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Abstract

We transfer vertical lifts and complete lifts of some tensor fields from the semi-tangent bundle M to the semi-cotangent bundle r*M using a
musical isomorphism between these bundles. In this article, we also analyze complete lift of vector and affinor (tensor of type (1, 1)) fields
for semi-tangent (pull-back) bundle zM. Finally, we study compatibility of transferring lifts with complete lifts in the semi-cotangent bundle
*M.
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1. Introduction

Let (By,g) be a smooth pseudo-Riemannian manifold of dimension m. We denote by #(B;,) and t*(B,,) the semi-tangent [9], [10], [1]
and semi-cotangent bundles [3], [4] over B, with local coordinates (x4,x%,x%) = (x4,x%,y%*) and (x*,x% X%) = (x*,x% pq), a,b,... =
loon—ma,B,...=n—m+1,...m&,B,... = n+1,...,n+m, respectively, where y* = ya% € t:(By) and py = p;dx’ € 17 (By), Vx € By,.
We know that the mappings g” : #(By,) — 1*(By) and g : t*(B,,) — 1(B,,) between the semi-tangent and semi-cotangent bundles determine
the musical (natural) isomorphisms of any pseudo-Riemannian metric g.

The musical isomorphisms g’ and g* have respectively components

g1l = (2% x) = (3 x%,y%) + & = (48 3F)
= (80x",85x%,pg = gpa”)
and
g = <xb,xﬁ,5c1?> = <xb7xﬁ,l’ﬁ> —xf = (x,x% x®)
= (85", 85P v = g™ pp)
with respect to the local coordinates, where § is the Kronecker delta. The Jacobian of gb and g* are given by

&b 0 0

_ ox’
(&) = (A{) = (W) =1 o sk 0 (L.1)
0 Ydugse 8pa
and
59 0 0
ox! b
(¢h) = (4)) = <ﬁ> =l o & 0 (12)

0 pedpg® g%

respectively. Where I = (a, o, @), J = (bﬁ,ﬁ) .

We denote by 3% (#(By)) and 35 (¢*(B)) the modules over F (t(By,)) and F (t*(B,,)) of all tensor fields of type (p,q) on#(B,,) and t*(By,),
respectively, where F (t(B,,)) and F (t*(By;)) denote the rings of real-valued C~ —functions on #(B,,) and ¢*(B,), respectively. On the
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other hand, if X = (x"/,xo‘/ ,xal> is another system of local adapted coordinates in the semi-tangent bundle #(By,), then we have (see, for
details [1])

x4 = x4 (xb 1B,
P (xﬁ> , (1.3)
W 2

The Jacobian of (1.3) has components [1]
A AL 0

! B/
A= (Ag) = o Ay o | (1.4)
o e o
0 AB YA i
where
A% X% 9%

5= 9 e = opan

Let ©X; € S} (t(Bn)) and “F, € 31(#(B)) be complete lifts of tensor fields X € 3} (M,) and F € 31(M,) to the semi-tangent bundle
t(Bm), where M, denotes the fiber bundle [9], [11], [1] over a manifold By,. In this paper we transfer via the differential (g*b) the complete
lifts (“°X; € 3 (t(Bm)), “F € 31(t(Bw))) and some tensor fields that the y-operator is applied from the semi-tangent bundle #(B,,;) to
semi-cotangent bundle ¢ (B,,). On the other hand, we know that the semi-tangent ¢(B,,) and semi-cotangent bundles t*(B,,) are a pull-back
(induced) bundle of T(B,) and T*(B,,), respectively [2], [5], [7], [4]. We note that musical isomorphism and its applications were studied
in [8]. The main purpose of this paper is to study musical isomorphism between semi-tangent bundles and semi-cotangent bundles. Where
T (Bm) = Uyep,, Tx(Bm) and T*(By) = Uyep,, Ty (Bm) respectively denote the tangent and cotangent bundles over By, [6].

2. Transfer of vertical lifts of vector fields

Let X € 3}(M,), i.e. X = X%Jy. On putting

0
\7vXt — (Wxa)z — 0 , (2])
Xa

from (1.4), we easily see that (**X;) = A(""X;). The vector field "X is called the vertical lift of X to the semi-tangent bundle #(B,,). Then,
using (1.1) and (2.1)

&b 0 0 0 0
&VX, = o & 0 o |=1o
0 5 gy ) \ X 8paX”
0
= 0 =("pa)s
Pa

where ("' pq),- is a Liouville covector field [4] on the semi-cotangent bundle t*(B,).
3. Transfer of complete lifts of vector fields
LetX € 30 (M,) be a projectable vector field [11] with projection X = X% (x¥)d, i.e. X = X(x%, x%)9y + X%(x%) 9. Then the complete
lift “f, of X to the semi-tangent bundle #(By,) is given by [1]
fa
“X=| x¢ 3.0
YED X

with respect to the coordinates (x¢,x% x%).
Using (1.1) and (3.1), we have

8 0 0 Xa
g°X, = [ o & o X
dgpe £ a
0 y’sz‘fx 8Ba ¥8 09X
b
= xB
X%y 0agpe +8pay e X®
b
= xB

Yo ((Lx8)ep — (X *)gae — (0eX¥)gB o) + 8apyt e X*
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va

=| xP , (3.2)
Yé(Lx8)ep — Pa(dpX*)

where Ly is the Lie derivation of g with respect to X:

(Lx8)ep = X 0agep + (e X)gap +(IpX¥)gear-

In a manifold (B, g), a vector field X is called a Killing vector field if Lyg = 0. It is well known that the complete lift X, of X to the
semi-cotangent bundle t*(B,,) is given by [4]

)}'a
cc)/(‘t'; _ X«
—Pe(daX?)

with respect to the coordinates (x%,x% x%).
We have from (3.2)

82X = “Xi- +¥(Lxg),
where y(Lxg) is defined by

0
Y(lxg)=1| 0
YE(Lx8)ep

Thus, we have:

Theorem 1. Let (B, g) be a pseudo-Riemannian manifold, and let X, and “X;- be complete lifts of a vector field X € Sé(Mn) to

the semi-tangent and semi-cotangent bundles, respectively. Then the differential (pushforward) of ey, by g b coincides with Ccf(; , e
gleeX, =<X,. ifand only if X is a Killing vector field.

Theorem 2. Let XY € 3 (My). For the Lie product, we have
(R, F) = (XY,
in the semi-tangent bundle t(B,,).

(5,

Proof. If 52,? € Sé(Mn) and [Ccizacc ]

Y, are components of [°X;,“ ¥;] with respect to the coordinates (x”, x# ,xﬁ) on t(M,), then
[cc 5(; 7cc E}

B
B
we have
[ccjzhcc AY;]J — (cc?t)la’(cc?t)l _ (cc)'}t)lal(cc)?t)J.
Firstly, if / = b, we have
[cc}'(“hcc ﬁ}b _ (ccj?t)la[(ccﬁ)b _ (CC?[)I(;[(CCSZ[)IJ

(ccz)a(;a(cc?t)b + (cc)};)aaa (cci)b + (ccz)aaﬁ(mz)b
_(CCYZ)aaa(CCXt)b _ (CCYZ)(Xa(x (CCXt)b _ (CCYt)aaoT(CCXI)b
(cht)aaa (C'L'Y't)b . (cht)(xaa (cht)b
_ Xaaa (cc)"}t)b o Yaaa (cc;?l)b
= Xaaaﬂyibfyaaagb

X, Y]’

by virtue of (3.1). Secondly, if J = 8, we have
X, CXIP = (X ()P — (V) oK)
(“X1)*0a(“Y)P + (“°X) %0 (Y, )P + (“°X;) 0 (°Y; )P
(Y1) 0a(“X )P — (“V) %00 (X, )P — (“Y;) %Oz (X, )P
= (“X)%a(“Y)P — (V)% 0 (“°X,)P
= X%9u¥B _y%9,xB
x,v)P
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by virtue of (3.1). Thirdly, if J = 3, then we have

R AN O AP AR (AL AL
= (“X)"0u(“T)P + (““K) %00 (“T)P + (“K) %O (TP
—(CT) 0 K)P — (V)0 (“X)P — ()7
= X%(y$0eYP) + £ 9:X%9gy® 95 Y P
~Y%9u (Y$0eXP) — 1 0eY 95y s XP

= ySXDCaaagyﬁ +¥%(0:X%) (85Yﬁ>

a(ccg)ﬁ

VeV %00 XP — VE (9eY°) (acxﬁ)
= yEaS [X ) Y]ﬁ
by virtue of (3.1). On the other hand, we know that [)?:Y’ | have components
[X.Y]"

“XYl=| [x,yP
yE0e[X, Y|P

with respect to the coordinates (x”, xP ,xﬁ) on t(Mp).
Thus, we have ["")?,,"" 17,} =cc [ﬁ]t int(By). O

Let X and Y be a Killing vector fields on M,,. Then we have
L[ﬁ]tg = [L)?’L?]g = L)? OL}?g_L)? OL)?g =0,

ie. [)/(\,T/], is a Killing vector field. Since ¢ [)/(\5/], = [“ft,“ ?,] and ¢ [)/(\5’},* = [CC)?,* e )7,} (see [4]), from Theorem 1. and Theorem 2. we
have

Theorem 3. If)? and Y be a Killing vector fields on M,,, then
gz [cc)?hcc i}t] _ [cc}?’* ’cc Z*L
where gi is a differential (pushforward) of musical isomorphism gb.

4. Transfer of (yF), and (yT),

For any F € 31(B,,), if we take account of (1.4), we can prove that (YF), = A (yF), where (YF), is a vector field on the semi-tangent bundle
t(By) defined by

0
(vF), = (") = | o (4.1)
YR
with respect to the coordinates (x4,x%,x%) . On the other hand, vector field (YF),. on the semi-cotangent bundle ¢*(B,,) is defined by [4]:
0
(YF),- = (yF’)t* = o0
pOtha
LetT € 3%(3,,1). On putting

(), = (v1f)

t

0 0

0 0 01, 4.2)

0 0

from (1.4), we easily see that <7/T J’,/> = A}lAj, (yT J' ) ;» Where (X) o (Af,) is the inverse matrix of A.
'

Theorem 4. If F € 3}(B,,) and T € S}(By,), then

()

g
(i) g
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Proof. (i) From (1.1) and (4.1), we have:

&b 0 0 0 0
goF)y, = | 0 & 0 o |=|o
0 aiif 2Ba YeF gﬁayera
0
= 0 = (YF),-
paF¢

It is well known that (yF),. have components [4]:

0
(vF) = (YF1>z* = FY
Pal'e

with respect to the coordinates (x?,x* x¥) on the semi-cotangent bundle £*(B,,). Thus, we have (i) of Theorem 4.
(if) For simplicity we take g’ (YT), = (Y}),.. In fact,

<YT,3E>t* = 2aoB5y° T 0 = 8aoy* T p = 8ac8a88Y T p = 8acBe 8¢ TS g

= 8ac0¢ YTy p=8acY* Ty g = 8oy Ty p = 8ac 0608 Y Ty

gacfsgayaToszﬁ :8oceyaTo€Z/3 :PSTS[S :PeﬁgagToszB :PsTﬁa

Thus, we have ( g) = p,S o+ Similarly, from (1.1) and (4.2), we can easily find all other components of (}/T J) equal to zero, where
t*

I=(a,a,@), ( ,B, ) We know that (yT'),. have components on t*(B,,;) [4]:
0 0
(1), = 0 0
0 pe T
with respect to the coordinates (x*,x%,x%) . Thus, we have g, (yT), = (YT),-- O

5. Complete lift of affinor fields

Let F € 3! 1 (M) be a projectable affinor field [10] with projection F = F/S (x*)0y @ dxP, i.e. F has components

. ~\ fa(xa7xa) F“(a a)
F‘(FJ>—< "o l}g(xa) )

with respect to the coordinates (x,x*). On putting

OB o

ERCN N A

we easily see that (C”FJI,') =AbAl (CCFJI> )
t t

We call (""F J’,/> the complete lift of the tensor field F of type (1,1) to the semi-tangent bundle 7(B,, ).
t
Proof. For simplicity, weput I’ =&, J' = ' in “F J’, and take account of (1.4) and (5.1), we obtain

(CCFEf > = AZ'A,L;“F;‘ﬂLAg'Ag,"Fg +AZ AL Fg
= AL AL 0y Ff AL ARV 0o B+ AY 01y AL B
= ALY DAl FS + AL AR Y (a(,,pg) +y° (a(,,Ag) b g
_ o' 40 B o' 4o 4B o
= oA (8UrAB,>FB +y7 AL AP, (8UrFﬁ)
+y° (8(,/Ag )Ag, Fg
_ 0 o' 4B
= o (AGAGF)
= yglas/Fﬁ,.

Similarly, we can easily find another components of (”C F JI,/> . O
t
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6. Transfer of complete lifts of affinor fields

Let F be projectable affinor fields [10] on M,, with projection F' on By,. Using (1.1), (1.2) and (5.1), we have

gi <cc?;~]7)t _ A%A%CCI‘:LI/(
7 7 0
= 0 Jo 0 . 6.1)

0 y(degpe)Fe +gﬁ9y£agFo? +2pore(0ag®)FE  gpog®?Fy

Since g = (gaﬁ) andg~! = <go‘ﬁ> are pure tensor fields with respect to F', we find
8pos” Fg = gpog’ F = SF = Ff' (6.2)
and

= Y*(Jo8pe)Fo +8poy° 0cFy +8pope(0ug’ )Fe

= Y (Pugpe +9u(goF)pe — 80eIpFy ) +8poPe(0ag® ) FE

= Y 0u8ep+Y°0u(g0F)pe — PodpFy +8pore(ag®)FE

= ¥°0agep — PoIpFy +Y 0a(g0F)pe +8poPe(0ug’ ) Fe

= Yugep —PodpFy +y€8a(gsng) +8pore(dag®®)FS

= Y*0agep —PodpFa +Y° (Gugey)Fy +3° (9aFy)gey

+8pyPe(9ug®®)FY
= ¥ 0agep — PodpFs +Y°(ugey)Fj +5°(daF])gey
+8y0pe(9ag”®)Ff
= ¥ 0agep — PodpFs +Y°(agey) ] +5°(daF])gey
~8°°pe(dagyo) Fy
= ¥ 0agep — PoIpFs +Y°(agey)F] + py(9aFy)
~° (Oagyo)Fy
= Y a8ep + Pe(daFg — IpFy). (6.3)

Where I = (a,a, @), J = (b,ﬁ,ﬁ), K=(c,0,6),L=(d,0,G). Also, the component (”CFBW> of (Ccﬁ> is defined as Tachibana operator
t t

¢’Fg of F,ie.,

0o80p = Fadygop — o (30 F )op +8ypd6Fa + goypFa.-

Substituting (6.2) and (6.3) into (6.1), we obtain

. (E Fy 0
g (<) =| o FE o |- 6.4)

0 ¥ 0agep+pe(duFf —IpFS) FY

It is well known that the complete lift (“f ) of FES } (M) to the semi-cotangent bundle ¢*(By,) is given by [4]
o

A
ccr cc/\? B
( F)f( FJ)*: 0 Fl 0 (6.5)
4 4 £ € a
0 pe(duFf —IpF§) F

with respect to the coordinates (x9,x%,x%) on t*(By,). From (6.4) and (6.5), we easily obtain

& (<F) = (“F),_+v(0re),

where
0 0 0
v(grg) =| O 0 0
0 Y¢agep O

Finally, we can prove
Theorem 5. Let (Ccf )t and (“Fv ) . be complete lifts of Fe3 % (M) to the semi-tangent and semi-cotangent bundles, respectively. Then
the differential of (“ﬁ) by gb coincides with (”Cﬁ) Lie g (C”ﬁ) = (CCI;> if and only if org = 0.

t r t r
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