
Journal of Data Analytics and
Artificial Intelligence Applications,

D3AI 1, 1 (January 2025): 110–122

https://doi.org/10.26650/d3ai.001

Journal of Data Analytics and
Artificial Intelligence Applications

Submitted: 19.07.2024
Revision Requested: 07.10.2024

Last Revision Received: 20.11.2024
Accepted: 27.11.2024

Published Online 23.01.2025

Review Article Open Access

Machine Learning Implementation in Automated Software
Testing: A Review

Normi Sham Awang Abu Bakar ¹

¹ International Islamic University Malaysia, Departmemt of Computer Science, Kulliyyah of ICT, Kuala Lumpur, Malaysia

Abstract The integration of Machine Learning (ML) in automated software testing represents a transformative
approach aimed at enhancing the efficiency, accuracy, and scope of testing processes. This paper explores
the theoretical and practical aspects of employing ML techniques within the realm of software testing,
focusing on key areas such as test case generation, defect prediction, and test suite optimisation. Through
a comprehensive literature review and case studies, this study illustrates the potential benefits associated
with ML-driven testing methodologies. The findings indicate that ML can significantly reduce manual
intervention and improve defect detection rates, thereby facilitating more reliable software delivery.
This paper also addresses the benefits of ML implementation in automated testing and future research
directions to bridge existing gaps and further leverage ML in software testing.

Keywords Artificial intelligence • automated testing • software testing activities • machine learning algorithm

Citation: Normi Sham Awang Abu Bakar. 2025. Machine Learning Implementation in Automated Software Testing:
A Review. Journal of Data Analytics and Artificial Intelligence Applications 1, 1 (January 2025), 110-122. https://doi.
org/10.26650/d3ai.001
This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License.
2025. Abu Bakar, N. S.
Corresponding author: Normi Sham Awang Abu Bakar nsham@iium.edu.my

Journal of Data Analytics and Artificial Intelligence Applications
https://d3ai.istanbul.edu.tr/
e-ISSN: 0000-0000

110

https://iupress.istanbul.edu.tr/
https://doi.org/10.26650/d3ai.001
https://orcid.org/0000-0002-8069-3323
https://orcid.org/0000-0002-8069-3323
mailto:nsham@iium.edu.my
mailto:nsham@iium.edu.my
https://doi.org/10.26650/d3ai.001
https://doi.org/10.26650/d3ai.001
mailto:nsham@iium.edu.my
https://d3ai.istanbul.edu.tr/

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

1. INTRODUCTION

A fundamental component of the software development lifecycle has always been software testing, or ST.
However, software has grown in size and complexity as it has become more widely used [1], posing new
difficulties for software testing procedures [2]. Consequently, there is interest in examining how artificial
intelligence (AI) has been applied to enhance testing procedures, since AI can improve knowledge work. The
interaction between AI and ST has been the subject of numerous studies [3]. However, because each of these
fields is so vast and complex, excellent review studies typically concentrate their attention on orthogonal
choices within each of these fields.

The main goal of this paper is to explore the machine learning implementation in the automated software
testing context. In this study, the main focus is on the use of the machine learning algorithms to make the
automated testing more efficient, which will assist the software testers to focus on test executions, rather
than on test planning and design.

To achieve this goal, 34 papers were reviewed for their relevancy in both the ST and AI areas, which
discuss the AI-driven methodologies and tools to improve the efficiencies of the automated software
testing activities. In particular, the machine learning techniques are also explored to add more depth to the
understanding of the most frequently used techniques to support automated software testing.

As such, two research questions are developed for this study:

RQ1: What are the machine learning techniques frequently used to support the automated software testing
activities?

RQ2: How are the machine learning techniques being implemented in the automated software testing
activities?

The remainder of the article is organised as follows. Section 2 introduces the background and the prior
related works in this study, Section 3 describes the implementation of machine learning in automated
testing, Section 4 highlights the advantages of using AI in ST, and Section 5 concludes the findings of the
paper and discusses the future work.

2. BACKGROUND

Current research directions in Software Engineering automation could be perfectly complemented by recent
developments in generative AI. Specifically, generative AI naturally pairs well with automated test data
generation. Despite the generative AI approach’s potential to produce highly human-readable, domain- and
context-aware solutions, its propensity for hallucinations makes it somewhat unreliable when used alone.
Nevertheless, automated test data generation can eliminate these delusional features of AI-based solutions
while also adding the essential assurances.

There are important implications regarding the recent findings that generative AI models can exhibit
robust emergent behaviours [4], [5]. Their behaviour is therefore both powerful and inherently difficult to
understand. Because the emergent behaviour of the models cannot be cross-checked against a ground
truth, it may be problematic in applications lacking a ground truth, such as general inquiries about arbitrary
facts about reality. However, for software engineering tasks like code enhancement and testing, we have an
extremely reliable ground truth: the execution of the improved code or the recommended test.

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 111

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

2.1. Artificial Intelligence

Despite the fact that there are numerous definitions of AI, the definition given in [6] is used for the purposes
of this investigation: “AI is a generic term that refers to any machine or algorithm that is capable of observing
its environment, learning, and based on the knowledge and experience gained, taking intelligent action or
proposing decisions. There are many technologies that fall under this broad AI definition. At the moment,
ML techniques are the most widely used.”

The AI domain dealing with the ability of systems to automatically learn, decide, predict, adapt and react
to changes and improve from experience, without being explicitly programmed, is the learning domain [7].
According to the AI Watch report, there are five core scientific domains:

2.1.1. Reasoning

The field of artificial intelligence studies methods for turning data into knowledge and drawing conclusions
from it. Knowledge representation, automated reasoning, and common sense reasoning are the three sub-
domains that make up this domain.

2.1.2. Planning

The area of artificial intelligence that focuses on creating and implementing strategies for performing tasks,
usually carried out by unmanned vehicles, intelligent agents, and autonomous robots. In this field, strategies
are distinguished by intricate solutions that need to be found and refined in a multidimensional environ-
ment. This domain consists of three closely related sub-domains: searching, optimisation and planning and
scheduling. The optimisation of the search for solutions to scheduling and planning issues is the focus of
these sub-domains.

2.1.3. Learning

The branch of artificial intelligence that deals with a system’s natural capacity to learn, make decisions,
forecast outcomes, adjust to changes, and grow through experience—all without the need for explicit
programming. Machine learning (ML)-related concepts are primarily used in the construction of the corre-
sponding branch of the resulting taxonomy.

2.1.4. Communication

The field of artificial intelligence deals with the recognition, processing, comprehension, and creation of data
from spoken and written human communication. The field of natural language processing (NLP) primarily
deals with this domain [5].

2.1.5. Perception

This field indicates a system’s capacity to perceive its surroundings through its hearing and vision, such as
computer vision.

2.2. Machine Learning Techniques

Machine learning (ML) is the science of getting computers to learn and act like humans do. It uses algorithms
and mathematical models to progressively improve their performance on a specific task [8]. In essence,
machine learning (ML) is the process of identifying patterns in data and using that knowledge to solve
problems with regression or classification. The representation of the data that the machine learning algo-
rithms are given has a major impact on how well they perform. In fact, machine learning algorithms “learn”

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 112

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

how to accomplish certain tasks through a training phase using training datasets, which are representative
sample data [1].

Machine learning can handle unsupervised learning problems (like clustering or dimensionality reduction)
where no ground truth is provided, as well as supervised learning problems (like classification and regres-
sion) where training sets are annotated (or labelled) with the ground truth values. Reinforcement learning
(RL) algorithms are based on a feedback-directed mechanism that allows them to continuously adapt to
their operating environment. To maximise an expected cumulative reward function, the algorithm makes a
decision, considers the effects of that decision and then modifies its approach.

Among the main ML methods that are related to ST are: [7]:

(i) artificial neural networks (ANN), a group of supervised algorithms that are modelled after biological
neural networks discovered in animal brains [8]. It is necessary to observe the input and expected
output data and establish the probability-weighted associations between the two to train a neural
network. The network's data structure, which is composed of layers of connected perceptions, then
stores these associations [9].

(ii) boosting is a group meta-algorithm for minimising the components of bias and variance error [10],

(iii) classification, a supervised task that includes the process of training a model on a population of
instances labelled with a discrete set of labels yields a set of predicted labels for a given collection
of unobserved instances [11].

(iv) clustering, given a similarity function for an unsupervised task, objects are grouped into clusters
based on how much more similar they are to one another than they are to objects in other clusters [12].

(v) convolutional neural networks (CNN), a particular neural network where at least one layer substitutes
convolution for general matrix multiplication [13].

(vi) decision trees, a family of classification and regression algorithms that learn the hierarchical struc-
tures of fundamental decision rules from the data. The resulting models can be visualised as trees,
where nodes represent decision rules and leaf nodes represent outcomes [14], [15].

(vii) probabilistic models, a family of classifiers that can forecast a probability distribution across a range
of classes given an observation of an input [16], [17].

(viii) reinforcement learning, the algorithms address the “problem faced by an agent that must learn
behaviour through trial-and-error interactions with a dynamic environment” and one of the core
paradigms of machine learning [18].

(ix) regression, with a set of mathematical techniques, data scientists can forecast a continuous outcome
based on the value of one or more predictor variables [19].

(x) supervised learning, a paradigm for machine learning when the available data is limited to labelled
examples [20].

(xi) support vector machines (SVM), supervised learning algorithms that, after the input features are non-
linearly mapped to a very high-dimension feature space, build a linear decision surface to generate
models for classification and regression analysis [21].

(xii) unsupervised learning, a basic machine learning paradigm in which computers attempt to identify
patterns in unlabelled data [20].

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 113

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

The machine learning techniques discussed previously are summarised in Figure 1.

Figure 1. Machine Learning Techniques

2.3. Software Testing

Software Testing is defined by the 29119-1-2013 ISO/IEC/IEEE International Standard as: “A process made
by a set of interrelated or interacting activities aimed at providing two types of confirmations: verification
and validation” [22]. Validation proves that the work item can be used by users for their particular tasks,
while verification verifies that a given software product (work item or test item) satisfies the specified
requirements.

In this study, the ST domain that will be investigated is the Testing Activities. This ST domain describes
the tasks that testing teams and testers can complete into precise, controlled processes. To guarantee that
the test objectives are satisfied in an economical manner, these activities range from test planning to test
output evaluation.

Among the testing activities identified in this study are:

(i) Test Case Generation whose goal is to create executable test cases according to the specific testing
methods and the amount of testing that needs to be done.

(ii) Test Planning is a fundamental activity of the ST process; it encompasses staff coordination, test
equipment and facility availability, test-related documentation creation and upkeep, and scheduling
of additional testing activities.

(iii) Test Results Evaluation is performed to determine if the testing was carried out successfully.
“Successful” usually refers to the software operating as anticipated and producing no significant
unexpected results. Unexpected results aren’t always bad; occasionally, they turn out to be noise.
An analysis and debugging effort is required to isolate, identify, and describe a fault before it can
be fixed.

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 114

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

(iv) Test Execution symbolises both running test cases and documenting the outcomes of those runs.
A fundamental tenet of scientific experimentation should be applied when conducting tests: all
procedures should be carried out and recorded in a way that makes it possible for another individual
to repeat the findings.

(v) Test Oracle Definition is the process carried out to assist in the creation of test oracles or to generate
them automatically.

(vi) Test Case Design and Specification is carried out to define or design the testing cases. The require-
ment analysis of the system being tested is typically the first step in this process.

(vii) Test Case Optimization/ Prioritisation/Selection is carried out to select, prioritise, and reduce test
cases for execution in an optimal manner [23].

(viii) Test Data Definition (test data generation) is the process that generates the test case data [13].

2.4. Automated Testing

Writing a programme in any programming or scripting language that uses an external automation helper
tool to replicate the manual test case steps is known as software testing automation. It entails developing
toolkits for testing the implemented source code. Its objective is to increase the automation of the testing
procedures. The tasks associated with development are programme development and test script writing;
the former relates to the application itself, while the latter is concerned with the scripts that will be utilised
to test the application [23].

Software test automation is defined by Dustin et al. as “management and performance of test activities, to
include the development and execution of test scripts so as to verify test requirements, using an automated
test tool”. In theory, test automation should be seen as a more all-encompassing concept that includes other
tasks in addition to automated test scripting and execution during the software testing process.

Because testing is a repetitive process and it is advised to test every scenario, automation is crucial. Test
automation will boost productivity and expand test coverage. Automated testing allows for the testing of
different input values, conditions, and repeated execution of the tests. There will be a reduction in the
testing time and resources. There are many tools available to automate acceptance, system, and functional
tests. Watir, JMeter, and Selenium are a few of them.

3. MACHINE LEARNING TECHNIQUES IN AUTOMATED SOFTWARE TESTING

The fundamentals of AI testing are based on the idea of “automatic abstraction of application and test
logic” [24]. Intelligent learning agents, which are capable of autonomously perceiving and responding to their
surroundings, can help achieve this. By investigating the functionality and understanding the operation of
the application, they can plan and develop the test cases on the target system. Ultimately, they can run the
tests and analyse the test findings. The agents can operate at various levels of hierarchy and are arranged
with other agents.

To answer both RQ1 and RQ2, 34 papers have been reviewed and the main keywords for the paper search
are ("AI" OR "artificial intelligence" OR "ML" OR "machine learning") AND ((test* AND (automated OR

automation)) AND (“software engineering” OR “software”).

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 115

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

Test frameworks for artificial intelligence (AI) can be broadly applied to test both cross-domain and multiple
applications within a domain. A requirement for the test "library of the common user flows" is that the AI test
framework be designed to function with both cross-domain applications and multiple applications within
the domain as a general framework. The actions and the elements are interconnected in this library. The AI
agent can query the database to find the test cases for a particular type of element when it sees one in an
application that it can interact with.

This section focuses on the results of the paper review on the topic under study, which is the implementation
of the machine learning techniques in automated software testing. From the articles found on the topic, the
machine learning techniques are divided into several categories, as shown in Table 1. In addition, they were
mapped into the relevant software testing activities, as reported in the articles.

Table 1 depicts the mapping between the machine learning techniques in the software testing activities,
where the corresponding articles highlighted in the table reported the implementation of various tech-
niques of machine learning in software testing. Specifically, artificial neural networks have been applied to
various testing tasks, including oracle definition, test-case generation, test-case refinement, and test-case
evaluation; studies [25] and [26] covered these tasks and found that machine learning algorithms resulted in
predicted output oracles, metamorphic relations, and test verdicts. Nearly all research uses a supervised or
semi-supervised methodology, training models (e.g., neural networks, support vector machines, adaptive
boosting, and decision trees) on labelled system executions or code metadata.

Table 1. Machine learning techniques in software testing
Artificial
neural
network

Boosting Classification Clustering
Convolutional
neural
network

Decision
trees

Probabilistic
model

Reinforcement
learning

Regression
Supervised
learning

Support
vector
machine

Unsupervised
learning

Test Case
Generation

[24] [24] [24] [24]

Test Planning [5] [25]

Test Oracle
Definition

[5]
[24]
[26]

[26] [25] [24] [25] [25] [26] [25]
[26] [24]

Test Case
Design and
Specification

[25] [25] [25] [25]

Test Case
Optimisation/
Prioritization/
Selection

[28] [28] [25][27]
[28]

[25]
[27]
[28]

[25]
[28] [24][29] [25] [27]

[28]
[27]
[28]

[25]
[28] [28] [25][28]

Test Results
Evaluation

[5] [25] [25] [25] [25]

Test Data
Definition

[26] [24] [24] [26] [26] [26]

Test Execution [24] [24] [24]

Furthermore, Garousi et al. [5] found that, when compared to test oracles created using current conventional
methods, those created using artificial neural networks for the Test Oracle Definition activity are more effec-
tive, efficient, and reusable. Furthermore, the primary benefits of utilising machine learning and artificial
neural networks were noted by Durelli et al. [25] as being their scalability and low requirement for human
intervention. According to Durelli et al. [25] and Fontes & Gay [26], the primary challenge encountered by
researchers attempting to use artificial neural networks and machine learning to address software testing

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 116

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

issues is the requirement for a significant quantity of high-quality training data, which is essential for
machine learning algorithms to perform as intended.

Khatibsyarbini et al. [27] also claimed that based on the publication trend of ML technique applied to Test
Case Prioritisation, the most popular ML technique category was classification, followed by clustering and
reinforcement learning as the least preferred ML technique category. Additionally, they stated that the
most popular machine learning technique is classification because it uses historical data and yields high
average percentages of faults detected and effective code coverage. They also emphasised that reinforce-
ment learning needs to be improved and given more structure before it can be taught in undergraduate
programmes.

According to Pan et al. [28], Reinforcement learning, clustering, and classification AI approaches have been
widely used for test case optimisation, prioritisation and selection. According to their report, reinforcement
learning, unsupervised learning (clustering), and supervised learning (ranking models) are the three main
machine learning techniques used for test case prioritisation and selection. Any machine learning method
that depends on ranking or classification models is called supervised learning.

In addition, the methods that use reinforcement learning to rank test cases based on their length, past
performance, and failure history have also been reported by Durelli et al. [25]. Furthermore, Pan et al.
highlighted that although supervised learning, unsupervised learning, reinforcement learning, and natural
learning processing are the four main machine learning (ML) techniques used for test case selection
and prioritisation, various combinations of these techniques have also been reported in the literature.
To improve the test case prioritisation performance, supervised or unsupervised learning was integrated
with NLP-based techniques, which are frequently used for feature preprocessing. They also emphasised
how difficult it is to draw trustworthy conclusions about the effectiveness of ML-based test case selection
and prioritisation due to the absence of appropriate publicly available datasets and standard evaluation
processes that are derived from the execution of real-world case studies.

4. THE IMPACT OF AI IN ST

The field of artificial intelligence for software testing, or AIST, is a young one that aims to create AI tools
for software testing, test methods for AI systems, and create software that can self-test and/or self-heal.
The process of manually encoding a predetermined set of programme input actions and output verification
steps into a script that can be run by a machine is commonly referred to as “test automation” in software
testing [10]. A log of the results is created, saved, and linked to the run after it is executed. The test execution
and logging are the only parts of this process that are automated. To properly test software, human testers
must set testing objectives, gain the knowledge required, create and specify comprehensive test scenarios,
write test automation scripts, perform scenarios that cannot be automated, and evaluate test results to
identify potential project risks.

Researchers and practitioners have begun looking into how AI and ML can be used to create the next
generation of testing tools, since the majority of testing is currently focused on manual testing and the
manual writing of test scripts [3]. The idea is to use big data, cloud computing, and AI/ML advancements to
bridge the gap between human-present and machine-driven testing.

AI-driven testing has several benefits, including being robust, scalable, adaptable, reusable, and all-purpose.
Machine learning techniques can be used to solve several issues. For instance, practically any mathematical

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 117

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

function can be approximated using a straightforward feed-forward neural network with a single hidden
layer [20]. Consequently, various testing types, applications, and domains can benefit from the use of AI-
driven testing.

Because AI-driven tests are typically not tied to any particular application, they can be applied to different
applications within the same domain (like add item to cart) or to different domains (like login). By creating
new tests every time, the pesticide paradox—a narrow scope of fault detection brought on by repeatedly
running the same tests—can be avoided. Finally, accelerated test coverage is a key advantage of AI-driven
testing, which is achieved by fusing large-scale test execution in the cloud with AI-based test generation [3].

Despite the promising results, the implementation of ML in automated software testing is not without
challenges. The quality and quantity of data, the interpretability of ML models, and the integration of ML
tools with existing testing frameworks are critical factors that need to be addressed. Moreover, the contin-
uous evolution of software systems necessitates ongoing adaptation and learning, which poses additional
challenges for ML-based testing solutions.

4.1. Case Study of AI implementation in ST

4.1.1. One of the AI technique implementations in ST is the usage of Reinforcement Learning for Test Case
Optimisation. The details are

Objective: Optimise test case selection and prioritisation based on failure history and test execution perfor-
mance. Furthermore, to prioritise and optimise test cases in regression testing by learning from historical
test execution data, focusing on factors such as failure history, execution cost, and risk.

4.1.2. Implementation:

• Reinforcement learning algorithms were used to rank the test cases.

• Factors such as past failures, execution cost, and risk level were considered for prioritisation.

4.1.3. Outcomes:

• Higher fault detection rates.

• Reduced testing efforts and costs by focusing on critical test cases first.

• Example Application: Used in regression testing scenarios where frequent updates require selective
testing.

4.1.4. Implementation Steps

4.1.4.1. Problem Formulation
The task is modelled as a reinforcement learning problem:

• State (S): Represents the attributes of the test case, such as the historical success rate, execution cost,
and risk factor.

• Action (A): Decide whether to execute or skip a test case.

• Reward (R): A numeric value based on the detection of critical defects and cost savings (e.g., 1 for a defect
found, −1 for skipping a necessary test).

4.1.4.2. Dataset
The input data includes historical test case executions:

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 118

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

• Features: Test case ID, previous pass/fail outcomes, execution time, code coverage metrics, and defect
severity.

• Labels: Whether to execute (1) or skip (0) the test case.
4.1.4.3. Results

• Output: The list of test cases prioritised for execution based on their predicted effectiveness.

• Benefits:

‣ Ensures that critical test cases with higher defect detection probability are executed first.

‣ Reduces the unnecessary execution of low-priority test cases, saving time and resources.

5. CONCLUSION AND FUTURE WORK

The integration of machine learning (ML) into automated software testing has shown significant potential
in enhancing the efficiency and effectiveness of the software development lifecycle. This paper explored
various ML techniques and their applications in different phases of software testing, including test case
generation, test suite optimisation, defect prediction, and automated test script maintenance. By leveraging
ML algorithms, software testing processes can be more adaptive and intelligent, leading to improved
detection of defects, reduced testing time, and optimised resource allocation.

The reviews presented in this paper demonstrate the feasibility and advantages of using ML in automated
software testing. Specifically, the use of supervised learning for defect prediction and clustering algorithms
for test case prioritisation has proven to be effective in identifying high-risk areas of the software and opti-
mising testing efforts. In addition, reinforcement learning techniques have shown promise in automating
the generation and maintenance of test scripts, reducing the manual effort required and enhancing test
coverage.

To further advance the field of ML in automated software testing, several areas warrant further research and
development:

1. Data Quality and Availability: Ensuring high-quality and diverse datasets is crucial for training robust
ML models. Future research should focus on developing methods for generating synthetic test data,
handling imbalanced datasets, and improving data preprocessing techniques.

2. Model Interpretability and Explainability: As ML models become more complex, their interpretability
becomes a significant concern. Future work should aim at developing techniques that provide insights
into the decision-making process of ML models, enabling testers to understand and trust the predictions
and recommendations made by these models.

3. Integration with DevOps Practises: Integrating ML-based testing solutions with modern DevOps practises
can enhance continuous integration and continuous deployment (CI/CD) pipelines. Research should
explore ways to seamlessly incorporate ML algorithms into these pipelines, ensuring that testing
processes remain agile and responsive to changes in the software.

4. Scalability and Performance Optimisation: As software systems grow in complexity, the scalability of
ML-based testing solutions becomes critical. Future research should investigate ways to optimise the
performance of ML algorithms, ensuring that they can handle large-scale software projects efficiently.

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 119

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

5. Cross-Project Learning and Transfer Learning: Leveraging knowledge from previous projects can enhance
the performance of ML models in new projects. Future work should explore transfer learning techniques
and cross-project learning approaches to make ML models more generalisable and applicable across
different software domains.

6. Human-AI Collaboration: The collaboration between human testers and ML models can lead to more
effective testing strategies. Research should focus on developing interactive tools that facilitate this
collaboration, allowing testers to leverage the strengths of both human expertise and ML capabilities.

The suggestions for overcoming data quality challenges and enhancing model interpretability are given
below:

5.1. Overcoming Data Quality Challenges

5.1.1. Ensuring High-Quality Data

5.1.1.1. Data Preprocessing
• Remove noise and irrelevant features through normalisation, scaling, and feature selection techniques.

• Detect and handle outliers using methods like Isolation Forest or Z-score analysis.
5.1.1.2. Imbalanced Data Handling

• Use techniques like Synthetic Minority Oversampling Technique (SMOTE) to balance datasets when
defect-prone areas are underrepresented.

• Employ cost-sensitive learning to penalise misclassifications of critical data.
5.1.1.3. Data Augmentation

• Generate synthetic data to compensate for the limited datasets.

• Use domain-specific methods like mutation testing to create diverse test cases.
5.1.1.4. Data Cleaning

• Automate error detection in datasets (e.g., duplicate entries, missing labels).

• Verify correctness through manual reviews of critical entries.

5.2. Enhancing the Model Interpretability

5.2.1. Explainable AI (XAI) Techniques

5.2.1.1. Local Interpretability
• Use tools such as SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable Model-Agnostic

Explanations) to explain individual predictions.

• Visualise feature importance to highlight critical attributes influencing test case selection or defect
predictions.

5.2.1.2. Global Interpretability
• Employ decision tree models or surrogate models to approximate complex models like neural networks

for easier understanding.

• Provide feature summary plots to show the overall trends in the model's decision-making process.

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 120

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

Peer Review Externally peer-reviewed.
Conflict of Interest The author has no conflict of interest to declare.

Grant Support The author declared that this study has received no financial support.

Author Details Normi Sham Awang Abu Bakar
¹ International Islamic University Malaysia, Departmemt of Computer Science, Kulliyyah of ICT, Kuala
Lumpur, Malaysia

 0000-0002-8069-3323

References

[1] Gerhard Lakemeyer and Bernhard Nebel. 1994. Foundations of Knowledge Representation and Reasoning. Springer, Berlin, 1–12.
https://doi.org/10.1007/3-540-58107-3_1

[2] Santiago Matalonga, Domenico Amalfitano, Andrea Doreste, Anna Rita Fasolino, and Guilherme Horta Travassos. 2022. Alterna-
tives for testing of context-aware software systems in non-academic settings: Results from a rapid review. Info. Softw. Technol.
149 (2022), 106937. https://doi.org/10.1016/j.infsof.2022.106937

[3] Tariq M. King, Jason Arbon, Dionny Santiago, David Adamo,Wendy Chin, and Ram Shanmugam. 2019. AI for testing today and
tomorrow: Industry perspectives. In Proceedings of the IEEE International Conference On Artificial Intelligence Testing (AITest’19).
IEEE, 81–88. https://doi.org/10.1109/AITest.2019.000-3

[4] P. Paygude and S. D. Joshi. 2020. Use of evolutionary algorithm in regression test case prioritization: A review. In Proceeding
of the International Conference on Computer Networks, Big Data and IoT (ICCBI’18). Lecture Notes on Data Engineering and
Communications Technologies, A. Pandian, T. Senjyu, S. Islam, and H.Wang (Eds.). Vol. 31, Springer, Cham, 56–66. https://doi.org/
10.1007/978-3-030-24643-3_6

[5] Vahid Garousi, Sara Bauer, and Michael Felderer. 2020. NLP-assisted software testing: A systematic mapping of the literature.
Info. Softw. Technol. 126 (2020), 106321. https://doi.org/10.1016/j.infsof.2020.106321

[6] M. Craglia, A. Annoni, P. Benczur, P. Bertoldi, B. Delipetrev, G. De Prato, C. Feijoo, E. Fernandez Macias, E. Gomez Gutierrez, M.
Iglesias Portela, H. Junklewitz, M. Lopez Cobo, B. Martens, S. Figueiredo Do Nascimento, S. Nativi, A. Polvora, J. I. Sanchez Martin,
S. Tolan, I. Tuomi, and L. Vesnic Alujevic. 2018. Artificial Intelligence: A European Perspective. Technical Report KJ-NA-29425-EN-
N. Luxembourg. https://doi.org/10.2760/11251

[7] Domenico Amalfitano, Stefano Faralli, Jean Carlo Rossa Hauck, Santiago Matalonga, and Damiano Distante. 2023. Artificial Intel-
ligence Applied to Software Testing: A Tertiary Study. ACM Comput. Surv. 56, 3, Article 5 (October 2023), 38 pages.https://doi.org/
10.1145/3616372

[8] J. J. Hopfield. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci.
U.S.A. 79, 8 (Apr. 1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554

[9] David E. Rumelhart, BernardWidrow, and Michael A. Lehr. 1994. The basic ideas in neural networks. Commun. ACM 37, 3 (Mar.
1994), 87–92. https://doi.org/10.1145/175247.175256

[10] Leo Breiman. 2000. Bias, Variance, and Arcing Classifiers. Technical Report 460, Statistics Department, University of California.
[11] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. 2006. Machine learning: A review of classification and combining techniques.

Artific. Intell. Rev. 26, 3 (Nov. 2006), 159–190. https://doi.org/10.1007/s10462-007-9052-3
[12] Dongkuan Xu and Yingjie Tian. 2015. A comprehensive survey of clustering algorithms. Ann. Data Sci. 2, 2 (2015), 165–193. https://

doi.org/10.1007/s40745-015-0040-1
[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. Retrieved from http://www.deeplearningb

ook.org
[14] Bernard M. E. Moret. 1982. Decision trees and diagrams. ACM Comput. Surv. 14, 4 (Dec. 1982), 593–623. https://doi.org/10.1145/

356893.356898

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 121

https://orcid.org/0000-0002-8069-3323
https://orcid.org/0000-0002-8069-3323
https://doi.org/10.1007/3-540-58107-3_1
https://doi.org/10.1016/j.infsof.2022.106937
https://doi.org/10.1109/AITest.2019.000-3
https://doi.org/10.1007/978-3-030-24643-3_6
https://doi.org/10.1007/978-3-030-24643-3_6
https://doi.org/10.1016/j.infsof.2020.106321
https://doi.org/10.2760/11251
https://doi.org/10.1145/3616372
https://doi.org/10.1145/3616372
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1145/175247.175256
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/356893.356898
https://doi.org/10.1145/356893.356898

Machine Learning Implementation in Automated Software Testing: A Review Abu Bakar, 2025

[15] D. Opitz and R. Maclin. 1999. Popular ensemble methods: An empirical study. J. Artific. Intell. Res. 11 (Aug. 1999), 169–198. https://
doi.org/10.1613/jair.614

[16] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning. Springer, New York. https://
doi.org/10.1007/978-0-387-84858-7

[17] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural
Netw. 5, 2 (1994), 157–166. https://doi.org/10.1109/72.279181

[18] L. P. Kaelbling,M. L. Littman, and A.W. Moore. 1996. Reinforcement learning: A survey. J. Artific. Intell. Res. 4 (1996), 237–285. https://
doi.org/10.1613/jair.301

[19] G. Udny Yule. 1897. On the theory of correlation. J. Roy. Stat. Soc. 60, 4 (1897), 812–854. https://doi.org/10.1111/j.2397-2335.1897.tb
02784.x

[20] Stuart Russell and Peter Norvig. 2016. Artificial Intelligence: A Modern Approach. Pearson. Retrieved from https://
books.google.it/books?id=XS9CjwEACAAJ

[21] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (Sep. 1995), 273–297. https://doi.org/10.
1007/BF00994018

[22] International Organization for Standardization. 2013. ISO/IEC/IEEE international standard-software and systems engineering–
software testing–Part 1: Concepts and definitions. ISO/IEC/IEEE 29119-1:2013(E) (2013), 64. https://doi.org/10.1109/IEEESTD.2013.
658853

[23] George Candea, Stefan Bucur, and Cristian Zamfir. 2010. Automated software testing as a service. In Proceedings of the 1st ACM
Sysmposium on Cloud Computing (SOCC ‘10). Assocoation for Computing Machinery, New York, NY, USA, 155-160. https://doi.org/
10.1145/1807128.1807153

[24] Anna Trudova, Michal Dolezel, and Alena Buchalcevova. 2020. Artificial intelligence in software test automation: A systematic
literature review. In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE’20). INSTICC, SciTePress, 181–192. https://doi.org/10.5220/0009417801810192

[25] Vinicius H. S. Durelli, Rafael S. Durelli, Simone S. Borges, Andre T. Endo, Marcelo M. Eler, Diego R. C. Dias, and Marcelo P. Guimar.es.
2019. Machine learning applied to software testing: A systematic mapping study. IEEE Trans. Reliabil. 68, 3 (2019), 1189–1212.
https://doi.org/10.1109/TR.2019.2892517

[26] Afonso Fontes and Gregory Gay. 2021. Using machine learning to generate test oracles: A systematic literature review. In
Proceedings of the 1st International Workshop on Test Oracles (TORACLE’21). ACM, New York, NY, 1–10. https://doi.org/10.1145/
3472675.3473974

[27] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N. A. Jawawi, Muhammad Luqman Mohd Shafie, Wan Mohd Nasir Wan-
Kadir, Haza Nuzly Abdul Hamed, and Muhammad Dhiauddin Mohamed Suffian. 2021. Trend application of machine learning in
test case prioritization: A review on techniques. IEEE Access 9 (2021), 166262–166282. https://doi.org/10.1109/ACCESS.2021.3135508

[28] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, and Lionel Briand. 2021. Test case selection and prioritization using machine
learning: A systematic literature review. Empir. Softw. Eng. 27, 2 (Dec. 2021), 29. https://doi.org/10.1007/s10664-021-10066-6

[29] Gerson Barbosa, Erica Ferreira de Souza, Luciana Brasil Rebelo dos Santos, Marlon da Silva, Juliana Marino Balera,and Nandamudi
Lankalapalli Vijaykumar. 2022. A systematic literature review on prioritizing software test cases using Markov chains. Info. Softw.
Technol. 147 (2022), 106902. https://doi.org/10.1016/j.infsof.2022.106902

Journal of Data Analytics and Artificial Intelligence Applications, 1, 1 (January 2025): 110–122 122

https://doi.org/10.1613/jair.614
https://doi.org/10.1613/jair.614
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1109/72.279181
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301
https://doi.org/10.1111/j.2397-2335.1897.tb02784.x
https://doi.org/10.1111/j.2397-2335.1897.tb02784.x
https://
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/IEEESTD.2013.658853
https://doi.org/10.1109/IEEESTD.2013.658853
https://doi.org/10.1145/1807128.1807153
https://doi.org/10.1145/1807128.1807153
https://doi.org/10.5220/0009417801810192
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1145/3472675.3473974
https://doi.org/10.1145/3472675.3473974
https://doi.org/10.1109/ACCESS.2021.3135508
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1016/j.infsof.2022.106902

	INTRODUCTION
	BACKGROUND
	Artificial Intelligence
	Reasoning
	Planning
	Learning
	Communication
	Perception

	Machine Learning Techniques
	Software Testing
	Automated Testing

	MACHINE LEARNING TECHNIQUES IN AUTOMATED SOFTWARE TESTING
	THE IMPACT OF AI IN ST
	Case Study of AI implementation in ST
	One of the AI technique implementations in ST is the usage of Reinforcement Learning for Test Case Optimisation. The details are
	Implementation:
	Outcomes:
	Implementation Steps
	Problem Formulation
	Dataset
	Results

	CONCLUSION AND FUTURE WORK
	Overcoming Data Quality Challenges
	Ensuring High-Quality Data
	Data Preprocessing
	Imbalanced Data Handling
	Data Augmentation
	Data Cleaning

	Enhancing the Model Interpretability
	Explainable AI (XAI) Techniques
	Local Interpretability
	Global Interpretability

	References

