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Effective maintenance is crucial in the manufacturing industry to ensure equipment reliability, product 

quality, and worker safety. This study focuses on using machine learning, specifically the Random Forest 

algorithm, to predict maintenance needs for a 5-stage compressor. Utilizing the Scikit-learn Python 

toolkit, the model underwent rigorous evaluation through validation, sampling, and confusion matrix 

inspection. The model achieved an outstanding ROC AUC score of 0.94 and consistently high accuracy, 

precision, recall, and F1-score metrics above 0.90, showcasing its strong predictive capabilities. By 

accurately predicting machine failures, the approach aims to improve production schedules, boost 

productivity, ensure high-quality outputs, save costs, and extend equipment lifespan, demonstrating 

significant promise for practical use in the manufacturing sector. 
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1. INTRODUCTION 

1.1. Background and Motivation 

Industrial compressors play a crucial role in various industries by compressing gases for a wide range of 

applications. These compressors have evolved significantly over time, incorporating advanced materials and 

technologies to improve their performance and reliability (Kagiri et al., 2018). Proper maintenance of these 

compressors is essential to ensure their longevity and efficiency. Research has shown that factors such as 

compressor switching frequency can impact maintenance costs and the lifespan of the compressor. 

Implementing improvement recommendations can result in substantial energy and cost savings while 

enhancing overall system performance. Strategies like reliability-centered maintenance (RCM) and online fault 

diagnosis systems have been suggested to optimize maintenance practices and improve compressor reliability 
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cost-effectively (Luo, 2004). Furthermore, the integration of machine learning techniques for fault detection 

and anomaly classification can further enhance maintenance practices for industrial compressors (Loukopoulos 

et al., 2019). 

Predictive maintenance through machine learning is crucial for enhancing equipment reliability and 

minimizing downtime in multi-stage compressors used across various industries. Due to the unique 

characteristics and failure modes of each compressor stage, a tailored machine learning model is essential for 

effective predictive maintenance. This research focuses on developing a machine learning based predictive 

maintenance strategy specifically for multi-stage compressors to optimize performance and reliability (Garcia 

and Salgado, 2021). 

Predictive maintenance through machine learning is essential for optimizing the performance of multi-stage 

compressors in various industries. These compressors, with their complex operating dynamics and unique 

characteristics at each stage, require tailored predictive maintenance strategies to ensure reliability and 

efficiency. The research focuses on developing machine learning based predictive maintenance specifically 

for multi-stage compressors to address the challenges of inconsistent predictions and maintenance 

recommendations. Time-series data are utilized in this research to capture different observations recorded from 

the machine over time (Kiangala and Wang, 2020; Nwamekwe et al., 2024). 

1.2. Purpose of Study 

This research aims to develop an effective maintenance strategy for a 5-stage compressor through the 

application of a machine learning approach. The process involves collecting historical data and performing 

data cleaning and preprocessing to address missing values, outliers, and inconsistencies. The refined dataset is 

then divided into training and testing subsets. Using the Random Forest (RF) algorithm, the model is trained, 

and both parameters and hyperparameters are optimized. The model's performance is examined with metrics 

like accuracy, precision, recall, F1 score, Cohen's Kappa, Matthew's Correlation Coefficient (MCC), and the 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) (Hanif and Gunawan, 2022; Wang et 

al., 2022). 

2. LITERATURE REVIEW 

2.1. Industrial Compressor Maintenance Strategies 

Effective maintenance of industrial compressors is critical to ensuring operational efficiency, reducing 

downtime, and minimizing maintenance costs. Maintenance strategies have evolved from traditional reactive 

methods to more advanced predictive approaches. 

2.2. Overview of conventional and modern maintenance techniques 

Conventional maintenance approaches for industrial machinery, including 5-stage compressors, generally fall 

under three categories: reactive, preventive, and predictive maintenance. Reactive maintenance, employed 
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post-failure, is cost-efficient upfront but can incur higher long-term operational costs and unplanned 

downtimes (Monye et al., 2023). In contrast, preventive maintenance involves scheduled inspections and 

replacements intended to avert breakdowns. While effective in reducing unexpected failures, this method may 

lead to over-maintenance, thereby elevating costs unnecessarily (Carvalho et al., 2019). 

Modern maintenance techniques, particularly predictive maintenance (PdM), utilize advanced data analytics 

and machine learning algorithms to forecast equipment failures based on real-time data (Cao et al., 2024). This 

proactive strategy not only extends equipment lifespan but also diminishes unplanned downtimes, thus 

enhancing operational efficiency (Carvalho et al., 2019; Nwamekwe and Okpala, 2025). The evolution towards 

PdM represents a significant departure from traditional methods, promoting a more sustainable and cost-

effective approach to industrial maintenance (Monye et al., 2023). 

2.3. Importance of Effective Maintenance in 5-Stage Compressors 

Effective maintenance of industrial 5-stage compressors is essential for optimizing energy consumption, 

reducing operational costs, increasing lifespan and reliability, and minimizing unplanned downtimes (Bacak 

et al., 2023; Nordal and El‐Thalji, 2021). Such compressors are utilized in critical industrial applications, where 

precise control at each stage is pivotal. The incorporation of machine learning (ML) into maintenance strategies 

facilitates enhanced predictive diagnostics, leading to improved decision-making. These ML models utilize 

algorithms such as Random Forest, Support Vector Machines (SVM), and Neural Networks (Kiangala and 

Wang, 2020). By analysing historical and real-time data, these models effectively identify operational patterns 

and predict potential failures, contributing to improvements in accuracy for failure detection and maintenance 

scheduling (Kiangala and Wang, 2020). 

Furthermore, the integration of AI into predictive maintenance allows for advanced fault diagnosis through 

anomaly detection, ultimately enhancing the overall operational safety and efficiency of machinery (Bacak et 

al., 2023; Nordal and El‐Thalji, 2021). This shift towards machine learning-based predictive maintenance 

highlights its importance in transforming traditional maintenance paradigms within industrial settings. 

2.4. Common Criteria in Compressor Maintenance 

Several key parameters are essential in assessing compressor health. 

Vibration analysis: is critical for identifying issues such as misalignment, bearing faults, and rotor imbalance, 

aligning with standards outlined in ISO 10816-3, which offers guidelines for vibration monitoring in rotating 

machinery (Rahman et al., 2022). Temperature monitoring: plays a significant role in detecting overheating 

due to lubrication issues or friction, as supported by findings in condition monitoring literature (Adetunji et 

al., 2023). Pressure variations: can indicate leaks or inefficiencies, further highlighting the importance of a 

holistic approach to maintenance (Kolar et al., 2022). Acoustic emissions: provide insights into mechanical 
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wear. Oil and lubricant analysis: is vital for detecting contamination and degradation of internal components 

(Septano et al., 2024). 

To ensure best practices in the industry, adherence to relevant standards such as API 618 for reciprocating 

compressors and ASHRAE guidelines for energy efficiency in compressor systems is paramount (Bahtiar et 

al., 2022). Additionally, the incorporation of IIoT technologies enhances predictive maintenance through real-

time monitoring and AI-driven analytics, facilitating smarter maintenance decisions (Yamada et al., 2023). 

3. MATERIAL AND METHOD 

This experimental study follows the CRISP-DM methodology, as illustrated in Figure 1. The CRISP-DM 

(Cross-Industry Standard Process for Data Mining) framework is a recognized and extensively utilized model 

for guiding data mining and data science initiatives. It offers a systematic and iterative process comprising six 

key stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and 

Deployment. Figure 2 is the research flowchart, which explains every step taken to achieved the purpose of 

this research. 

 

Figure 1. Diagram Illustrating CRISP-DM Flowchart (Tounsi et al., 2020) 

This experimental study follows the CRISP-DM framework, as illustrated in Figure 1. The analysis was 

conducted in Google Colab using Python, along with libraries such as Scikit-learn, Matplotlib, NumPy, 

Pandas, and Seaborn. Scikit-learn is a versatile library for machine learning and predictive data analysis, 

offering a wide range of tools for tasks such as classification and model evaluation. Matplotlib serves as a 

library for creating plots and visualizations, while Pandas is employed for data manipulation and analysis. 

Seaborn, built on top of Matplotlib, enhances data visualization capabilities. The final dataset, Indorama-

EPCL, comprises 98,794 records. 
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Figure 2. Experimental Flow Diagram 

3.1. Business Understanding 

This phase serves as a foundational step in the CRISP-DM process, focusing on a comprehensive assessment 

of the problem, objectives, and requirements. The primary aim of this research is to create advanced machine 

learning models that enhance engineers' ability to predict potential failures in the 5-stage compressor (K1), a 

vital component of Indorama-EPCL's operations. This initiative seeks to minimize failure rates, unplanned 

downtime, safety hazards, and maintenance expenses. The phase entails defining clear success metrics, 

reviewing current practices through literature analysis, and establishing evaluation criteria in collaboration 

with engineering stakeholders. Additionally, it involves gaining an in-depth understanding of the compressor's 

maintenance operations and decision-making frameworks within the organization. The insights gathered are 

documented to provide a detailed roadmap for subsequent activities such as data mining, modeling, and 

deployment, ensuring the solutions align with the practical needs and challenges faced by the engineering 

team. 

3.1.1. Data Collection 

A csv files of maintenance datasets were received from Indorama-Eleme Petrochemical Ltd. Due to a non-

disclosure agreement, the variable names in the dataset were recoded to prevent exposure of critical attributes 

of the equipment in the facility. The datasets consist of maintenance history of several rotary equipment in the 

facility. However, the history of the gas compressor, K-1, was carefully filtered out from the data collected as 

in table 1. 

https://doi.org/10.54287/gujsa.1646993
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Table 1. First 5 rows in the dataset 

S/N  Date M2 M3 M4 M5 M6 M7 M8 M9 M10 Failure 

1  01,01,2015 2.16E+08 55 0 52 6 407438 0 0 7 0 

2  01,02,2015 1650864 56 0 52 6 407438 0 0 7 0 

3  01,03,2015 1.24E+08 56 0 52 6 407438 0 0 7 0 

4  01,04,2015 1.28E+08 56 0 52 6 407439 0 0 7 0 

5  01,05,2015 97393448 56 0 52 6 408114 0 0 7 0 

3.1.2. Exploratory Data Analysis (EDA) 

The Table 2 below presents a detailed summary of the data, revealing substantial variability covering the 10 

features (M2 to M10) and the target variable "Failure". The consistent count of 98,794 observations indicates 

a complete dataset, while the wide range in mean values from 0.000086 to 12.464093 and standard deviations 

from 7.032454e+07 to 160.507272 suggest diverse feature distributions. Further insights emerge from the 

minimum, maximum, and percentile values, which highlight skewness and the presence of potential outliers 

in certain features. This detailed statistical analysis will offer valuable guidance for data preparation, feature 

engineering, and modelling decisions to effectively address the problem at hand. 

Table 2. Features Attributes Table 

 Failure M2 M3 M4 M5 M6 M7 M8 M9 M10 

count 98794 98794 98794 98784 98794 98794 98794 98791 98791 98794 

mean 0.00086 1.22E+08 166.9919 12.46409 1.891976 13.61847 254441.8 0.290897 0.290897 13.51982 

std 0.02932 7.03E+07 2242.806 328.6816 20.73857 14.52715 93644.26 7.921502 7.921502 160.5073 

min 0 0 0 0 0 2 0 0 0 0 

25% 0 6.15E+07 0 0 0 8 220916.3 0 0 0 

50% 0 1.23E+08 0 0 0 10 248626 0 0 0 

75% 0 1.83E+08 0 0 0 12 301876 0 0 0 

max 1 2.44E+08 64968 80000 1666 98 689161 832 832 10137 

The histogram for the feature M10 in Figure 3 displays an imbalanced distribution, where most values are 

clustered toward the lower end of the spectrum and a long, drawn-out tail extending to the right. The extensive 

value span, from around 0 to 5,000, indicates a wide variation in the feature, while the prominent peak suggests 

a concentration of values around a particular range, likely representing the most common occurrences. The 

relative scarcity of data points at the upper part of the value range implies that extreme or outlier values for 

M10 may be less prevalent compared to the more frequent, lower-range values. 

Figure 4 provides a clear visual summary of the statistical distribution of the various features in the dataset. 

The wide range of values and disparate interquartile ranges across the features suggest significant divergency, 

with some variables exhibiting outliers and skewed distributions. Features like M2 have considerably larger 

value ranges compared to others. 
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Figure 3. Histogram of features 

 

Figure 4. Box plots of features 

Figure 5 is a collection of scatter plots, each depicting the statistical distribution and relationships between 

various features or variables in the dataset. The wide disparity in the scales, data densities, and patterns across 

the different subplots can also be seen here. Some subplots exhibit clear linear or curvilinear trends, while 

others show more scattered, irregular distributions with potential outliers and anomalies.  

The correlation matrix as in Figure 6 provides a concise statistical overview of the relationships between the 

different features (M1 to M10) and the target variable "Failure" in the dataset. The values in the matrix range 

from -0.0033 to 1.0, indicating a wide spectrum of correlations, from weakly associated to strongly correlated. 

Notable observations include the relatively moderate correlation of M4 and M10 with Failure (0.45). 

Conversely, several features like M1, M2, and M3 exhibit very low correlations, near 0, implying little to no 

linear association with the target variable.  

https://doi.org/10.54287/gujsa.1646993
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Finally, the combination of histograms, scatter plots, time series, and value distributions in Figure 7 once again 

provides valuable insights into the diverse characteristics of the features. The histograms and scatter plots 

reveal the varying value ranges, shapes, and bivariate relationships, highlighting the heterogeneity in the data. 

The time series and value plots further underscore the dynamic nature of the dataset, showcasing fluctuations, 

patterns, and skewness over time. 

 

Figure 5. Scatter plots of features 
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Figure 6. Correlation matrix 

 

 

Figure 7. Distributions and time series plot 

In conclusion, the histograms reveal the value distributions for various features, the scatter plots further 

highlight the complex bivariate relationships between the features, and the time series plots underscore the 

dynamic nature of the data. Collectively, these visualizations offer valuable insights into the heterogeneity and 

complicated nature of the dataset, guiding crucial preprocessing decisions, feature engineering, and the 

selection of appropriate modelling techniques to effectively capture the underlying patterns and relationships 

for robust predictive modelling. 

https://doi.org/10.54287/gujsa.1646993
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3.2. Data Preparation 

Data preparation typically includes tasks such as handling missing values, addressing data inconsistencies, and 

restructuring the data to align with the analysis requirements. Addressing potential outliers was a crucial step 

in the process. 

3.2.1. Data Cleaning 

The missing values in the "Date" column were filled using its median. Since this column is numeric, the median 

was chosen since it serves as a reliable indicator of central tendency, less influenced by outliers compared to 

the mean, making it ideal for imputing missing values in numeric data. Furthermore, the numeric features were 

standardized using the StandardScaler from scikit-learn, ensuring that all features were scaled similarly. This 

standardization is crucial for the performance of many machine learning algorithms. Lastly, the class 

imbalance in the target variable (Failure) was tackled with using the Synthetic Minority Over-sampling 

Technique from the imbalanced-learn library. This approach created synthetic samples for the minority class, 

helping balance the dataset, as illustrated in Figure 8, while improving the efficiency of machine learning 

models. 

 

Figure 8. Bar Chart of resamples target variable. 

3.2.2. Feature Engineering 

Feature engineering and dimensionality reduction are essential processes in machine learning for enhancing 

model performance and interpretability. According to Li et al. (2017), feature engineering involves generating 

new, more meaningful features from existing data by applying transformations, combining variables, or 

leveraging domain-specific expertise to improve a model's predictive accuracy and comprehensibility. On the 

other hand, dimensionality reduction focuses on decreasing the number of input features while retaining critical 

https://doi.org/10.54287/gujsa.1646993
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information, which aids in optimizing model training and improving generalization (Van Der Maaten et al., 

2009). 

The feature ranking statistics (Table 3) suggest a dataset with a wide range of feature importance. 

Table 3. Feature ranking statistics 

 Statistic Value 

0 Mean 13597.7 

1 Median 84.5 

2 Standard Deviation 30178.88 

3 Minimum 28 

4 Maximum 98322 

The mean feature count of 13,597.70 indicates that the features, on average, have a relatively high number of 

unique values, which can be beneficial for capturing detailed patterns in the data. However, the median feature 

count of 84.50 is significantly lower than the mean, implying a skewed distribution with a few features having 

an extremely high number of unique values. This is supported by the very large standard deviation of 

30,178.88, which exhibits significant variability in the feature counts. The minimum feature count of 28 and 

the maximum of 98,322 further reinforce the wide spectrum of feature importance, ranging from relatively 

uninformative features to highly granular ones. The variability in feature characteristics indicates the need for 

thoughtful feature selection or dimensionality reduction methods to pinpoint the most relevant and significant 

features for the machine learning task at hand. 

The feature ranking in this code, as shown in Table 4 and Figure 9, is based on the number of unique values in 

each feature column of the dataset. 

Table 4. Feature ranking 

 Feature Importance 

1 M2 98322 

2 M7 35892 

3 M1 955 

4 M3 484 

5 M5 111 

6 M10 58 

7 M6 54 

8 M4 45 

9 M8 28 

10 M9 28 
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Figure 9. Feature ranking. 

The intuition behind this approach is that features with a higher number of unique values are likely to be more 

informative and important for the underlying task, as they can capture more granular patterns or distinctions 

in the data. The number of unique values for each feature was calculated, the features were sorted in descending 

order of their unique value counts. To determine the best variable, feature with the highest number of unique 

values (M2 and M7) were selected as this likely indicates the most informative and discriminative feature for 

the given maintenance dataset. 

3.3. Modelling 

The dataset was split to two parts which is 80%, for the training of the model while 20% is for the testing of 

the model. The Random Forest model was trained using the training subset. During the evaluation stage, the 

trained model was applied to the test data, and its predictions were compared to the actual results to evaluate 

the model's performance. This approach of training is a common technique to measure the generalization 

capability of the models and avoid overfitting. 

Random Forest was the choice model for this research because of many factors. Its key advantages include the 

ability to efficiently handle high-dimensional and noisy datasets, robust architecture that enables scalability to 

large data volumes, minimal input preparation requirements, implicit feature selection, strong overall 

performance that is difficult to outperform, and the availability of simple yet effective open-source 

implementations. Since maintenance dataset has more than 90,000 noisy observations, Random Forest is the 

best choice. 

During the training phase, the Random Forest algorithm incrementally constructs a collection of decision trees, 

fine-tuning the parameters of each tree to minimize overall error on the training data. This iterative process 

continues until the model achieves optimal performance on the training set. After the final Random Forest 

classifier is developed, its effectiveness is assessed using the reserved 20% test set to obtain an unbiased 

evaluation of its ability to generalize, ensuring that it has not merely memorized the training data. 
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3.4. Evaluation 

During the evaluation phase, various methods were employed to analyze the performance of the Random 

Forest classifier. These included cross-validation techniques, which ensure that the model's performance is 

assessed across multiple data subsets, as well as approaches like train-test splits and k-fold cross-validation. 

The confusion matrix was utilized to provide a comprehensive analysis of the model's predictive capabilities, 

including metrics such as accuracy, precision, recall, and F1-score. 

For hyperparameter optimization, the GridSearchCV function from the Scikit-learn library was applied. This 

method conducts a thorough search across a predefined range of hyperparameter values, systematically training 

and evaluating the model for every combination. The process involves iterative retraining of the model, fine-

tuning the hyperparameters until the best configuration is identified, thereby enhancing the model's 

performance on the validation dataset. This structured approach ensures that the final Random Forest classifier 

is effectively optimized for the specific dataset and task.  

3.4.1. Cross Validation 

Cross-validation (CV) is a method used to evaluate a model's performance on unseen data, ensuring its 

robustness and reliability. Specifically, repeated stratified k-fold cross-validation was employed to validate the 

balanced dataset. This approach is an enhanced version of k-fold cross-validation, which utilizes stratified 

random sampling to create folds that maintain the distribution of the target variable. The dataset was divided 

into five folds and repeated three times. In each repetition, one-fold served as the testing set, while the 

remaining four folds constituted the training set. When applied effectively, this method provides reliable 

evaluation results (Souza et al., 2020; Nwamekwe et al., 2024). 

3.4.2. Performance Measurement 

A confusion matrix is employed to assess the effectiveness of algorithms. As depicted in Table 5, the confusion 

matrix provides a grid where the rows represent the model's predicted classifications, and the columns show 

the actual (true) classifications. This structure facilitates a straightforward interpretation of the model's 

performance by presenting counts for true positives, true negatives, false positives, and false negatives. 

Table 5. Confusion matrix 

 Predicted Negative Predicted Positive 

Actual Negative True Negatives False Positives 

Actual Positive False Negatives True Positives 

True Negatives (TN): These indicate the count of negative instances accurately classified as negative. False 

Positives (FP): These refer to instances incorrectly classified as positive. False Negatives (FN): These represent 
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negative instances that were incorrectly classified. True Positives (TP): These correspond to the count of 

positive instances correctly classified (Chawla et al., 2002). 

Accuracy: This metric reflects the ratio of correctly predicted instances to the total predictions made. It is 

calculated as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 +𝐹𝑁
 (1) 

Recall (Sensitivity): Recall measures the proportion of correctly identified positive instances out of all actual 

positives. The formula for recall is: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 (2) 

Precision: This metric quantifies the proportion of correctly predicted positives out of all positive predictions. 

It is calculated using the following equation: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +𝐹𝑃
  (3) 

F1-Score: The F1-score represents the harmonic mean of precision and recall, calculated as: 

 𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

Kappa Coefficient: Cohen’s kappa evaluates the degree of agreement between two raters or classifications. It 

can be used for both binary and multi-class classifications. The kappa coefficient ranges from -1 to +1, where 

-1 indicates complete disagreement and +1 represents perfect agreement (Chicco et al., 2021). The formula is: 

 𝐾𝑎𝑝𝑝𝑎 =
2 ∗ (𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑃) ∗ (𝐹𝑃 + 𝑇𝑁) + (𝑇𝑃 + 𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁)
 (5) 

MCC: Known as the phi (ɸ) coefficient for binary classifications, MCC evaluates performance for both binary 

and multi-class problems. Its values range from -1 (complete misclassification) to +1 (perfect classification) 

(Chicco et al., 2021). The formula is: 

 𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 ∗ 𝐹𝑁)
 (6) 

Receiver Operating Characteristic Curve (ROC Curve): The ROC curve provides a graphical representation of 

a binary classifier's ability to differentiate between classes by plotting the True Positive Rate (TPR) against 

the False Positive Rate (FPR). The area under the curve (ROC AUC) measures the classifier's overall 

performance, with a larger area indicating better performance. TPR is synonymous with recall, while FPR 

quantifies the proportion of incorrect positive predictions among all actual negatives (Joshi, 2023). The 

formulas for TPR and FPR are: 
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 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (8) 

4. RESULTS AND DISCUSSION 

4.1. Results 

This chapter provides a comprehensive analysis and discussion of the research findings derived from the 

conducted study. The performance of the machine learning model developed in this work is evaluated using 

an extensive array of statistical measures and visualizations, offering valuable insights into its functionality 

and potential for practical applications. 

Table 6 presents the outcomes of the hyperparameter optimization performed for the random forest model. 

Table 6. Hyperparameter tuning results 

Parameter Value 

max_depth 15 

n_estimators 150 

Best Score 0.8982 

Hyperparameter tuning is a critical phase in model development, enabling researchers to identify the optimal 

configuration of parameters, such as the maximum tree depth ("max_depth") and the number of estimators 

("n_estimators"), to enhance the model's performance for a specific task or dataset. The results reveal that the 

ideal values for "max_depth" and "n_estimators" are 15 and 150, respectively, achieving a best score of 

0.8982242849277004. These findings provide key insights into the model's structure and the parameter settings 

that facilitated its peak performance on the given problem. 

 

Figure 10. Receiver operating characteristics curve (ROC) 
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The ROC curve, along with its corresponding Area Under the Curve (AUC) value depicted in Figure 10, 

summarizes the model's ability to differentiate between the two classes in the dataset. The AUC score of 0.94 

demonstrates excellent discriminative capability, indicating the model's high accuracy in distinguishing 

positive and negative instances. The curve's rapid ascent towards the top-left corner highlights the model's 

ability to maximize accurate detections while minimizing incorrect classifications. These results underscore 

the model's robustness and reliability for binary classification tasks, suggesting its applicability in real-world 

scenarios. 

The confusion matrix shown in Figure 11 provides a detailed overview of the model's performance in a binary 

classification task. 

 

Figure 11. Confusion matrix 

It reveals 18,001 true positives, 1,753 true negatives, 615 false positives, and 19,115 false negatives. These 

values illustrate the model's overall effectiveness, with a high count of correctly classified instances. However, 

the considerable number of false negatives indicates room for improvement in identifying the positive class. 

Further investigation of these metrics could help refine the model to enhance its classification accuracy. 

Figures 12 and Figure 13 illustrate the model's performance metrics through a heatmap and bar graph, 

respectively, offering a comprehensive evaluation of its capabilities. 

High values for accuracy, recall, precision, and F1 score (all above 0.90) highlight the model's exceptional 

ability to accurately classify dataset instances. Additional metrics, such as the Kappa Coefficient and the MCC, 

both at 0.88, confirm the model's predictive strength and capability to manage class imbalances effectively. 

This consistent high performance across various metrics indicates a well-trained model likely to generalize 

successfully to new, unseen data, reinforcing its potential for robust real-world applications. 

https://doi.org/10.54287/gujsa.1646993


112 
Ezeanyim, O. C., Ewuzie, N. V., Aguh, P. S., Nwabueze, C. V., & Nwamekwe, C. O.  

GU J Sci, Part A 12(1) 96-118 (2025) 10.54287/gujsa.1646993  
 

 

 

Figure 12. Performance metrics heatmap 

 

 

Figure 13. Performance metrics 

4.2. Discussion 

The results of this study demonstrate the effectiveness of a machine Learning-Based approach for the 

predictive maintenance of industrial 5-stage compressors. By utilizing the Random Forest algorithm, the model 

successfully identified patterns within operational data, allowing for early detection of potential failures. The 

discussion focuses on the model's predictive accuracy, the implications of hyperparameter tuning, evaluation 

metrics, and the broader impact on industrial maintenance strategies. 

Model Performance and Predictive Accuracy: The evaluation results reveal that the Random Forest model 

achieved an impressive accuracy of 89.82%, demonstrating its strong predictive capability. The ROC-AUC 

score of 0.94 further supports the model’s ability to effectively differentiate between healthy and faulty 

compressor states. This high accuracy is indicative of the algorithm's capacity to learn from historical data and 
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make reliable predictions about future failures. However, the confusion matrix highlights certain challenges, 

particularly a significant number of false negatives (19,115), which suggests the model occasionally 

misclassifies failing components as healthy. This limitation could be mitigated through the incorporation of 

additional feature engineering techniques or ensemble methods to enhance sensitivity. 

Hyperparameter Tuning and Model Optimization: The use of GridSearchCV for hyperparameter tuning proved 

essential in refining the model’s performance. The optimal hyperparameter values—15 for "max_depth" and 

150 for "n_estimators"—significantly improved predictive accuracy by preventing both overfitting and 

underfitting. The improvement observed after tuning highlights the importance of parameter selection in 

optimizing machine learning models for industrial applications. Future studies could explore automated 

hyperparameter tuning methods, such as Bayesian Optimization or genetic algorithms, to further enhance 

model performance. 

Analysis of Performance Metrics: The evaluation metrics, such as precision, recall, F1-score, and the MCC, 

provide deeper insights into the model’s robustness. The high F1-score (above 0.90) confirms the model’s 

ability to balance precision and recall, making it well-suited for real-world predictive maintenance. However, 

the relatively lower recall value in detecting faulty compressor conditions indicates a need for additional 

refinement. This could be addressed by incorporating more domain-specific knowledge into feature selection 

or leveraging anomaly detection techniques alongside the supervised learning approach. Furthermore, the 

Kappa Coefficient of 0.88 suggests a high level of agreement between the model’s predictions and actual 

compressor states. This metric is particularly important in industrial settings where predictive maintenance 

models must minimize false alarms while ensuring that true failures are accurately detected. The 

misclassification of certain instances, as indicated by false negatives in the confusion matrix, highlights a 

potential area for further improvement. 

4.3. Industrial Implications and Maintenance Efficiency 

The implementation of this machine Learning-Based predictive maintenance model offers substantial benefits 

over traditional maintenance strategies. Compared to reactive and preventive maintenance approaches, 

predictive maintenance reduces unexpected downtime, optimizes maintenance scheduling, and lowers 

operational costs. By leveraging real-time data processing and early fault detection, industries can transition 

from a time-based to a condition-based maintenance approach, leading to more efficient resource utilization. 

The high accuracy and reliability of the model suggest its potential deployment in real-world compressor 

maintenance systems. However, ensuring its adaptability across various compressor models and operating 

conditions requires further validation. Integrating the model into an industrial Internet of Things (IIoT) 

framework could enhance its real-time monitoring capabilities, enabling automated alerts and proactive 

maintenance interventions. 
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4.4. Challenges and Future Research Directions 

While the results are promising, several challenges remain. The confidentiality of industrial datasets often 

limits the ability to fine-tune models on diverse operational data. Expanding the dataset with publicly available 

compressor failure data or synthetic data generation techniques could enhance model generalization. 

Additionally, incorporating advanced deep learning architectures, such as Long Short-Term Memory (LSTM) 

networks, may further improve the model’s ability to capture temporal dependencies in compressor health 

data. Another critical area for future work is explainability. While the Random Forest algorithm provides high 

accuracy, its decision-making process lacks transparency. Utilizing techniques like SHAP (SHapley Additive 

exPlanations) could offer greater interpretability, helping maintenance engineers understand which factors 

contribute most to compressor failures. 

5. CONCLUSION 

The hyperparameter tuning process, detailed in Table 6, identified the optimal configuration of critical model 

parameters, such as "max_depth" and "n_estimators," which achieved a best score of 0.8982242849277004. 

This information is invaluable for researchers and practitioners looking to replicate or extend the findings of 

this study, as it specifies the precise settings that enabled the model to attain its highest performance. 

Additionally, the Receiver Operating Characteristics (ROC) curve analysis, depicted in Figure 10, provided a 

comprehensive evaluation of the model's capability to distinguish between favorable and unfavorable 

instances. The Area Under the Curve (AUC) value of 0.94 highlights the model's effectiveness in 

distinguishing between these classes with high accuracy. The ROC curve's steep initial rise indicates that the 

model achieves a high true positive rate while maintaining a low false positive rate, a highly desirable trait for 

many practical applications. 

Moreover, supplementary evaluation metrics, including the confusion matrix, performance metrics heatmap, 

and bar charts presented in Figures 11, 12, and 13, further confirmed the model's strong predictive capabilities 

and its effectiveness in addressing class imbalance. The consistently high scores across these metrics, all 

surpassing 0.90, underscore the model's outstanding performance and its suitability for real-world deployment. 

5.1. Suggestions for Further Work 

While the results presented in this chapter have clearly demonstrated the exceptional performance and potential 

of the developed machine learning model, numerous opportunities exist for future research and enhancements 

could be explored to enhance the model's capabilities and applicability further. One potential area for future 

work is the incorporation of additional features into the model's input dataset. The current feature set used, two 

to be precise, may have limitations in capturing all the relevant information necessary for the classification 

task. By exploring the inclusion of new, potentially more informative features, the model's predictive power 

could be further improved, leading to even higher levels of accuracy and generalization. 
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Additionally, the investigation of alternative model architectures and training strategies could yield valuable 

insights. The current model, based on a tree-based approach, has shown excellent performance; however, 

exploring the use of more advanced neural network architectures or the integration of ensemble methods may 

uncover new opportunities for performance enhancements. 

Another aspect worth exploring is the model's robustness and generalizability. While the current results are 

promising, further testing on more diverse datasets or real-world scenarios could provide valuable insights into 

the model's ability to handle a wider range of input variations and edge cases. This would help ensure the 

model's reliability and suitability for practical deployment. For example, we should not forget that the dataset 

was oversampled to correct extreme imbalance. This might likely cause a bias in the predictions.  

Finally, the incorporation of explainable artificial intelligence (XAI) techniques could be a valuable direction 

for future research. By providing greater transparency and interpretability into the model's decision-making 

process, the insights gained could lead to a better understanding of the underlying relationships within the data 

and the model's reasoning, potentially leading to further refinements and improvements. 

5.2. Recommendation 

The research findings strongly support the recommendation to further develop and integrate the machine 

learning model into practical systems. The model's exceptional performance, coupled with the valuable 

insights gained through the analysis and evaluation process, positioned   it as a highly promising solution for 

a wide range of binary classification problems in the maintenance sector when properly tuned.  
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