2)^{1/2}=1.
$$
\n(3.3)

One can see by calculation that *m*-generalized taxicab unit circle is a rhombus with a diagonal having slope of *m*, and with vertices $A_1 = \left(\frac{1}{ak}, \frac{m}{ak}\right), A_2 = \left(\frac{-m}{bk}, \frac{1}{bk}\right), A_3 = \left(\frac{-1}{ak}, \frac{-m}{ak}\right)$ and $A_4 = \left(\frac{m}{bk}, \frac{-1}{bk}\right)$, where $k = (1 + m^2)^{1/2}$ (see Figure 3). If $a = b$, then *m*-generalized taxicab unit circle is a square with vertices A_1 , A_2 , A_3 and A_4 . In $\mathbb{R}^2_{T_g(m)}$, it is easy to see that the ratio of the circumference of an *m*-generalized taxicab circle to its diameter is $\pi_{T_a(m)} = 4$.

Figure 3: The *m*-generalized taxicab unit circle for $m = 1/4$, $a = 1/5$, $b = 1/3$.

Thus, the *m*-generalized taxicab metric has rhombuses with diagonal having slope of *m*, as circles, instead of rhombuses with diagonal parallel to a coordinate axis, and the *m*-taxicab metric has squares with diagonal having slope of *m*, as circles, instead of squares with diagonal parallel to a coordinate axis.

The following proposition gives an equation which relates the Euclidean distance to the *m*-generalized taxicab distance between two points in the Cartesian coordinate plane:

Proposition 3.3. *For any two points P*¹ *and P*² *in* R 2 *that do not lie on a vertical line, if n is the slope of the line through P*¹ *and P*2*, then*

$$
d_E(P_1, P_2) = \mu(n)d_{T_g(m)}(P_1, P_2)
$$
\n(3.4)

where $\mu(n) = (1+n^2)^{1/2}/(a' |1+mn|+b' |m-n|)$ *. If P*₁ and *P*₂ lie on a vertical line, then

$$
d_E(P_1, P_2) = [1/(a' |m| + b')] d_{T_g(m)}(P_1, P_2). \tag{3.5}
$$

Proof. Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ such that $x_1 \neq x_2$. Then $n = (y_2 - y_1)/(x_2 - x_1)$. Clearly, $d_{T_g(m)}(P_1, P_2) = |x_1 - x_2|(a'|1 + mn| + b')$ b' $|m-n|$) and $d_E(P_1, P_2) = |x_1 - x_2|(1+n^2)^{1/2}$, thus we have $d_E(P_1, P_2) = \mu(n)d_{T_g(m)}(P_1, P_2)$, where $\mu(n) = (1+n^2)^{1/2}/(a' |1+mn| + b' |m-n|)$. If $x_1 = x_2$, then $d_{T_g(m)}(P_1, P_2) = |x_1 - x_2| (a' |m| + b')$ and we have Equation (3.5).

The following two corollaries follow directly from Proposition 3.2 or Proposition 3.3:

Corollary 3.1. Let P_1 , P_2 , P_3 and P_4 be four points in \mathbb{R}^2 . If lines P_1P_2 and P_3P_4 are coincident or parallel or symmetric about a line *parallel to an axis of direction; in addition* P_1P_2 *and* P_3P_4 *are perpendicular to each other for* $a = b$ *, then*

$$
d_{T_g(m)}(P_1, P_2) = d_{T_g(m)}(P_3, P_4) \text{ if and only if } d_E(P_1, P_2) = d_E(P_3, P_4). \tag{3.6}
$$

Corollary 3.2. If P_1 , P_2 and X are three distinct collinear points in \mathbb{R}^2 , then

$$
d_{T_g(m)}(P_1, X)/d_{T_g(m)}(X, P_2) = d_E(P_1, X)/d_E(X, P_2). \tag{3.7}
$$

As a consequence of Corollary 3.2, it is clear that Thales, Menelaus, and Ceva theorems are true in $\mathbb{R}^2_{T_g(m)}$.

4. Isometries of \mathbb{R}^2_7 *Tg*(*m*)

Notice that by Proposition 3.2 and Corollary 3.1, the *m*-generalized taxicab distance between two points is invariant under all translations. In addition, the *m*-generalized taxicab distance between two points is invariant under rotation of π radian around a point for $a \neq b$; and rotations of $\pi/2$, π and $3\pi/2$ radians around a point for $a = b$. Besides, if $a \neq b$, then the *m*-generalized taxicab distance between two points is invariant under the reflections in lines parallel to $mx - y = 0$ or $x + my = 0$; if $a = b$, then the *m*-generalized taxicab distance between two points is invariant under reflections in lines parallel to $mx - y = 0$, $x + my = 0$, $(1 + m)x - (1 - m)y = 0$, or $(1 - m)x + (1 + m)y = 0$. On the other hand, if we denote reflection in line *l* by σ_l , and rotation about a point *C* through angle θ by $\rho_{C,\theta}$, using coordinate definition of the *m*-generalized taxicab distance for any points P_1 and P_2 , one can get that $d_{T_g(m)}(P_1, P_2) = d_{T_g(m)}(\sigma_l(P_1), \sigma_l(P_2))$ for $l \in \{mx - y = 0, x + my = 0\}$ and $d_{T_g(m)}(P_1,P_2)=d_{T_g(m)}(\rho_{O,\theta}(P_1),\rho_{O,\theta}(P_2))$ for $\theta\in\{0,\pi\}$; in addition if $a=b$ then the equations holds also for $l\in\{(1+m)x-(1-m)y=0,$ $(1-m)x + (1+m)y = 0$ } and $\theta \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}.$

Now, we state following three propositions as results of our observations above:

Proposition 4.1. Every translation is an isometry of $\mathbb{R}^2_{T_g(m)}$.

Proposition 4.2. In $\mathbb{R}^2_{T_g(m)}$, the set of isometric reflections in lines through origin is $S_{T_g(m)} = \begin{cases} \sigma_{mx-y=0}, & \text{if } a \neq b \\ \sigma_{mx-y=0}, & \sigma_{x+m} = 0 \\ \sigma_{mx-y=0}, & \sigma_{x+m} = 0 \end{cases}$, *if a* = *b*

 $\sigma_{mx-y=0}$, $\sigma_{x+my=0}$, $\sigma_{(1+m)x-(1-m)y=0}$, $\sigma_{(1-m)x+(1+m)y=0}$, $if a=b$

Proposition 4.3. *In* $\mathbb{R}_{T_{g}(m)}^2$, the set of isometric rotations about origin for $\theta \in [0, 2\pi)$ is

.

$$
R_{T_g(m)} = \begin{cases} \rho_{O,0}, \rho_{O,\pi} & , \text{ if } a \neq b \\ \rho_{O,0}, \rho_{O,\frac{\pi}{2}}, \rho_{O,\pi}, \rho_{O,\frac{3\pi}{2}} & , \text{ if } a = b \end{cases}
$$

The following proposition states that there is no other Euclidean isometry preserving the *m*-generalized taxicab distance:

Proposition 4.4. Let $\phi: \mathbb{R}_{T_g(m)}^2 \to \mathbb{R}_{T_g(m)}^2$ be a Euclidean isometry preserving the m-generalized taxicab distance such that $\phi(O)=O$. Then $\phi \in R_{T_g(m)}$ or $\phi \in S_{T_g(m)}$.

Proof. Given a Euclidean isometry $\phi : \mathbb{R}^2_{T_g} \to \mathbb{R}^2_{T_g}$ such that $\phi(O) = O$. Assume that $\phi(A_1) \in (A_1, A_2)$, then $\phi(A_2) \in [A_3, A_4]$ since $d_{T_g}(\phi(A_1), \phi(A_2)) = 2$. Then $\phi(A_3) \in [A_1, A_2]$, and we have $d_{T_g}(\phi(A_1), \phi(A_3)) < 2$, which is a contradiction since $d_{T_g}(A_1, A_3) = 2$. Thus, $\phi(A_1) \notin (A_1, A_2)$. Similarly, one can see that $\phi(A_i) \notin (A_j, A_{j+1})$ for $i, j \in \{1, 2, 3, 4\}$ and (assume that $A_5 = A_1$). Now, it is clear that $\phi(A_i) \in \{A_1, A_2, A_3, A_4\}$ for $i \in \{1, 2, 3, 4\}$. For $a \neq b$, if $\phi(A_1) = A_i$, then $\phi(A_2) = A_{i+1}$ for $i \in \{1, 3\}$, and ϕ is a rotation with the angle $\theta = \frac{(1-i)\pi}{2}$. If $\phi(A_1) = A_{i+1}$, then $\phi(A_2) = A_i$ for $i \in \{2, 4\}$, and ϕ is a reflection in line $mx - y = 0$ or $x + my = 0$. For $a = b$, if $\phi(A_1) = A_i$, then $\phi(A_2) = A_{i+1}$ for $i \in \{1,2,3,4\}$, and ϕ is a rotation with the angle $\theta = \frac{(1-i)\pi}{2}$. If $\phi(A_1) = A_{i+1}$, then $\phi(A_2) = A_i$ for $i \in \{2,4\}$, and ϕ is a reflection in line $mx - y = 0$, $x + my = 0$, $(1 + m)x − (1 - m)y = 0$ or $(1 - m)x + (1 + m)y = 0$.

Consequently, we have the orthogonal group $O_{T_g(m)}(2) = R_{T_g(m)} \cup S_{T_g(m)}$. Note that there are four more isometries of $\mathbb{R}^2_{T_g(m)}$ such that Example the state of the proposition of $V_{s}(m) \cup V_{s}(m)$. Note that there are four more isometries of $\mathbb{F}_{s}(m)$ such that
 $\Psi_1(A_1, A_2, A_3, A_4) = (A_2, A_1, A_4, A_3), \qquad \Psi'_1(A_1, A_2, A_3, A_4) = (A_4, A_3, A_2, A_1), \qquad \Psi_2(A_1, A_2,$ $p(A_2,A_3,A_4,A_1), \Psi'_2(A_1,A_2,A_3,A_4) = (A_4,A_1,A_2,A_3)$ and $\Psi_i(O) = \Psi'_i(O) = O$: $\Psi_i(x,y) = (U_i,V_i), \Psi'_i(x,y) = (-U_i,-V_i)$, where $U_1 =$ $\frac{(b^2-a^2m^2)y-m(a^2+b^2)x}{ab(1+m^2)}, V_1 = \frac{m(a^2+b^2)y+(a^2-b^2m^2)x}{ab(1+m^2)}, U_2 = \frac{(-b^2-a^2m^2)y-m(a^2-b^2)x}{ab(1+m^2)}, V_2 = \frac{m(a^2-b^2)y+(a^2+b^2m^2)x}{ab(1+m^2)}.$ One can check that these transformations do not preserve the Euclidean distance for $a \neq b$, while they preserve the *m*-generalized taxicab distance! If $a = b$, then $\Psi_1 = \sigma_{(1+m)x-(1-m)y=0}, \Psi_1' = \sigma_{(1-m)x+(1+m)y=0}, \Psi_2 = \rho_{O, \frac{\pi}{2}}$ and $\Psi_2' = \rho_{O, \frac{3\pi}{2}}$.

Theorem 4.1. Let $f : \mathbb{R}_{T_{\text{g}}(m)}^2 \to \mathbb{R}_{T_{\text{g}}(m)}^2$ be a Euclidean isometry preserving the m-generalized taxicab distance. Then there exists a unique $T_a \in T(2)$ *and* $\phi \in O_{T_g(m)}(2)$ *such that* $f = T_a \circ \phi$ *.*

Proof. Suppose that $f(0) = A$ where $a = (a_1, a_2)$. Define $\phi = T_{-a} \circ f$. It is clear that ϕ is an isometry and $\phi(0) = 0$. Thus, we get $\phi \in O_{T_g(m)}(2)$ by Proposition 4.4, and $f = T_a \circ \phi$. The proof of uniqueness is trivial.

Finally, by Theorem 4.1 we determine the group of Euclidean isometries preserving the *m*-generalized taxicab distance is semidirect product of the translation group $T(2)$ consisting of all translations and the symmetry group of the *m*-generalized taxicab unit circle $O_{T_g(m)}(2)$.

References

- [1] C¸ olakoglu, H.B. and Kaya, R. ˘ *A generalization of some well-known distances and related isometries*, Math. Commun. Vol:16 (2011), 21-35.
- [2] Ekmekçi, S., Bayar, A. and Altıntaş, A.K. *On the group of isometries of the generalized taxicab plane*, International Journal of Contemporary Mathematical Sciences Vol:10, No.4 (2015), 159-166.
[3] Ekmekçi, S., Akça, Z. and Altıntaş, A.K. *On trigonometric functions and norm in the generalized taxicab metric*, Mathematical Sciences And
- Applications E-Notes Vol:3, No.2 (2015), 27-33.
- [4] Krause, E.F. *Taxicab Geometry*, Addison-Wesley, Menlo Park, California, 1975.
- [5] Menger, K. *You Will Like Geometry*, Guidebook of Illinois Institute of Technology Geometry Exhibit, Museum of Science and Industry, Chicago, Illinois, 1952.
- [6] Richard, S.M. and George, D.P. *Geometry, A Metric Approach with Models*, Springer-Verlag, New York, 1981.
- Schattschneider, D.J. *The taxicab group*, American Mathematical Monthly Vol:91, No.7 (1984), 423-428.
- [8] Wallen, L.J. *Kepler, the taxicab metric, and beyond: An isoperimetric primer*, The College Mathematics Journal Vol:26, No.3 (1995), 178-190.