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Abstract. Nondifferentiable desirability functions are one of the most preferred multi-
response optimization methods in nonlinear robust parameter design. Their nondifferen-
tiability makes the optimization problem hard to solve and researchers and scientists look
for new softwares and new desirability function structures to overcome this problem. In
this study, we suggest a new implementation of derivative free mash adaptive direct search
algorithm (MADS) with MATLAB/NOMAD to nondifferentiable desirability functions.
For doing this, we need to model the optimization problem of desirability functions as a
mixed-integer nonlinear optimization program (MINLP) by introducing a new binary vari-
able to the model. This integer shows the side of the two-sided desirability function which
is active. Hence, the model of our problem becomes nondifferentiable nonconvex MINLP.
We show our implementation on three well-known optimization problem from the multi-
response optimization literature. We finally conclude with an outlook and future research
projects.

1. Introduction

Taguchi studied quality improvement through robust design which made the field of robust
design widespread among industrial quality engineers [32, 33]. Robust design aims at de-
signing a product or process to which the effect of noise factors is minimum. Robust design
is important in terms of minimizing variance of a product or process performance while
keeping the difference between mean and the target of the responses (output variable) as
small as possible which improves the quality during the design phase of a product or pro-
cess. If there are more than one responses, we must solve a multi-response optimization
problem to take into account all the characteristics of a product or process and to obtain an
optimal factor setting reflecting the optimal properties of a product or process, simultane-
ously.

In the literature, there are many methods developed for multi-response optimization prob-
lems. Since these methods stem from multi objective optimization, they are classified
according to articulation of preference information of a decision maker: no articulation,
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prior articulation, interactive articularion and posterior articularion [18, 19, 20, 21, 22, 23,
24, 25, 27, 30]. Prior articulation methods are the most popular methods where pitfalls
needs to be studied and overcome. These methods collect the decision makers preferences
and articulates before the optimization algorithm run.

The so called loss functions which is a prior articulation method in multi-response opti-
mization ignore mean and variance information of responses to handle the different scales
of responses in computations. Another important prior articulation method used for solving
multi-response optimization is desirability functions. This method uses mean and variance
information and has been improved a lot in the last decades. Desirability functions method
overcomes the different scales of responses by assigning a desirability function, which
takes value between 0 and 1, to each response and then combine them to an overall desir-
ability function to be optimized.

Desirability functions developed by Derringer and Suich has a drawback of containing non-
differentiable points [13, 14] occuring at the target points of two-sided desirability func-
tions [1]. They are obtained by the composition of nonsmooth piecewise functions with
signomial response functions (depend on factor variables (input vector)). Before, optimiza-
tion of desirability function was solved by either direct search techniques or by smoothing
nondifferentible desirability functions with polynomial approximations or by changing the
formula of desirability functions. Therefore new advances in numerical optimization made
us suggest using these new methods for the optimization of desirability functions. In [1],
we developed nonconvex model of desirability functions [7] and we obtained continuous
optimization relaxations and convex relaxations of this model. We extend this nonconvex
model to MIP relaxations [34] in an upcoming paper [5]. These relaxations are solved by
GAMS/CPLEX [12], GAMS/BARON [6] and GAMS/CONOPT [11] in [1] and [5].

In [2], we made a topological generalization of desirability functions used in practice to
provide the robust optimization [35] of the nondifferentiable desirability functions and
solved it with generalized semi-definite programming and disjunctive optimization by us-
ing GAMS/BARON. In [4], we analyzed the topological structure of generalized desirabil-
ity functions to explain the mechanism behind these functions that enables researchers and
scientists to develop new desirability functions with better structural properties.

In this paper, we solve a mixed-integer nonlinear optimization model for the desirability
functions first given in [1, 10]. We apply derivative-free optimization techniques (mesh
adaptive direct search) [10] to desirability functions that is mentioned in Table 1 of [1].
For the researchers and scientists, who do not use GAMS environment [15] and its solvers,
this method is available under MATLAB and NOMAD solver [26, 29]. This method is
easy to use and have proven superiority in the literature for nonconvex MINLP [7]. In this
paper, we show implementation of MATLAB/NOMAD solver on nonsmooth nonconvex
MINLP [28] formulation of desirability functions of Derringer and Suich for wire-bonding
process optimization problem [9] which includes quantitative variables [8], for tire-tread
compound problem [13] and for a chemical process problem [17].

In this study, after introducing notation of desirability functions in Section 2. We will give
numerical examples’ statements and results in Section 3. We will finish with a conclusion
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and outlook to the future which will be given in Section 4. We present response models in
Appendix A and MATLAB/NOMAD implementations in appendix B.

1.1. Derringer and Suich Type of DFs. An average or expected value of a response can
be written as Y ji = f j(x1, x2, ..., xn) + ϵ ji (i = 1, 2, ..., n), ( j = 1, 2, ...,m) where Y ji is
measured through design of experiment. These average value Y jis are related to factor
variables by the polynomial expressions f j with expected value of ϵ ji = 0 and covariance
matrix α2I. Polynomial expressions f j are approximated through polynomial functions.
Here, expected value of responses are estimated by Ŷ j using regression by second degree
polynomials for better fit. In this study, we will show estimators of expected value of re-
sponses by Y j where Y j(x) = z(X)β j with β j is the vector of regression coefficient estimates
and z(x) is the vector of regression variables, i.e,
(1, x1, x2, x3, x1x2, x1x3, x2x3, x2

1, x
2
2, x

2
3, x1x2x3, ...). Here, β j is the mean of the unique least

squares estimator β̂ = (X′X)−1X′Y since X′X is always a nonsingular matrix.

Since there are more than one-response in a multi-response optimization problem, desir-
ability functions converts these response values to desirability values and combine them by
geometic mean to obtain a single objective function. This objective function is optimized to
find the best trade-off between responses. There are two types of desirability functions: one
sided (for smaller-the-better responses type and larger-the-better type responses) and two-
sided (for nominal-is-the-best type responses) [1]. The desirability functions considered in
this study are of Derringer and Suich’s type [13]. They can be linear or nonlinear; usually
piecewise smooth including a finite number of nondifferentiable points at their target value,
where the maximum desirability occurs. The optimization of overall desirability functions
becomes a complicated task when there are two-sided individual desirability functions in
the problem. Below, we give the optimization problem of overall desirability function as a
nonsmooth MINLP problem:

maximize D(y, z)
subject to

xi ∈ [−1, 1] (i = 1, 2, . . . , n),
0 ≤ d j(y j, z j) ≤ 1,
0 ≤ d j(y j) ≤ 1,
z j ∈ {0, 1} ( j = 1, 2, . . . ,m)

(1.1)

where D(y, z) = (d1(y1, z1)(w1) ·d2(y2, z2)(w2) ·. . .·dm(ym, zm)(wm))( 1
w1+w2+...+wm

). Here, d j(y j, z j) =
z j((y j − l j)/(t j − l j))+ (1− z j)((y j − u j)/(t j − u j)) ( j = 1, 2, . . . ,m) for two-sided desirability
functions, d j(y j) = (y j − l j)/(t j − l j) for upper-the best one-sided desirability functions,
d j(y j) = (y j − u j)/(t j − u j) for lower-is-the- better one-sided desirability functions and
d j(y j) = (y j − l j)/(t j − l j) for upper-is-the-better one-sided desirability functions. Here,
l j,u j,t j corresponds to lower, upper and target of a response y j = Y j(x) ( j = 1, 2, . . . ,m).

2. Examples and Results

In this Section, we solve three optimization problems with Derringer and Suich nondif-
ferentiable desirability functions. We state the response models and necessary information
in Appendix A. The problem given in Example 1 is solved by a modified desirability func-
tions approach using Microsoft Excel GRG solver [9]. The problem given in Example 2
is solved by univariate direct search implemented under FORTRAN [13]. Lastly, Exam-
ple 3 is solved by a hybrid genetic algorithm in combination with pattern search [17]. In



NONDIFFERENTIABLE DESIRABILITY FUNCTIONS: DERIVATIVE FREE OPTIMIZATION WITH MATLAB/NOMAD31

this study, we obtained responses’ models with better fits than those previously done by
Design-Expert [1, 2] and solved the optimization problem of overall desirability by mesh
adaptive direct search (MADS) implemented under MATLAB/NOMAD [26, 29].

2.1. Numerical example: Wire Bonding Process Optimization. The problem of wire
bonding process optimization in semiconductor manufacturing has originally been pre-
sented in [9]. We use the 3 response models case given in [1]. In this problem, the overall
desirability function DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3) is:

DY(x, z) = ((((z1(174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3 − 185)/(190 − 185))+
((1 − z1)(174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3 − 195)/(190 − 195)))·
(z2((154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2

1 + 11.2500x1x2 − 185)/(190 − 185))+
(1 − z2)((154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2

1 + 11.2500x1x2 − 195)/(190 − 195)))·
(z3((140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3 − 170)/(185 − 170))+
(1 − z3)((140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3 − 195)/(185 − 195))))(1/3))

(2.1)
where the decision variables are x = (x1, x2, x3) and z = (z1, z2, z3) since all the desirability
functions of the problem are two-sided. We added the nonlinear constraints of individual
desirability functions being 0 and 1 to the model on which MATLAB/NOMAD is imple-
mented.

Table 1. Optimal solutions of the Wire Bonding Process Optimization
problem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, x

0
3, z

0
1, z

0
2, z

0
3) (x∗1, x

∗
2, x
∗
3, z
∗
1, z
∗
2, z
∗
3)

1 (0, 0, 0, 0, 0, 0) (−0.4854, 0.9945, 1, 1, 1, 1)
2 (0.0920, 1.0000, 0.8170, 1, 1, 1) (0.9999, 0.8317, 0.5932, 1, 1, 1)
3 (1.0000, 0.8630, 0.5880, 1, 0, 1) (1.0000, 0.8630, 0.5880, 1, 0, 1)

(d1(y∗1), d2(y∗2), d3(y∗3)) D∗

1 (−0.4182,−0.8795, 0.3589) infeasible
2 (0.4301, 0.9999, 0.1585) 0.4085
3 (0.5223, 0.7492, 0.1880) 0.4190

2.1.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use three different initial points to find the global optimal. In Table 1, on the first
line, we give (0, 0, 0, 0, 0, 0)as the initial point and MATLAB/NOMAD finds an infeasible
solution. In the second line, we give (0.0920, 1.0000, 0.8170, 1, 1, 1) as the initial point
which is the local solution produced by GAMS/CONOPT in combination with MSG (see
[1]) and MATLAB/NOMAD converges with a deep local solution which is very close to
global optimal. When we give the global optimal (that we know from the literature [1]) as
the initial point (1.0000, 0.8630, 0.5880, 1, 0, 1), MATLAB/NOMAD finds the global op-
timal given in the third line. We present the MATLAB/NOMAD implementation of this
problem in Appendix B.

2.2. Numerical example: Tire Tread Compound Optimization. The problem of tire
tread compund optimization has originally been presented in [13]. We use the 4 response
models given in [1] (see Appendix A). In this problem, the overall desirability function
DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3, 4) is:
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DY(x, z) = ((((139.1192 + 16.4936 ∗ x1 + 17.8808 ∗ x2 + 10.9065 ∗ x3 − 4.0096 ∗ x1 ∗ x1 − 3.4471 ∗ x2 ∗ x2−

1.5721 ∗ x3 ∗ x3 + 5.1250 ∗ x1 ∗ x2 + 7.1250 ∗ x1 ∗ x3 + 7.8750 ∗ x2 ∗ x3 − 120)/(170 − 120))∗
((1261.1331 + 268.1511 ∗ x1 + 246.5032 ∗ x2 + 139.4845 ∗ x3 − 83.5659 ∗ x1 ∗ x1 − 124.8155 ∗ x2 ∗ x2+

199.1818 ∗ x3 ∗ x3 + 69.3750 ∗ x1 ∗ x2 + 94.1250 ∗ x1 ∗ x3 + 104.3750 ∗ x2 ∗ x3 − 1000)/(1300 − 1000))∗
(z1 ∗ ((400.3846 − 99.6664 ∗ x1 − 31.3964 ∗ x2 − 73.9190 ∗ x3 + 7.9327 ∗ x1 ∗ x1 + 17.3076 ∗ x2 ∗ x2+

+0.4328 ∗ x3 ∗ x3 + 8.7500 ∗ x1 ∗ x2 + 6.250 ∗ x1 ∗ x3 + 1.2500 ∗ x2 ∗ x3 − 400)/(500 − 400))+
(1 − z1) ∗ ((400.3846 − 99.6664 ∗ x1 − 31.3964 ∗ x2 − 73.9190 ∗ x3 + 7.9327 ∗ x1 ∗ x1 + 17.3076 ∗ x2 ∗ x2+

+0.4328 ∗ x3 ∗ x3 + 8.7500 ∗ x1 ∗ x2 + 6.250 ∗ x1 ∗ x3 + 1.2500 ∗ x2 ∗ x3 − 600)/(500 − 600)))∗
(z2 ∗ ((68.9096 − 1.4099 ∗ x1 + 4.3197 ∗ x2 + 1.6348 ∗ x3 + 1.5577 ∗ x1 ∗ x1 + 0.0577 ∗ x2 ∗ x2−

0.3173 ∗ x3 ∗ x3 − 1.6250 ∗ x1 ∗ x2 + 0.1250 ∗ x1 ∗ x3 − 0.2500 ∗ x2 ∗ x3 − 60)/(67.5 − 60))+
(1 − z2) ∗ ((68.9096 − 1.4099 ∗ x1 + 4.3197 ∗ x2 + 1.6348 ∗ x3 + 1.5577 ∗ x1 ∗ x1 + 0.0577 ∗ x2 ∗ x2−

0.3173 ∗ x3 ∗ x3 − 1.6250 ∗ x1 ∗ x2 + 0.1250 ∗ x1 ∗ x3 − 0.2500 ∗ x2 ∗ x3 − 75)/(67.5 − 75))))(1/4))
(2.2)

where the decision variables are x = (x1, x2, x3) and z = (z1, z2) since there are two two-
sided desirability function. We added the nonlinear constraints of individual desirability
functions being 0 and 1 to the model on which MATLAB/NOMAD is implemented.

Table 2. Optimal solutions of the Wire Bonding Process Optimization
problem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, x

0
3, z

0
1, z

0
2) (x∗1, x

∗
2, x
∗
3, z
∗
1, z
∗
2)

1 (0, 0, 0, 0, 0) (−0.0519, 0.1507,−0.8662, 1.0000, 0)
2 (0.0610, 0.0500,−0.8150, 1, 0) (−0.0525, 0.1480,−0.8684, 1, 0)
3 (−0.0520, 0.1480,−0.8690, 1, 0) (−0.0525, 0.1482,−0.8683, 1, 0)

(d1(y∗1), d2(y∗2), d3(y∗3), d4(y∗4)) D∗

1 (0.1899, 1, 0.6564, 0.9285) 0.5833
2 (0.1886, 1, 0.6595, 0.9307) 0.5833
3 (0.1887, 1, 0.6593, 0.9305) 0.5833

2.2.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use three different initial points to find the global optimal. In Table 2, on the first
line, we give (0, 0, 0, 0, 0, 0)as the initial point (an arbitrary point) and MATLAB/NOMAD
finds the global optimal. In the second line, we give (0.0610, 0.0500,−0.8150, 1, 0) as
the initial point which is the local solution produced by GAMS/CONOPT in combina-
tion with MSG (see [1]) and MATLAB/NOMAD converges to global optimal. When
we give the global optimal (that we know from the literature [1]) as the initial point
(−0.0520, 0.1480,−0.8690, 1, 0), MATLAB/NOMAD finds the global optimal given in the
third line. We present the MATLAB/NOMAD implementation of this problem in Ap-
pendix C. Hence, in all three cases, MATLAB/NOMAD finds the global optima for this
problem.

2.3. Numerical example : A Chemical Process Optimization. The problem of a chem-
ical process optimization has originally been presented in [17]. We use the 3 response
models case given in [1] (see appendix A). In this problem, the overall desirability func-
tion DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3) is:
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DY(x, z) = 0.7 ∗ ((79.940 + 0.995 ∗ x1 + 0.515 ∗ x2 − 0.1376 ∗ x1 ∗ x1 − 1.001 ∗ x2 ∗ x2+

0.250 ∗ x1 ∗ x2 − 78.5)/(80 − 78.5))∗
(0.2 ∗ z ∗ ((69.552 − 0.948 ∗ x2 − 6.598 ∗ x2 ∗ x2 − 62)/(65 − 62))+
0.2 ∗ (1 − z) ∗ ((69.552 − 0.948 ∗ x2 − 6.598 ∗ x2 ∗ x2 − 68)/(65 − 68)))∗
0.1 ∗ ((3386.2 + 205.10 ∗ x1 + 177.4 ∗ x2 − 3450)/(3100 − 3450))

(2.3)
where the decision variables are x = (x1, x2) and z = (z) since there is only one two-
sided desirability function. We added the nonlinear constraints of individual desirability
functions being 0 and 1 to the model on which MATLAB/NOMAD is implemented.

2.3.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use two different initial points to find the global optimal. In Table 3, on the
first line, we give (0, 0, 0) as the initial point (an arbitrary point) and MATLAB/NOMAD
converges. When we give the global optimal (that we know from the literature [2]) as the
initial point (0.1723,−0.8516, 0), MATLAB/NOMAD converges. We present the MAT-
LAB/NOMAD implementation of this problem in Appendix D. Here, we note that al-
though MATLAB/NOMAD converges, it gives an inferior solution than found in [17].

Table 3. Optimal solutions of the Chemical Process Optimization prob-
lem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, z

0) (x∗1, x
∗
2, z
∗)

1 (0, 0, 0) (−0.3774,−0.8865, 0)
2 (0.1723,−0.8516, 0) (0.3774,−0.8865, 0)

(d1(y∗1), d2(y∗2), d3(y∗3)) D∗

1 (0.2189, 0.1862, 0.0410) 0.0017
2 (0.2189, 0.1862, 0.0410) 0.0017

3. Conclusion and Future Outlook

In this work, we investigate the derivative free optimization [10] to find out advantages
of them over the global optimization approaches on wire bonding process optimization
problem, tire tread compund problem and a chemical process problem. Although, MAT-
LAB/NOMAD is a nonconvex MINLP solver, it highly depends on initial point selection.
On wire bonding process optimization problem, we tried three different initial points to
find out if it gives the global optimal however, it did not produce the global optimal un-
less the global optimal is the initial point itself. On tire tread compound problem, MAT-
LAB/NOMAD succeed to find the global optimal whatever the initial point is. On chemical
process optimization problem, MATLAB/NOMAD converges, however the optimal value
is inferior than the results reported in the literature.

Another important issue which we faced with in our implementation is related with bound
selection of decision variables, which effects the convergence of MATLAB/NOMAD. Any-
way, MATLAB/NOMAD is a useful software when we know the global optima. This is
important for the researchers and scientists who do not have the global optimizers available.
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In this study, our work describes a new approach to model nondifferentiable functions via
integer variables using a new tool. The methodology is new in the sense that we try dif-
ferent initial points one of which is global optimal. The solution process can be improved
further by studying selections for bounds and initial values. We tested our computational
approaches on different examples from the literature including one-sided and two-sided
desirability functions.

In the future, it is possible to implement the desirability function which includes more
than one nondifferentiable points [9, 3] since we have already tested global optimization
[1], convex optimization [1], semi-infinite programming [2], mixed integer linear program-
ming [5] and derivative free optimization on desirability functions including one nondif-
ferentiable point. It is also possible to apply our derivative free approach to signomial [31]
cases of desirability functions. This study is also connected in a broder sense to optimal
control.

References
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Appendix A. Responses ofWire bonding process optimization problem

Y1(x) = 174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3,

Y2(x) = 154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2
1 + 11.2500x1x2,

Y3(x) = 140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3. (A.1)

Corresponding lower, target and upper values is given in 4

Table 4. Desirability Parameters of the responses for the Wire Bonding
Problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 185 190 195 0 1 0
y2 185 190 195 0 1 0
y3 170 185 195 0 1 0

Responses of Tire tread compound problem

Y1(x) = 139.1192 + 16.4936x1 + 17.8808x2 + 10.9065x3 − 4.0096x1x1 − 3.4471x2x2

−1.5721x3x3 + 5.1250x1x2 + 7.1250x1x3 + 7.8750x2x3,

Y2(x) = 1261.1331 + 268.1511x1 + 246.5032x2 + 139.4845x3 − 83.5659x1x1 − 124.8155x2x2

+199.1818x3x3 + 69.3750x1x2 + 94.1250x1x3 + 104.3750x2x3,

Y3(x) = 400.3846 − 99.6664x1 − 31.3964x2 − 73.9190x3 + 7.9327x1x1 + 17.3076x2x2

+0.4328x3x3 + 8.7500x1x2 + 6.250x1x3 + 1.2500x2x3,

Y4(x) = 68.9096 − 1.4099x1 + 4.3197x2 + 1.6348x3 + 1.5577x1x1 + 0.0577x2x2

−0.3173x3x3 − 1.6250x1x2 + 0.1250x1x3 − 0.2500x2x3.

(A.2)
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Corresponding lower, target and upper values is given in 5

Table 5. Desirability Parameters of the responses for the Tire tread com-
pound problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 120 − 170 0 1 0
y2 1000 − 1300 0 1 0
y3 400 500 600 0 1 0
y4 60 67.5 75 0 1 0

Responses of a Chemical process

Y1(x), y = 79.940 + 0.995x1 + 0.515x2 − 1.376x1x1

−1.001x2x2 + 0.250x1x2,

Y2(x), y = 69.522 − 0.948x2 − 6.598x2x2,

Y3(x), y = 3386.2 + 205.10x1 + 177.4x2.

(A.3)

Corresponding lower, target and upper values is given in 6. The weights of the responses
are 0.7, 0.2 and 0.1, respectively.

Table 6. Desirability Parameters of the responses for the Tire tread com-
pound problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 78.5 − 80 0 1 0
y2 62 65 68 0 1 0
y3 3100 − 3450 0 1 0

Appendix B. MATLAB/NOMAD Implementation ofWire bonding process optimization
problem

clc

fun=@(x)-((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-185)/(190-185))+...

((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-195)/(190-195)))*...

(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-185)/(190-185))+...

(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-195)/(190-195)))*...

(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)...

+19.5938*x(3)-170)/(185-170))+...

(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)...

+19.5938*x(3)-195)/(185-195))))ˆ(1/3))

%x0 = [0.0920 1.0000 0.8170 1 1 1]’;

x0 = [1.0000 0.8630 0.5880 1 0 1]’;
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%x0 = [0 0 0 0 0 0]’;

lb = [-1;-1;-1;1;0;1];

ub = [1;1;1;1;0;1];

nlcon = @(x)[((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-185)/(190-185))+...

((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-195)/(190-195)))

(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-185)/(190-185))+...

(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)...

+7.8750*x(3)-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-195)/(190-195)))...

(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...

(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195)))];

cl=[0 0 0]’;

cu=[1 1 1]’;

xtype=’CCCBBB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)

Appendix C. MATLAB/NOMAD Implementation of Tire tread compound optimization
problem

clc

fun=@(x) -((((139.1192+16.4936*x(1)+17.8808*x(2)+10.9065*x(3)...

-4.0096*x(1)*x(1)-3.4471*x(2)*x(2)-1.5721*x(3)*x(3)+5.1250*x(1)*x(2)...

+7.1250*x(1)*x(3)+7.8750*x(2)*x(3)-120)/(170-120))*...

((1261.1331+268.1511*x(1)+246.5032*x(2)+139.4845*x(3)...

-83.5659*x(1)*x(1)-124.8155*x(2)*x(2)+...

199.1818*x(3)*x(3)+69.3750*x(1)*x(2)+...

94.1250*x(1)*x(3)+104.3750*x(2)*x(3)-1000)/(1300-1000))*...

(x(4)*((400.3846-99.6664*x(1)-31.3964*x(2)-73.9190*x(3)...

+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-400)/(500-400))+...

(1-x(4))*((400.3846-99.6664*x(1)-31.3964*x(2)-...

73.9190*x(3)+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-600)/(500-600)))*...

(x(5)*((68.9096-1.4099*x(1)+4.3197*x(2)+1.6348*x(3)+...

1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...
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0.2500*x(2)*x(3)-60)/(67.5-60))+...

(1-x(5))*((68.9096-1.4099*x(1)+4.3197*x(2)+...

1.6348*x(3)+1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-75)/(67.5-75))))ˆ(1/4))

%x0 = [-0.0520 0.1480 -0.8690 1 0]’;

%x0 = [0.0610 0.0500 -0.8150 1 0 ]’;

x0 = [0 0 0 0 0 ]’;

lb = [-1;-1;-1;0;0];

ub = [1;1;1;1;1];

nlcon = @(x)[((139.1192+16.4936*x(1)+17.8808*x(2)...

+10.9065*x(3)-4.0096*x(1)*x(1)-3.4471*x(2)*x(2)-...

1.5721*x(3)*x(3)+5.1250*x(1)*x(2)+7.1250*x(1)*x(3)...

+7.8750*x(2)*x(3)-120)/(170-120))

((1261.1331+268.1511*x(1)+246.5032*x(2)...

+139.4845*x(3)-83.5659*x(1)*x(1)-124.8155*x(2)*x(2)+...

199.1818*x(3)*x(3)+69.3750*x(1)*x(2)...

+94.1250*x(1)*x(3)+104.3750*x(2)*x(3)-1000)/(1300-1000))

(x(4)*((400.3846-99.6664*x(1)-31.3964*x(2)...

-73.9190*x(3)+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)...

+6.250*x(1)*x(3)+1.2500*x(2)*x(3)-400)/(500-400))+...

(1-x(4))*((400.3846-99.6664*x(1)...

-31.3964*x(2)-73.9190*x(3)+7.9327*x(1)*x(1)+...

17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-600)/(500-600)))

(x(5)*((68.9096-1.4099*x(1)+4.3197*x(2)+...

1.6348*x(3)+1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-60)/(67.5-60))+...

(1-x(5))*((68.9096-1.4099*x(1)+4.3197*x(2)+1.6348*x(3)+...

1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-75)/(67.5-75)))];

cl=[0 0 0 0]’;

cu=[1 1 1 1]’;

xtype=’CCCBB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)
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Appendix D. MATLAB/NOMAD Implementation of a Chemical process optimization
problem

clc

fun=@(x)(-( 0.7*((79.940+0.995*x(1)+0.515*x(2)-0.1376*x(1)*x(1)-1.001*x(2)*x(2)+...

0.250*x(1)*x(2)-78.5)/(80-78.5))*...

(0.2*x(3)*((69.552-0.948*x(2)-6.598*x(2)*x(2)-62)/(65-62))+...

0.2*(1-x(3))*((69.552-0.948*x(2)-6.598*x(2)*x(2)-68)/(65-68)))*...

0.1*((3386.2+205.10*x(1)+177.4*x(2)-3450)/(3100-3450))))

%x0 = [0.1723 -0.8516 0]’;

x0 = [0 0 0]’;

lb = [-1;-1;0];

ub = [1;1;0];

nlcon = @(x) [ 0.7*((79.940+0.995*x(1)+0.515*x(2)-0.1376*x(1)*x(1)-1.001*x(2)*x(2)+...

0.250*x(1)*x(2)-78.5)/(80-78.5))

(0.2*x(3)*((69.552-0.948*x(2)-6.598*x(2)*x(2)-62)/(65-62))+...

0.2*(1-x(3))*((69.552-0.948*x(2)-6.598*x(2)*x(2)-68)/(65-68)))

0.1*((3386.2+205.10*x(1)+177.4*x(2)-3450)/(3100-3450))];

cl = [0 0 0]’;

cu=[1 1 1]’;

xtype=’CCB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)
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