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Abstract

In this paper, we conduct a comprehensive investigation to introduce a representation to the well-defined solutions of the following system of
higher-order difference equations

xn+1 =
yn−1(a1yn−1 +b1xn−3)

c1xn−3 +d1yn−1
, yn+1 =

xn−1(a2xn−1 +b2yn−3)

c2yn−3 +d2xn−1
, n = 0,1, . . . ,

where ai,bi,ci,di, i = 1,2, and the initial values x−3, ...,x0,y−3, ...,y0 are real numbers such that |b1|+ |b2|+ |c1|+ |c2| 6= 0. Finally, the
theoretical findings of the study are supported by some numerical examples.
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1. Introduction

One of the fundamental structures of applied mathematics is the difference equations that are used to understand the behavior of models
defined in discrete time periods, to reveal their properties and to analyze them. Difference equations are also used to build real-life
mathematical models. Difference equations help to understand many areas from biology to medicine, from economics to physics (see [1]). In
other words, they are a part of discrete mathematics that describes changes in small time periods.
The history of difference equations dates back to ancient times. Although they are seen as discrete structures of differential equations, they
have a much older history. Difference equations first appeared in 1202 in the rabbit problem in the work ”Liber Abaci (Abacus)” by the
famous Italian mathematician Fibonacci. In addition, in the 17th century, many mathematicians used difference equations to understand
different dynamic systems. However, the foundation of the theory used today was laid by the important research of the French mathematician
Abraham de Moivre in the 18th century. De Moivre investigated the repetitive sequences that are important in probability and conducted
research to understand how systems behave when repeated events occur (see [2, 3]).
Difference equations are used in many scientific fields because they provide unique ways to model and analyze real-life problems (see [4]).
In biology and ecology, they are the most effective tools for studying population change, how species interact, and how diseases spread
over time (see [5]). By modeling populations with these factors, such as birth rates, death rates, and migration, difference equations help
predict population growth, extinction risks, and disease spread (see [6]) Therefore, it enables better decisions to be made in taking measures
to continue human life and protect. In medical sciences, problems related to physiological processes and disease progression, especially
the procedure of drug behavior in the diseased body and how diseases progress, are interpreted for the necessary control using difference
equations. Mathematical models built in this field analyze treatments and interventions, allowing the improvement of many factors such as
health plans, drug dosage, and patient treatment. With these models, the spread of epidemic diseases can be predicted and analyzed. In
addition, the response of patients to treatment and how health resources are beneficial to the patient can be evaluated. Many phenomena
in engineering sciences are calculated using difference equations. Mathematical models are used in complex structures such as electrical
circuits, machines, and communication networks. Engineers can simulate how the systems they deal with work under different inputs through
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these mathematical models. In economics, difference equations have a significant place in the procedure of estimating financial trends and
analyzing policies for economic development (see [7]). Likewise, in physics, especially in quantum mechanics and computational physics,
difference equations are used to model many dynamic systems. Here, its use is to convert continuous mathematical models into discrete
forms and thus to perform simulations of these models. In other words, in many branches of science, difference equations are used as a
very powerful mathematical tool to study the behavior of dynamic systems. For this and many other reasons, many scientists have taken up
difference equations as a field of study and have produced very good studies. In [8], the authors studied the difference equation

xn+1 =
xn(axn−1 +bxn)

cxn−1 +dxn
, n = 0,1, ...,

where the parameters and the initial conditions are real numbers. In [9], Stevic et al. studied the system of difference equations

xn =
xn−k(ayn−l +byn−k−l)

cyn−l +dyn−k−l
, yn =

yn−k(αxn−l +βxn−k−l)

γxn−l +δxn−k−l
, n = 0,1, . . . ,

where l and k are natural numbers, a,b,c,d, α,β ,γ,δ and the initial conditions are real numbers. In [10], Elsayed et al. introduced the form
of the solutions of the systems of difference equations

wn+1 =
sn(wn−3 + sn−4)

sn−4 +wn−3− sn
, sn+1 =

wn−2(wn−2 + sn−3)

2wn−2 + sn−3
, n = 0,1, . . . ,

and

wn+1 =
sn(sn−4−wn−3)

sn−4−wn−3 + sn
, sn+1 =

wn−2(sn−3−wn−2)

sn−3
, n = 0,1, . . . .

In [11], Kara et al. studied the global behavior of the system of difference equations

un+1 = f−1
(

g(vn−1)
A1 f (un−2)+B1g(vn−4)

C1 f (un−2 +D1g(vn−4)

)
,

vn+1 = g−1
(

f (un−1)
A2g(vn−2)+B2 f (un−4)

C2g(vn−2)+D2 f (un−4)

)
,

where n ≥ 0, Ar
2 +Br

2 6= 0, Cr
2 +Dr

2 6= 0 , r ∈ {1,2}, f and g are continuous and strictly monotone functions, f (R) = R, g(R) = R,
f (0) = 0, g(0) = 0.
For more related difference equations and systems of difference equations, (see [14]-[29] and the references therein).
Inspired by the above-mentioned works, this paper aims to introduce a representation of the well-defined solutions of the following difference
equation system

xn+1 =
yn−1(a1yn−1 +b1xn−3)

c1xn−3 +d1yn−1
, yn+1 =

xn−1(a2xn−1 +b2yn−3)

c2yn−3 +d2xn−1
, n = 0, . . . , (1.1)

where ai,bi,ci,di, i = 1,2, and the initial values x−3, ...,x0,y−3, ...,y0 are real numbers such that |b1|+ |b2|+ |c1|+ |c2| 6= 0.
We remark here that system (1.1) can be written as

xn+1 = α1yn−1 +
β1yn−1xn−3

γ1xn−3 +δ1yn−1
, yn+1 = α2xn−1 +

β2xn−1yn−3

γ2yn−3 +δ2xn−1
, n = 0, . . . , (1.2)

where α1 =
a1
d1

, β1 = b1− a1c1
d1

, γ1 = c1, δ1 = d1, α2 =
a2
d2

, β2 = b2− a2c2
d2

, γ2 = c2 and δ2 = d2. We mention here [12] in which the form
(1.2) was used.
Our main results in this article are as follows:

• Deriving a representation of the well-defined solutions of the system (1.1)
• Deriving the forbidden set for system (1.1)
• Providing some special cases of the system (1.1)
• Validating some of the theoretical results numerically.

2. Main Results

In this section, we introduce the solutions of the system (1.1).

If we set

un =
xn

yn−2
, vn =

yn

xn−2
, n≥−1, (2.1)

then system (1.1) becomes

un+1 =
a1vn−1 +b1

d1vn−1 + c1
, vn+1 =

a2un−1 +b2

d2un−1 + c2
,

and so

un+1 =
A1un−3 +B1

C1un−3 +D1
, vn+1 =

A2vn−3 +B2

C2vn−3 +D2
, n≥ 2, (2.2)
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where

A1 = a1a2 +b1d2, B1 = a1b2 +b1c2, C1 = d1a2 + c1d2, D1 = d1b2 + c1c2,

A2 = a1a2 +d1b2, B2 = b1a2 + c1b2, C2 = a1d2 +d1c2, D2 = b1d2 + c1c2.

This implies that

u4n+i =
A1u4(n−1)+i +B1

C1u4(n−1)+i +D1
, i =−1,2, n≥ 1, (2.3)

and

v4n+i =
A2v4(n−1)+i +B2

C2v4(n−1)+i +D2
, i =−1,2, n≥ 1. (2.4)

In [13], the author represented the solutions of the equation

xn+1 =
axn +b
cxn +d

, n≥ 0.

So, when A1
2 +D1

2 > 2A1D1−4B1C1, Equations (2.3) and (2.4) can be represented as

u4n+i =
−µuisn−1 +(A1ui +B1)sn

(C1ui−A1)sn + sn+1
, i =−1,2, n≥ 1, (2.5)

and

v4n+i =
−µvisn−1 +(A2vi +B2)sn

(C2vi−A2)sn + sn+1
, i =−1,2, n≥ 1. (2.6)

where µ = A1D1−B1C1, and the sequence {sn}∞
n=0 is the solution of

sn+1− (A1 +D1)sn +µsn−1 = 0, (2.7)

s0 = 0 and s1 = 1.

Theorem 2.1. Let {xn,yn}∞
n=−3 be a solution of system (1.1). The solution can be represented in the form

x4n+1 = x−3

 n

∏
l=0

−µ
a1y−1 +b1x−3

c1x−3 +d1y−1
sl−1 +

(
A1

a1y−1 +b1x−3

c1x−3 +d1y−1
+B1

)
sl(

C1
a1y−1 +b1x−3

c1x−3 +d1y−1
−A1

)
sl + sl+1


−µ

A2y−1 +B2x−1

C2y−1 +D2x−3
sl−2 +

(
A2

A2y−1 +B2x−3

C2y−1 +D2x−3
+B2

)
sl−1(

C2
A2y−1 +B2x−3

C2y−1 +D2x−3
−A2

)
sl−1 + sl


 ,

y4n+1 = y−3

 n

∏
l=0

−µ
a2x−1 +b2y−3

c2y−3 +d2x−1
sl−1 +

(
A2

a2x−1 +b2y−3

c2y−3 +d2x−1
+B2

)
sl(

C2
a2x−1 +b2y−3

c2y−3 +d2x−1
−A2

)
sl + sl+1


−µ

A1x−1 +B1y−3

C1x−1 +D1y−3
sl−2 +

(
A1

A1x−1 +B1y−3

C1x−1 +D1y−3
+B1

)
sl−1(

C1
A1x−1 +B1y−3

C1x−1 +D1y−3
−A1

)
sl−1 + sl


 ,

x4n+2 = x−2

 n

∏
l=0

−µ
a1y0 +b1x−2

c1x−2 +d1y0
sl−1 +

(
A1

a1y0 +b1x−2

c1x−2 +d1y0
+B1

)
sl(

C1
a1y0 +b1x−2

c1x−2 +d1y0
−A1

)
sl + sl+1


−µ

A2y0 +B2x−2

C2y0 +D2x−2
sl−2 +

(
A2

A2y0 +B2x−2

C2y0 +D2x−2
+B2

)
sl−1(

C2
A2y0 +B2x−2

C2y0 +D2x−2
−A2

)
sl−1 + sl


 ,

y4n+2 = y−2

 n

∏
l=0

−µ
a2x0 +b2y−2

c2y−2 +d2x0
sl−1 +

(
A2

a2x0 +b2y−2

c2y−2 +d2x0
+B2

)
sl(

C2
a2x0 +b2y−2

c2y−2 +d2x0
−A2

)
sl + sl+1


−µ

A1x0 +B1y−2

C1x0 +D1y−2
sl−2 +

(
A1

A1x0 +B1y−2

C1x0 +D1y−2
+B1

)
sl−1(

C1
A1x0 +B1y−2

C1x0 +D1y−2
−A1

)
sl−1 + sl


 ,

x4n+3 = x−1

 n

∏
l=0

−µ
A1x−1 +B1y−3

C1x−1 +D1y−3
sl−1 +

(
A1

A1x−1 +B1y−3

C1x−1 +D1y−3
+B1

)
sl(

C1
A1x−1 +B1y−3

C1x−1 +D1y−3
−A1

)
sl + sl+1


−µ

a2x−1 +b2y−3

c2y−3 +d2x−1
sl−1 +

(
A2

a2x−1 +b2y−3

c2y−3 +d2x−1
+B2

)
sl(

C2
a2x−1 +b2y−3

c2y−3 +d2x−1
−D2

)
sl + sl+1


 ,

y4n+3 = y−1

 n

∏
l=0

−µ
A2y1−k +B2x−3

C2y−1 +D2x−1
sl−1 +

(
A2

A2y−1 +B2x−3

C2y−1 +D2x−3
+B2

)
sl(

C2
A2y−1 +B2x−3

C2y−1 +D2x−3
−A2

)
sl + sl+1


−µ

ay1−k +bx1−2k

cx1−2k +dy1−k
sl−1 +

(
A

ay1−k +bx1−2k

cx1−2k +dy1−k
+B
)

sl(
C

ay1−k +bx1−2k

cx1−2k +dy1−k
−A
)

sl + sl+1


 ,
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...

x4n+4 = x0

 n

∏
l=0

−µ
A1x0 +B1y−2

C1x0 +D1y−2
sl−1 +

(
A1

A1x0 +B1y−2

C1x0 +D1y−2
+B1

)
sl(

C1
A1x0 +B1y−2

C1x0 +D1y−2
−A1

)
sl + sl+1


−µ

a2x0 +b2y−2

c2y−2 +d2x0
sl−1 +

(
A2

a2x0 +b2y−2

c2y−2 +d2x0
+B2

)
sl(

C2
a2x0 +b2y−2

c2y−2 +d2x0
−A2

)
sl + sl+1


 ,

y4n+4 = y0

 n

∏
l=0

−µ
A2y0 +B2x−k

C2y0 +D2x−k
sl−1 +

(
E

A2y0 +Fx−k

C2y0 +D2x−k
+B2

)
sl(

G
A2y0 +B2x−k

C2y0 +D2x−k
−A2

)
sl + sl+1


−µ

a1y0 +b1x−2

c1x−2 +d1y0
sl−1 +

(
A1

a1y0 +b1x−2

c2x−2 +d2y0
+B1

)
sl(

C1
a1y0 +b1x−2

c1x−2 +d1y0
−A1

)
sl + sl+1


 ,

where the sequence {sn}∞
n=0 is the solution to the equation

sn+1− (A1 +D1)sn +µsn−1 = 0, s0 = 0 and s1 = 1,n ∈ N0,

such that
µ = A1D1−B1C1.

Proof. We prove by induction on n. When n = 0, if i = 1, then

x1 = x−3

(
a1y−1 +b1x−3

c1x−3 +d1y−1

) (A2 +D2)

(
A2y−1 +B2x−3

C2y−1 +D2x−3

)
−
(

A2
A2y−1 +B2x−3

C2y−1 +D2x−3
+B2

)
−C2

A2y−1 +B2x−3

C2y−1 +D2x−3
+A2



= x−3

(
a1y−1 +b1x−3

c1x−3 +d1y−1

)
×

D2
A2y−1 +B2x−3

C2y−1 +D2x−3
−B2

−C2
A2y−1 +B2x−3

C2y−1 +D2x−3
+A2

= x−3

(
a1y−1 +b1x−3

c1x−3 +d1y−1

)
× y−1

x−3
= y−1

(
a1y−1 +b1x−3

c1x−3 +d1y−1

)
.

Suppose that the representation is true for a certain n≥ 1. We first compute

A1x4n+1 +B1y4n−1.

For

A1x−3

n

∏
l=0

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sl(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sl + sl+1

−µ
A2y−1+B2x−3
C2y−1+D2x−3

sl−2 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
sl−1(

C2
A2y−1+Fx−3

C2y−1+D2x−3
−A2

)
sl−1 + sl


+B1y−1

n

∏
l=0

−µ
A2y−1+B2x−3
C2y−1+D2x−3

sl−1 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
sl(

C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2

)
sl + sl+1

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sl(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sl + sl+1


=

n−1

∏
l=0

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sl(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sl + sl+1

 n

∏
l=1

−µ
A2y−1+B2x−3
C2y−1+D2x−3

sl−2 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
sl−1(

C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2

)
sl−1 + sl

×
A1x−3

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sn−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn + sn+1

−µ
A2y−1+B2x−3
C2y−1+D2x−3

s−2 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
s−1(

C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2

)
s−1 + s0

+By−1

 .

Then

A1x4n+1 +B1y4n−1 = y−1

n−1

∏
l=0

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sl(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sl + sl+1

 n

∏
l=1

−µ
A2y−1+B2x−3
C2y−1+D2x−3

sl−2 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
sl−1(

C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2

)
sl−1 + sl


×

A1

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sn−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn + sn+1

+B1

 .

In the same way, we get

C1x4n+1 +D1y4n−1 = y−1

n−1

∏
l=0

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sl(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sl + sl+1

 n

∏
l=1

−µ
A2y−1+B2x−3
C2y−1+D2x−3

sl−2 +
(

A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2

)
sl−1(

C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2

)
sl−1 + sl


×

C

−µ
a1y−1+b1x−3
c1x−3+d1y−1

sn−1 +
(

A a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn + sn+1

+D1

 .
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This implies that

A1x4n+1 +B1y4n−1

C1x4n+1 +D1y4n−1
=

A1

(
−µ

a1y−1+b1x−3
c1x−3+d1y−1

sn−1+
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn+sn+1

)
+B1

C1

(
−µ

a1y−1+b1x−3
c1x−3+d1y−1

sn−1+
(

A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn+sn+1

)
+D1

=
−µA1

a1y−1+b1x−3
c1x−3+d1y−1

sn−1 +
(
A1

2 +B1C1
) a1y−1+b1x−3

c1x−3+d1y−1
sn +B1sn+1

−µC1
a1y−1+b1x−3
c1x−3+d1y−1

sn−1 +
(

a1y−1+b1x−3
c1x−3+d1y−1

(C1A1 +D1C1)+B1C1−D1A1

)
sn +D1sn+1

=
−µ

(
a1y−1+b1x−3
c1x−3+d1y−1

)
sn +

(
A1

a1y−1+b1x−3
c1x−3+d1y−1

+B1

)
sn+1(

C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1

)
sn+1 + sn+2

.

Therefore,

x4(n+1)+1 = y4n+3
A1x4n+1 +B1y4n−1

C1x4n+1 +D1y4n−1

= y−1[
n

∏
l=0

(
−µ

A2y−1+B2x−3
C2y−1+D2x−3

sl−1 +(A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2)sl

(C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2)sl + sl+1
)(
−µ

a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +(A1
a1y−1+b1x−3
c1x−3+d1y−3

+B1)sl

(C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1)sl + sl+1
)]

×

(
−µ( a1y−1+b1x−3

c1x−3+d1y−1
)sn +(A1

a1y−1+b1x−3
c1x−3+d1y−1

+B1)sn+1

(C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1)sn+1 + sn+2

)

= y−1[
n+1

∏
l=0

(
−µ

a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +(A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1)sl

(C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1)sl + sl+1
)

n+1

∏
l=1

(
−µ

A2y−1+B2x−3
C2y−1+D2x−3

sl−2 +(A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2)sl−1

(C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2)sl−1 + sl
)

= x−3[
n+1

∏
l=0

(
−µ

a1y−1+b1x−3
c1x−3+d1y−1

sl−1 +(A1
a1y−1+b1x−3
c1x−3+d1y−1

+B1)sl

(C1
a1y−1+b1x−3
c1x−3+d1y−1

−A1)sl + sl+1
)

n+1

∏
l=0

(
−µ

A2y−1+B2x−1
C2y−1+D2x−3

sl−2 +(A2
A2y−1+B2x−3
C2y−1+D2x−3

+B2)sl−1

(C2
A2y−1+B2x−3
C2y−1+D2x−3

−A2)sl−1 + sl
).

For i = 2,3,4, the proof is similar. Also, for y4m+i, i = 1,4, the proof is similar.
This completes the proof.

For simplicity, we can write the representation of the system (1.1) when

A1
2 +D1

2 > 2A1D1−4B1C1

in the form

x4n+i =x−4+i

n

∏
j=0

(
−µuisn−1 +(A1ui +B1)sn

(C1ui−A1)sn + sn+1

)
×
(
−µv−2+isn−1 +(A2v−2+i +B2)sn

(C2v−2+i−A2)sn + sn+1

)
,

y4n+i =y−4+i

n

∏
j=0

(
−µvisn−1 +(A2vi +B2)sn

(C2vi−A2)sn + sn+1

)
×
(
−µu−2+isn−1 +(A1u−2+i +B1)sn

(C1u−2+i−A1)sn + sn+1

)
,

(2.8)

where n≥ 0 and i = 1,4. When
A1

2 +D1
2 = 2A1D1−4B1C1,

we can write the representation of the system (1.1) in the form

x4n+i = x−4+i

n

∏
j=0

(
D1 +A1

2C1

j(C1ui +
D1−A1

2 )+C1ui +D1

j(C1ui +
D1−A1

2 )+ D1+A1
2C1

− D1

C1

)

×

(
D2 +A2

2C2

j(C2v−2+i +
D2−A2

2 )+C2v−2+i +D2

j(C2v−2+i +
D2−A2

2 )+ D2+A2
2C2

− D2

C2

)

y4n+i = y−4+i

n

∏
j=0

(
D2 +A2

2C2

j(C2vi +
D2−A2

2 )+C2vi +D2

j(C2vi +
D2−A2

2 )+ D2+A2
2C2

− D2

C2

)

×

(
D1 +A1

2C1

j(C1u−2+i +
D1−A1

2 )+C1u−2+i +D1

j(C1ui +
D1−A1

2 )+ D1+A1
2C1

− D1

C1

)
,

(2.9)
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where n≥ 0 and i = 1,4. Finally, when
A1

2 +D1
2 < 2A1D1−4B1C1,

we can write the representation of the system (1.1) in the form

x4n+i = x−4+i

n

∏
j=0

(√
µ

C1

(C1ui +D1)sin( j+1)θ −√µ sin jθ
(C1ui +D1)sin jθ −√µ sin( j−1)θ

)
×
(√

µ

C2

(C2v−2+i +D2)sin( j+1)θ −√µ sin jθ
(C2v−2+i +D2)sin jθ −√µ sin( j−1)θ

)
y4n+i = y−4+i

n

∏
j=0

(√
µ

C2

(C2vi +D2)sin( j+1)θ −√µ sin jθ
(C2vi +D2)sin jθ −√µ sin( j−1)θ

)
×
(√

µ

C1

(C1u−2+i +D1)sin( j+1)θ −√µ sin jθ
(C1u−2+i +D2)sin jθ −√µ sin( j−1)θ

)
,

(2.10)

such that θ = tan−1
√

2A1D1−4B1C1−A1
2−D1

2

A1+D1
, where n≥ 0 and i = 1,4.

Theorem 2.2. The forbidden set for system (1.1) is

F =
1⋃

i=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : x−i = 0}∪

1⋃
i=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : y−i = 0}∪

1⋃
i=0

∞⋃
n=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : y−1+i = x−3+i( f−1 ◦g−1)n+1(− c1

d1
)}∪

1⋃
i=0

∞⋃
n=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : x−1+i = y−3+i(g−1 ◦ f−1)n+1(− c2

d2
)}∪

1⋃
i=0

∞⋃
n=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : x−1+i = y−3+i(g−1 ◦ f−1)n(−D1

C1
)}∪

1⋃
i=0

∞⋃
n=0
{(x−3,x−2,x−1,x0,y−3,y−2,y−1,y0) ∈ R8 : y−1+i = x−3+i( f−1 ◦g−1)n(−D2

C2
)},

where f (t) := a1t+b1
d1t+c1

and g(t) := a2t+b2
d2t+c2

.

Proof. Let {(xn,yn)}∞
n=−3 be a solution to system (1.1).

Using (2.2), we can write for each n ∈ N0

u4n+i = f ◦g◦ f ◦g◦ ...◦ f ◦g︸ ︷︷ ︸
2n

(ui), i = 1,2,

u4n+i = f ◦g◦ f ◦g◦ ...◦ f ◦g︸ ︷︷ ︸
2n+2

(u−4+i), i = 3,4,
(2.11)

The solution {(xn,yn)}∞
n=−2 of system (1.1) is not defined if for a certain n ∈ N−1, un =− c2

d2
or vn =− c1

d1
.

Using Equation (2.11) we get

u−i = g−1 ◦ f−1 ◦g−1 ◦ f−1 ◦ ...◦g−1 ◦ f−1︸ ︷︷ ︸
2n+2

(− c2

d2
), i = 0,1,

v−i = f−1 ◦g−1 ◦ f−1 ◦g−1 ◦ ...◦ f−1 ◦g−1︸ ︷︷ ︸
2n

(−D2

C2
), i = 0,1.

(2.12)

In the same way, we can get

u−i = g−1 ◦ f−1 ◦g−1 ◦ f−1 ◦ ...◦g−1 ◦ f−1︸ ︷︷ ︸
2n

(−D1

C1
), i = 0,1,

v−1 = f−1 ◦g−1 ◦ f−1 ◦g−1 ◦ ...◦ f−1 ◦g−1︸ ︷︷ ︸
2n+2

(− c1

d1
), i = 0,1.

(2.13)

The proof is completed by taking into account the case ∏
1
i=0 x−iy−i = 0.
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3. Special case and illustrative examples

When µ = 0, the solution of system (1.1) is reduced to a simpler form. In fact, using (2.3), we have for each i = 1,4 and n≥ 1

u4n+i =
A1u4(n−1)+i +B1

C1u4(n−1)+i +D1

=
A1u4(n−1)+i +

A1D1
C1

C1u4(n−1)+i +D1

=
A1

C1
.

Similarly,

v4n+i =
A2

C2
, i = 1,4, n≥ 0.

This implies that the solution of system (1.1) in this case is of the form

x4n+i = xi(
A1A2

C1C2
)n

y4n+i = yi(
A1A2

C1C2
)n

where n≥ 1 and i = 1,4.
The following result is true when µ = 0, and its proof is omitted for simplicity.

Theorem 3.1. Let {xn,yn}∞
n=−3 be a solution of system (1.1). If µ = 0, then the solution {xn,yn}∞

n=−3 satisfies

1. If |A1A2|< |C1C2|, then xn→ 0 and yn→ 0.
2. If |A1A2|> |C1C2|, then the solution is unbounded in both of its arguments.
3. If |A1A2|= |C1C2|, then we have the following:

• If A1A2 =C1C2, then x4n+i = xi and y4n+i = yi, i = 1,4 for each n≥ 1.
• If A1A2 =−C1C2, then x8n+4+i =−xi, y8n+4+i =−yi, and x8n+8+i = xi, y8n+8+i = yi i = 1,4 for each n≥ 0.

Example (1) Figure 1 shows that a solution {(xn,yn)}∞
n=−3 of system (1.1) with a1 = 0.25, b1 = −1.1, c1 = 1, d1 = −0.5, a2 = 0.2,

b2 = 0.5, c2 = 1.2, d2 = 0.5 and with initial values x−3 = 2, x−2 = 1, x−1 = −1, x0 = 3, y−3 = 0.3, y−2 = −1, y−1 = 1.4 and y0 = −1
converges to zero (case (1) in Theorem (3.1)).

Figure 3.1: xn+1 = yn−1
−0.25yn−1+xn−3
−2xn−3+0.5yn−1

,yn+1 = xn−1
xn−1+2yn−3

yn−3+0.5xn−1

Example (2) Figure 2 shows that a solution {(xn,yn)}∞
n=−3 of system (1.1) with a1 =−0.25, b1 = 1, c1 =−2, d1 = 0.50, a2 = 1, b2 = 2,

c2 = 1, d2 = 0.50 and with initial values x−3 = 2, x−2 =−1, x−1 = 1,x0 =−1.5, y−3 =−1.3,y−2 =−1.7, y−1 = 0.4 and y0 = 0.9 satisfies
x4n+i = xi and y4n+i = yi, i = 1,4, n≥ 1 (case (3) in Theorem (3.1)).

Example (3) Figure 3 shows that a solution {(xn,yn)}∞
n=−3 of system (1.1) with a1 = 2, b1 = 1, c1 = 0.5, d1 = 1, a2 = 2, b2 = 3, c2 = 0.5,

d2 = 0.25 and with initial values x−3 = −2, x−2 = 1, x−1 = 1, x0 = 2.5, y−3 = 0.3, y−2 = −1.7, y−1 = 0.4 and y0 = 3.9 satisfies is
unbounded (case (2) in Theorem (3.1)).

4. Conclusion

This work is an investigation that explicitly reveals a representation of solutions to a system of higher-order difference equations by extending
somehow the work of McGrath [8] in two dimensions. The main result of this work is the representation of the solutions to the system of
higher-order difference equations and deriving the forbidden set. Finally, the theoretical results are supported by numerical simulations
that validate our findings. These simulations demonstrate a variety of dynamical behaviors, including stability, eventual periodicity and
unboundedness linking theory and practice.
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Figure 3.2: xn+1 = yn−1
−0.25yn−1+xn−3
−2xn−3+0.50yn−1

,yn+1 = xn−1
xn−1+2yn−3

yn−3+0.50xn−1

Figure 3.3: xn+1 = yn−1
2yn−1+xn−3

0.5xn−3+1yn−1
,yn+1 = xn−1

2xn−1+3yn−3
0.5yn−3+0.25xn−1
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