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Abstract: Early detection of forest fires is vital for ecosystems. For this purpose, sensor networks collect data such as
temperature and humidity and monitor changes in forests. Long-range and low-energy communication technologies such
as LoRa are especially widely used in these networks. However, the management of these networks can be complicated
since each forest has different requirements. Digital twin technology allows the simulation of different scenarios and
optimization systems by creating virtual copies of physical systems to solve this problem. However, the relational structure
of computer networks can be challenging for some artificial intelligence models used in digital twins. Graph neural
networks help digital twins to understand and optimize the complicated structure of networks. In addition, it is not feasible
for Internet of Things networks to meet digital twins’ two-way and continuous communication demand. Therefore, in
this study, a forecaster model is designed to facilitate the integration of digital twins into these networks. The forecaster
provides the data the digital twin needs by predicting the network’s future states from its past states. The first results
of the study are promising, especially for small-scale networks. However, as the scale of the network grows, the errors
made by the system also increase.
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LoRa Tabanlı Bir Orman Yangını Yönetim Sistemi Dijital İkizinin Ayrıntıları

Özet: Orman yangınlarının erken tespiti, ekosistemler için hayati önem taşır. Bu amaçla sensör ağları, sıcaklık ve nem
gibi verileri toplayarak ormanlardaki değişiklikleri izler. Özellikle LoRa gibi uzun menzilli ve düşük enerjili iletişim teknolo-
jileri, bu ağlarda yaygın olarak kullanılır. Ancak bu ağların yönetimi, her bir ormanın farklı gereksinimleri olduğundan
karmaşık olabilir. Dijital ikiz teknolojisi, bu sorunu çözmek için fiziksel sistemlerin sanal kopyalarını oluşturarak, farklı
senaryoları simüle etmeye ve sistemleri optimize etmeye olanak tanır. Lakin bilgisayar ağlarının ilişkisel yapısı dijital
ikizde kullanılan bazı yapay zeka modelleri için zorlayıcı olabilir. Grafik sinir ağları ise dijital ikizlerin, ağların karmaşık
yapısını anlamasına ve optimize etmesine yardımcı olur. Ayrıca, nesnelerin interneti ağlarının, dijital ikizlerin iki yönlü
ve sürekli iletişim talebini karşılaması uygulanabilir değildir. Bu nedenle, bu çalışmada dijital ikizlerin bu ağlara ente-
grasyonunu kolaylaştıracak bir tahminci modeli tasarlanmıştır. Tahminci ağın geçmiş durumlarından gelecek durumlarını
tahmin ederek dijital ikizin ihtiyacı olan veriyi sağlar. Çalışmanın ilk sonuçları özellikle küçük ölçekli ağlar için umut
vericidir. Ancak ağın ölçeği büyüdükçe sistemin yaptığı hatalar da artmaktadır.

Anahtar Kelimeler: Dijital ikiz, nesnelerin interneti, grafik sinir ağları, orman yangını tespiti.
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1 INTRODUCTION
The ecology of the world is crucially threatened by forest
fires. Rising average temperatures have also increased the
frequency of forest fires, including in Turkey. As indicated by
the graph in Figure 1, there are more than 2 thousand for-
est fires every year, which destroy more than 10 thousand
hectares of forest area [1].

Early and rapid-fire detection can significantly reduce the
devastation of forest fires. Several different techniques are
used for these detections such as surveillance of forests
with satellites, flying over forests with Unmanned Aerial Ve-
hicles (UAVs), and regularly monitoring forest values with
wireless sensor networks. All of these systems have advan-
tages and disadvantages. However, the most cost-effective
and fastest fire detection method is Wireless Sensor Net-
work (WSN) solutions. [2].

Fig. 1 Area of burned on every year.

Internet of Things (IoT) sensor networks are frequently
used in these systems to detect forest fires early. How-
ever, forests differ from each other in many aspects, such
as size, elevation difference, climatic conditions, tree den-
sity, and diversity. Therefore, the demands of forests and
the structures of these networks vary widely. This requires
specific decisions to be made in the management of each
network. Also, due to the size of forests, managing these
large networks can be difficult.

Once WSN networks are deployed in forests, their man-
agement becomes another problem to be solved. In these
sophisticated networks, it may be desirable to minimize
packet loss or optimize energy consumption. Digital Twin
(DT) technology can help network administrators in this
area. DTs are widely used in computer networks for op-
timization and running test cases. Nonetheless, DTs are
challenging to use in IoT networks due to their constant
communication requirements. Hence, this paper proposes
a forecaster mechanism to facilitate this integration. The
proposed model generates the data for DT by predicting
the network traffic (packets) in advance.

This paper introduces a digital twin application for forest
fire detection systems employing IoT networks. Integrating
the digital twin into such networks is key to perceiving their

complexity. It also enables effective and accurate testing of
different strategies for network optimization. However, the
main challenge in achieving this integration is the need for
continuous bidirectional data transfer of digital twins. Since
IoT networks have limitations in terms of energy and per-
formance, meeting these requirements is challenging for
them. In addition, some use cases can present interesting
contradictions. For example, a digital twin modeling net-
work packet delivery rate needs real-time lost packet data
from the network. However, the digital twin is not aware
of a packet that has not reached the network’s server. In
networks such as the one studied in this work, where for-
est fires are specifically investigated, LPWAN communica-
tion technologies are widely preferred. The additional limi-
tations of these technologies, such as two-way communica-
tion, can make the integration of DTs even more intractable.

Instead of providing real-time network data to the DT, de-
signing a forecaster that predicts the future packets that the
network will generate and providing the DT with the pre-
dictions it generates from the historical network data can
alleviate these problems and enable the integration of DTs
into IoT networks. Based on this idea, our study aims to ac-
curately determine the throughput of the simulation which is
designed for the forest fire detection network environment
with the help of a forecaster. The DT estimates the through-
put of the network employing the forecaster’s output. Due
to the high physical and hardware demands of the network,
such as square kilometers of coverage and dozens of sen-
sor devices, this study was conducted by simulation. First,
the simulation was run and the generated packets were ob-
tained. Then, the forecaster was trained with the packets
generated at a portion of the simulation. Then, these fore-
casts were forwarded to DT, and the throughput of the net-
work over time was estimated by the DT model. To eval-
uate the performance of the system, the actual throughput
values obtained from the simulation are compared with the
predictions. The throughput of the network is affected by
the packets generated and the packet losses in the net-
work. The system needs to understand both of these com-
ponents accurately in order to make successful predictions.
Studies in the literature have shown that successful predic-
tions can be made with techniques like Recurrent Neural
Network (RNN) based models in sequence data. In addi-
tion, Graph Neural Network (GNN) based DT models in the
research can successfully comprehend situations such as
traffic and packet loss. Hence, it is thought that the results
that will emerge with the cooperation of these models could
be successful.

The results obtained show that this system works promis-
ingly, especially for small-scale networks. However, as
the number of devices in the network increases, the sys-
tem’s performance decreases critically. This result could
be caused by the forecasting error of the whole network,
which increases cumulatively with the increasing number
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of devices.
In the rest of the paper, we first review the literature on

the detection and prevention of forest fires from a network
perspective and GNN-based DT studies. Then, in Section,
the methodology of the study is described. Results and
evaluations are given in Section 4. The last section con-
cludes the paper by giving future directions.

2 LITERATURE SURVEY

2.1 Forest Fire Detection Systems
Early detection of forest fires is critical to reducing their
damage. However, detecting fires in minutes when they
originate in vast forest areas is arduous. To meet this
need, forest fire detection systems utilize satellites, UAVs,
and sensors. Since it is not feasible to position satellites
to continuously monitor the forest, and as UAVs have lim-
ited observation areas and need to be recharged for some
time, IoT networks have the fastest fire detection capability
among these methods.

IoT networks deployed for forest fire detection can be de-
signed in many different ways. First, it is decided how to
detect the fire. While fire detection can be done with afford-
able sensors such as temperature, CO, and humidity, it can
also be done with the help of cameras.

In [3], data such as flame, humidity, and temperature
were measured and if the designed algorithm detected a
fire situation, alarm packets were sent from the nodes to
the database server with location information using satellite
communication via SAT-202 module.

Next, network topology and communication technologies
should be decided. Depending on the frequency of data
sent and the network scale, clustered or mesh topologies
are often employed. While fault tolerance is higher in mesh
networks, clustered topologies provide scalability. In [4],
a hierarchical network structure is designed. Two different
types of nodes were preferred: central nodes and sensor
nodes. Sensor nodes are connected to each other in a tree
structure, with the root node being the central node. Zigbee
communication is employed in the sensor nodes, the cen-
tral node also has the cellular network module to send the
data to the server. In another study [5], mesh topology is
chosen as a network structure. While all nodes are inter-
connected with LoRa modules, a gateway device sends all
generated packets over the internet to the database server.
Thanks to Lora’s long-distance communication, the authors
stated that they could cover an area of 25 square kilometers
for less than $5000 with 100 sensor nodes.

In addition, inexpensive options for sensor nodes can be
implemented in networks with fixed Cluster Heads, while
in mesh networks, all nodes usually have similar capabili-
ties. As mentioned earlier, communication techniques typi-
cally used in wildfire detection are expected to support long-
distance transmission. However, for networks in a relatively
small forest where the detection range of sensors is limited,

technologies such as Bluetooth could be preferred. How-
ever, this technique would be both expensive and difficult
to manage to cover large forest areas. For instance, in [6],
ZigBee communication is chosen to transfer packets. De-
spite a fast 6-minute fire detection, a 560-acre park in the
city was covered and a mesh topology was proposed for
scenarios with more nodes. Once all decisions have been
made, the network is deployed in the forest and the col-
lected data is analyzed. Rule-based fire detection can be
done, as well as smart systems that can detect false alarms
with Artificial Intelligence (AI) techniques. Although funda-
mental algorithms that make decisions by checking certain
threshold values are sufficient for fire detection, data-driven
learning techniques are also popular for systems that can
operate with high accuracy with minimal false alarms. In [7]
to avoid false alarms, an unsupervised dataset was used to
cluster alarms into false and true using the k-means tech-
nique. Multiple linear regression models were then trained
with these data. In [8], the decision was made by RNN
models. The model was trained with the data from sensor
nodes and then the incoming data was evaluated with this
model and the fire decision was made. Also in [9], a similar
study was conducted with ANN models. In this study, in-
stead of two classes such as the presence and absence of
fire, different classes such as fire is about to start are also
included. Predicting the location of fire spread is also im-
portant to reduce its impact. In a study [10], wind sensors
and artificial intelligence techniques were used to estimate
the area of fire spread.

2.2 GNNs in Computer Networks
The main use of GNNs in computer networks is to model
networks with high accuracy. Two different studies compare
the performance of GNN-based models with queueing the-
ory modeling [11] [12]. In both studies, GNN-based models
significantly outperformed the queueing theory based mod-
els.

Thanks to GNNs’ real-time and accurate network model-
ing, many network problems can now be optimized. One
area of particular interest is packet routing optimization. In
[13], the Deep Reinforcement Learning (DRL) agent opti-
mized packet routing to maximize allocated bandwidth us-
ing the network’s GNN-based DT. The agent not only out-
performed the fluid models but also, unlike these models,
was able to adapt to dynamic changes in the network such
as link failure, and could be generalized for networks with
similar characteristics.

In a similar study [14], a GNN called TwinNet was devel-
oped for network optimization. Instead of DRL, a classical
optimization algorithm was used to optimize the average
per-flow delay. The model worked quite successfully com-
pared to RouteNet and Multi Layer Perceptron (MLP) al-
ternatives. It achieved a Mean Absolute Percentage Error
(MAPE) of around 3 percent and an R2 score of more than
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97 percent. In optimization, it has been much more suc-
cessful than fluid-based models, especially in high-density
traffic, since those models cannot model queueing delay.

There are also studies on how to model networks using
GNNs. In [15], modular GNN models represented in terms
of expressiveness and granularity were designed as xNet.
For 3 different usage scenarios, the performance of the pro-
posed model was tested. The model was able to predict
delay with a MAPE rate of less than 5 percent for data with
sampling intervals of ms.

Network slicing is a technology designed for next-
generation network applications where the physical net-
work is divided into virtual networks. GNNs are also uti-
lized in the management of these networks. In [16], a sce-
nario with different delay agreements for different network
slices was tested by training a Graph Linformer Network
(GLN) based DT with Federated Learning (FL) and using a
heuristic optimization method for both delay estimation and
meeting these agreements. The model both outperformed
state-of-the-art GNNs and was able to meet the Service
Level Agreement (SLA) requirements of the optimization al-
gorithm. In [17], end-to-end latency was measured for all
slices. It was able to predict DT based on GraphSAGE with
less than 5 percent error on all slices. Furthermore, link
failures and SLA performance were also tested. In addi-
tion, the model was trained for jitter in order to show that
DT can be trained faster for a different metric.

GNNs are also used to predict network traffic. In [18],
the feature extraction technique was used to derive features
from the network data and predict the traffic. Similar perfor-
mance was achieved with the extracted features and the
training time was significantly reduced.

3 OUR WORK

Digital Twin Networks (DTNs) continuously obtain data from
the network and predict network parameter(s) according to
the data. In this work, topology, traffic, and communication
type data are collected from the network, and the through-
put of the network is forecasted. On the other hand, in
IoT networks, obtaining real-time data from the network is
not straightforward. Because IoT networks lack reliable and
low-latency communication due to power and budget con-
straints. Also, it is not possible to detect colluded or inter-
fered packets from received packets at the sink server. The
latter problem can be solved by using simulations to gather
training data for the DT. For the former one, forecasting the
current traffic is proposed. The complete model of the pro-
posed system can be seen in Figure 2.

3.1 Simulator Design
In order to collect data, a custom WSN simulator is de-
signed since it is easier to reach and tailor the collected
data format as needed. To be sure about the reliability of

Fig. 2 Model of the System.

the simulator, its results are compared with the results of
the OmNet++ simulator for the selected topology and pa-
rameters. Since the results of the two simulators are simi-
lar, it is concluded that the designed simulator can be used
for dataset generation.

Clustered network topology is preferred for the WSNs
in our work. Sensor nodes send the packet to the corre-
sponding cluster head via LoRa-like communication tech-
nology, and cluster heads aggregate and forward these
packets to the server with a GPRS-like radio modulation
technique. These communication technologies are chosen
because of their long ranges and relatively low power de-
mands. For the path loss model, the Hata model [19] is
employed. Sensor nodes and cluster heads are assumed
to be installed at 10 meters in height. They are placed on
the trees selected randomly. The server’s height is taken
as 1000 meters considering variations in the terrain. In the
environment, only the thermal noise is calculated, and for
simultaneous packets, whether the packet is received suc-
cessfully is decided based on signal-to-noise and interfer-
ence ratio (SNIR). Threshold values can be seen in Table
1. The packets of the sensor nodes are considered random
events that are generated according to negative exponen-
tial distribution. Whereas, cluster heads transmit packets
periodically like they are scheduled with TDMA. In case of
no received packets, clustered heads may pass their allo-
cated slot without sending a packet. The performance of
the model is tested with various number of clustered net-
works. By changing numbers of clusters, number of sensor
nodes, width, and height of the environment, the simula-
tions are repeated. For instance, a 2000x2500 m2 area is
covered with one cluster network, while a 9-cluster network
covers an area of 6000x7500 m2. Topologies used in the
study can be seen in Figure 3.

The simulator records all transmitted packets with their
status, signal strength, transmission start-end times, and
source-destination nodes.

3.2 Forecaster Module
The forecaster predicts whether an individual node is trans-
mitting or sleeping at a given time. As sensor nodes sleep
most of the time, the problem that the forecaster addresses
can be seen as an imbalanced binary classification prob-
lem. Therefore, before training the model, undersampling
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Fig. 3 Various Topologies Tested (having 2, 3, 4, and 9 clusters).

Table 1 Simulation Parameters

Parameter Value
runtime 24 hrs
packet size 50b
node height 10 meters
GW height 1000 meters
sensor tx power 14 dBm
sensor tx frequency 433 MHz
CH SNIR Threshold -6 dB
sensor bitrate 5700 Kb/s
mean packet period 1 min
CH min rx power -130 dBm
GW min rx power -115 dBm
Temperature 300 K
CH tx power 33 dBm
CH tx frequency 950 MHz
GW SNIR threshold 0 dB
CH bitrate 50000 Kb/s

is applied to the data to prevent bias. Four times as many
sleep data samples are randomly selected as the transmit-

ted data samples to train the model. A Long-Short Term
Memory-based (LSTM) model is chosen for the forecaster.
The model has three LSTM layers and one output fully con-
nected layer to predict the state as 0 (sleep) or 1(transmit).
Each LSTM layer has 10 percent dropout rate. From all
forecasting results, it is required to retrieve the global state
of the network since DT needs it as input. Therefore, after
predicting the transmission states of each sensor node and
cluster head, the general state of the network including traf-
fic information is constructed. The general state consists of
the states of all nodes which are predicted with slight error
values. As sleep and transmission states are imbalanced,
precision and recall metrics should be considered to decide
the performance. F1 score is a metric that combines these
two values. The performance of the forecaster is evaluated
with the F1 score of the transmit state. Since most of the
states are sleep states, the performance of the model for
sleep states cannot be trusted.
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3.3 GNN Based Digital Twin
Graph Attention Network (GAT) is used in DTs. After the
GAT layer, a four-layered multi-layer perceptron (MLP) is
placed to predict the throughput. Therefore, DT has one
output. The structure of the model can be seen in Figure
4. This network also has 10 percent dropout ratio. ReLu
activation function is applied. A considerably large batch
size of 256 is used to train. However, the MLP layers have
128 nodes as the hidden dimension number. The last layer
has one node for throughput. Other parameters of the DT
can be seen in Table 2. For node attributes, the node type,
that is sensor node or cluster head, and the node’s status
is given to the model. Moreover, the same features are
provided for edge attributes.

Table 2 GNN Parameters

Parameter Value
learning rate 0.001
batch size 256
hidden layer dimension 128
dropout rate 0.1
train ratio 0.8
epoch number 50

Fig. 4 Structure of the DT.

3.4 How does the System Work?
In the system, traffic was generated in the simulator first.
Then, the forecaster was trained by using the a portion of
the traffic from the simulator. With, the same packets, DT
was also trained. Next, the predictions of the forecaster
were fed to the DT to predict the throughput. However, nei-
ther the forecaster nor the DT can use the data generated
from the previous step directly. Therefore, extra data for-
mation or aggregation steps are added to comply data with
the models.

There are five distinct steps of the system. In the first
step, packet data is generated with the simulator. The sim-
ulator runs the intended simulation and gives reports of
generated packets that include: sender and receiver ids,
time interval that packet transmits, size of the packet, sig-

nal strength and the receive status of the packet, as it can
be seen from Fig 5. The forecaster aims to predict the up-
coming packets based on the previous transmissions as in
Fig 6. Nevertheless, it is a bit challenging to make this pre-
diction from the simulation report. Thus, the problem is di-
vided into simpler problems that are time series forecast-
ing. To do that, for every node, the node’s state, which is
either sleep or transmit, is inferred throughout the simula-
tion with predefined sampling intervals. This step is named
data augmentation and visualized in Fig 7.

After the augmentation, for every node, time series bi-
nary classification is done to predict the future states of the
nodes as shown in Fig 8. Yet, as the DT requires the total
state of the network to predict the throughput, The entire
state of the network must be created from the forecasted
states of the nodes for each sampled time that through-
put is predicted. The network state generation step creates
these states for the DT as shown in Fig 9. Then, finally, the
DT predicts the throughput of the network for each gener-
ated state. Prediction of DT for an example time sample is
demonstrated in Fig 10.

Fig. 5 Generated Packet Reports with Simulator.

Fig. 6 Expected Forecasting Operation.

4 RESULTS OBTAINED
In this section, first, the forecaster and DT results are eval-
uated separately. Then, the performance of the whole sys-
tem is discussed.

4.1 Performance of the Forecaster
The simulator was run for 24 hours of data transmission for
each topology setting. Then, the first 80 percent of the data
was used to train the forecaster model. After the training,
the forecaster predicted the remaining 20 percent. The re-
sults were compared with the ground-truth values collected
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Fig. 7 Data Augmentation for a Node.

Fig. 8 Forecasting for a Node.

Fig. 9 Network State Generation with Forecasting Results.

Fig. 10 Throughput Prediction with the DT.

in simulations. The F1 score of the transmission state is
calculated to evaluate the model. As forecasting is done
for each node separately, the overall result of the forecaster
is calculated as the mean and 95 percent confidence in-
terval of all F1 scores of the nodes. The F1 score is cal-
culated as the harmonic mean of the precision and recall
values. Since the precision and recall performance of the
model is equally important to calculate the throughput ac-
curately, this score is selected as an evaluation metric. It
is a prevalent technique for evaluating the performance in
imbalanced binary classification problems like the problem
that the forecaster solves. Results for the forecaster can
be seen in Figure 11. As can be seen, the forecaster can
predict the states accurately. Moreover, as the network
gets larger, the forecaster’s performance is not affected crit-
ically. Also, F1 scores of individual nodes in 2-cluster and
3-cluster networks can be observed in Figures 12 and 13,
respectively.

Fig. 11 F1 Scores of Forecaster for Different Topologies.

Fig. 12 F1 scores of the nodes in 2 clustered network.

4.2 Performance of the Digital Twin
Ground-truth throughput values were obtained from the
simulator. DT also predicted the throughput for test cases
following a training. The mean squared error (MSE) and co-
efficient of determination r-squared (R2) were used as eval-
uation criteria for the performance of the DT. The results are
given in Figure 14. The GNN-based DT grasps the charac-
teristics of the network as expected. Hence, the R-squared
correlation indicator is above 95 percent for all topologies.
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Fig. 13 F1 scores of the nodes in 3 clustered network.

Since the results for all topologies are similar, the scalability
of the DT is considered fine.

Fig. 14 MSE of the Digital Twin for Different Topologies.

4.3 Performance of the System
To evaluate the integrated performance of the system, the
forecaster was run as explained above. In DT, the same
training/test split was performed. However, the forecaster’s
predictions were used for testing instead of the values ob-
tained from the simulator. The same evaluation metrics
were used to test the system’s performance. Figure 15
gives the results of the whole system. Correlation and MSE
results do not vary critically for smaller networks. However,
the error increases significantly and the r-squared score
cannot show the dependency for 9 clustered networks.

Comparing Figures 14 and 15, it can be seen that DT
gives significantly varying results when the actual data and
the forecast data are employed. Although GNNs are mostly
scalable, the whole system’s performance degrades with
the increase in the number of nodes here.

The forecaster estimates throughput for each node in the
network. Although the prediction performance per node is
high, the total error increases as the number of network
nodes increases. This causes DT to estimate the through-
put with an inaccurate network input. Therefore, the error
of the throughput, which is the output of the DT, becomes
high. For large networks such as 9 clusters, these esti-
mates are beyond the acceptable limits.

Fig. 15 Performance of the System.

4.4 Effect of Collisions
The results in the previous sections omit the collisions that
occurred in the simulations. Although this makes the results
unrealistic, the high adaptation and grasping capabilities of
GNNs studied by multiple studies in the literature, as well as
the system’s performance with the collisions, are expected
to be similar. To test the performance difference consider-
ing collisions, the system was trained and tested under a
collision-enabled simulation environment. In order to inte-
grate collisions with the system, collision information was
collected from the simulation and ground truth throughput
values were calculated accordingly. As the forecaster mod-
ule predicts the transmissions of the sensor nodes, collision
information is irrelevant to the module. Hence, only the DT
was re-trained and used the same forecasting states to bet-
ter determine the effect of collisions. Results can be seen
in Figure 16. As expected, the performance of the system
is similar when collisions are considered, because of the
GNN’s understanding of spatial information.

Fig. 16 Collision Effect to the Performance.

5 CONCLUSION

The rise in the average temperature of the world increases
the risk of forest fires. Therefore, the importance of forest
fire management systems is also increasing. IoT sensor
networks are frequently used in these systems to detect for-
est fires early. However, due to the different requirements
of forests, the structures of these networks also vary widely.
This requires specific decisions to be made in the manage-
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ment of each network. Due to the size of forests, the man-
agement of these large networks can be difficult. DT tech-
nology can help network administrators in this area. DTs
are widely used in computer networks for optimization and
test cases. However, DTs are challenging to use in IoT
networks due to their continuous communication require-
ments. This paper proposes a forecaster based mechanism
to facilitate such an integration. The proposed model gen-
erates the data needed for DT by predicting the network’s
packets in advance.

In the study, simulations were performed for networks
with different number of clusters, and the generated pack-
ets were collected. Then, the forecaster, which was trained
with these packets, was asked to forecast the upcoming
packets. The DT received the packets generated by the
forecaster and was expected to determine the throughput at
the given instant. The actual throughput values for this du-
ration were also obtained from the simulation and the per-
formance of the system and the modules were evaluated
separately.

In the tests, it was observed that the forecaster module
correctly recognized the sent packets with an F1 score of
approximately 0.9 for each network type. Moreover, the
DT module, when trained independently of the forecaster,
achieved an MSE score lower than 0.02 and a high R2 score
of 0.8 in each network. In the test of the network’s under-
standing of collisions, the difference between the collision
on and off scores is less than 5 percent. However, when
the whole system was integrated, the MSE error increased
by more than 100 times and the R2 score dropped below
40 percent for the network with 9 clusters, although similar
scores were obtained for the small-scale networks.

The proposed system seems to have a scalability prob-
lem. It is assumed that this is due to the accumulation of
errors in the individual predictions of all nodes. Currently,
we are working to integrate the other state-of-the-art pre-
diction models to the system. Furthermore, a more holis-
tic forecasting approach and a forecasting model based on
clusters can be considered as future work. Also, testing the
system under different traffic scenarios and environmental
conditions could improve the study.
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