Electronic Supporting Information (ESI)

Synthesis, Characterization, and Photophysical Properties of Novel BODIPY and [Zn(dipyrrin)₂] Complexes from an Asymmetrical Dipyrromethene Ligand

Gökhan SEVİNÇ

Bilecik Seyh Edebali University, Faculty of Science, Department of Chemistry, TR 11100 Bilecik, Turkiye

Contents

Page

Table S1. Optimized structure, Natural transition orbitals (NTOs) fo	r the singlet energy
transitions $(S_0-S_1, S_0-S_2, S_0-S_3)$ of the NafmetBDP (isosurface value = 0.02	au), centroids of hole
and electron ($C_{hole} \& C_{ele,}$ isosurface value = 0.0003 au)	1
Figure S1. Comparison of experimental and theoretical normalized abso	rption spectra for the
compounds: (a) NafmetBDP and (b) NafmetZn	1
Figure S2. ¹ H-NMR spectrum of NafmetBDP in CDCI ₃ (500 MHz)	2
Figure S3. ¹³ C-NMR spectrum of NafmetBDP in CDCl ₃ (125 MHz)	2
Figure S4. HRMS-TOF-ESI spectrum of NafmetBDP	3
Figure S5. ¹ H-NMR spectrum of NafmetZn in CDCl ₃ (500 MHz)	3
Figure S6. ¹³ C-NMR spectrum of NafmetZn in CDCl ₃ (125 MHz)	4
Figure S7. HRMS-TOF-ESI spectrum of NafmetZn	4

Comm	Transition	Optimized	NTOs		
Comp	. Transition	structure	Electron	Hole	Chole & Cele
NafmetBDP	Dipole moment (μ): 5.99 Debye S ₀ -S ₁ E _E :2.17 eV t (Å): -1.683 E _c : 3.66 eV S ₀ -S ₂				
	E _E : 2.53 eV <i>t</i> (Å): 1.775 <i>E</i> _c : 3.09 eV			A A A A A A A A A A A A A A A A A A A	y the
	S₀-S₃ E _E :2.65 eV <i>t</i> (Å): 1.235 <i>E</i> _C : 3.28 eV				

Table S1. Optimized structure, Natural transition orbitals (NTOs) for the singlet energy transitions (S_0 - S_1 , S_0 - S_2 , S_0 - S_3) of the **NafmetBDP** (isosurface value = 0.02 au), centroids of hole and electron ($C_{hole} \& C_{ele}$, isosurface value = 0.0003 au)

Blue and green isosurfaces represent C_{hole} and C_{ele} functions, respectively. E_{E} and Ec represents the excitation energy and the Coulomb attractive energy, respectively. The t-index quantifies the extent of separation between the hole and electron along the charge transfer direction.

Figure S1. Comparison of experimental and theoretical normalized absorption spectra for the compounds: (a) NafmetBDP and (b) NafmetZn

Figure S2. ¹H-NMR spectrum of NafmetBDP in CDCl₃ (500 MHz)

Figure S3. ¹³C-NMR spectrum of NafmetBDP in CDCl₃ (125 MHz)

Figure S6. ¹³C-NMR spectrum of NafmetZn in CDCl₃ (125 MHz)

