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Abstract 

The Euler-Bernoulli beam theory, widely applied in structural engineering, describes the relationship between applied loads and 
resulting deformations in beams. This study addresses the transverse vibration of beams with simply supported, cantilever, and fixed-
fixed boundary conditions using the Taylor matrix method. The governing differential equation, which includes both boundary and 
initial conditions, is transformed into a matrix form through Taylor series expansion. This matrix approach simplifies the process of 
solving the Euler-Bernoulli equation, providing an efficient method for analyzing beam vibrations under various support conditions. 
The accuracy of the Taylor matrix method is validated by comparing it with exact solutions derived through the separation of 
variables. Numerical application examples illustrate that the method yields results closely aligning with the exact solution, with 
minimal discrepancies that decrease as the number of terms N in the Taylor series expansion increases. This method shows promise 
as an accessible and accurate approach for studying mechanical vibrations, especially in engineering applications requiring efficient 
computational techniques. The findings contribute to the literature on beam theory and demonstrate the applicability of the Taylor 
spectral matrix method in structural analysis. 
Keywords: Taylor matrix method, Euler-Bernoulli beam, Vibration, Spectral method 

 

1. Introduction 

The Euler-Bernoulli beam theory, also known as the classical beam theory, is a fundamental engineering theory that describes the 
relationship between the applied loads on a beam and the resulting deflections, stresses, and strains. It is widely used in the analysis 
and design of structural elements subjected to bending. 

The issue of a transversely vibrating beam is expressed in the context of a partial differential equation of motion, an external force 
function, as well as boundary and initial conditions. Considerable endeavors are dedicated to comprehending the solution to this 
initial-boundary-value problem with non-homogeneous characteristics. Four beam theories are employed for this purpose, with Euler-
Bernoulli theory being the most widely used due to its simplicity and effectiveness. This theory offers a simplified mathematical 
representation of a beam's deformation and stresses, relying on specific assumptions to facilitate a more manageable analysis. It is 
particularly useful for analyzing slender beams subjected to lateral loads. 

The transverse vibration of the Euler-Bernoulli beam has been widely studied by many researchers as Ahmed and Rifai [1], Özmen 
and Özhan [2], İnan and Oktav [3], Khatami et al. [4], Sivri and Temel [5], Craifaleanu et al. [6], Naz and Mahomed [7], Koç [8], 
Pakdemirli [9], Rahmani et al. [10], Karahan and Pakdemirli [11], Soltani and Asgarian [12], Sahin [13], Diyaroglu et al. [14], Baysal 
and Hasanov [15], Ike [16], Saraç [17], Ruiz et al. [18], and Haider et al. [19]. Detailed derivations of the Euler-Bernoulli beam model 
can be found in the books of Öchsner [20], Rao [21] and Inman [22]. Additionally, the vibration analyses of Euler-Bernoulli beams 
under different conditions and scenarios have been conducted using various mathematical methods by many researchers. 

Everitt et al. [23] used the modified Adomian decomposition method for the free vibration problem of an Euler-Bernoulli beam with 
non-uniform cross-section under different conditions. Civalek and Demir [24] developed a non-local elasticity-based Euler-Bernoulli 
beam model to analyze the static bending and buckling behavior of cantilever carbon nanotubes, incorporating size effects using 
Eringen’s non-local theory. Dong et al. [25] aimed to demonstrate the effectiveness of the classical Euler–Bernoulli beam theory in 
accurately predicting the bending behavior of single-walled BNNTs without the need for introducing scale parameters. Ishaquddin 
and Gopalakrishnan [26] developed a differential quadrature-based technique for the solution of the Euler-Bernoulli beam equation. 
Sınır et al. [27] studied the nonlinear free and forced vibrations of axially functionally graded Euler-Bernoulli beams with non-uniform 
cross-section. Liang et al. [28] developed a new Bernoulli-Euler beam model using simplified strain gradient elasticity theory, deriving 
equations from Hamilton's principle and solving for axial wave propagation, static bending, buckling, and free vibration of beams. 
Aslefallah et al. [29] employed the exponential approximation method, utilizing matrix representations of exponential functions and 
collocation points, to solve high-order nonlinear differential equations, highlighting its efficiency, accuracy, and reliability through 
comparisons with exact solutions and other approaches. Bassuony et al. [30] used a Galerkin method with Legendre and Laguerre 
polynomials to solve the Euler-Bernoulli beam equation, emphasizing the method's efficient matrix structure, which significantly 
reduces computational costs. Çayan et al. [31] presented Taylor-Matrix and Hermite-Matrix Collocation methods using Chebyshev–
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Lobatto points and operational matrices to approximate the modal vibration behavior of a simply supported Euler–Bernoulli beam. 
Wu and Zheng [32] proposed using the Taylor series method combined with Padé approximants to solve a boundary value problem 
more efficiently, demonstrating improved accuracy and efficiency compared to the weighted residual method and validating their 
results with finite element method analysis. Demir et al. [33] analyzed the transverse vibration of a self-excited Euler–Bernoulli beam 
under distributed and singular loads using the differential transformation method. 

Eq. (1) presents the Euler-Bernoulli beam vibration equation, including the axial load term. 

𝐸𝐸𝐸𝐸
𝜕𝜕4𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥4 + 𝑁𝑁0 

𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2 + 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡) (1) 

where, 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is the transverse displacement with respect to position and time, 𝐸𝐸 is the modulus of elasticity, 𝐸𝐸 is the moment of inertia, 
𝑁𝑁0  is the axial load, 𝜌𝜌 is the mass density, 𝜌𝜌 is the cross-sectional area, and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) is the external excitation force.  

2. Spectral Taylor Matrix Method 

2.1. Overview of the method 

This method is a spectral technique employed to solve various differential equations by converting them into matrix form using Taylor 
polynomials. Differential equations for both specific and general solutions can be determined using this method. Taylor series has been 
utilized by many researchers in solving differential and integral equations. Karamete and Sezer [34] developed the Taylor collocation 
method, using a matrix approach to solve linear integro-differential equations by truncating the Taylor series, transforming the 
equation into a matrix equation with unknown Taylor coefficients. Kurt and Çevik [35] introduced a simple numerical method using 
Taylor polynomials in matrix form to solve single degree of freedom systems. They determined both particular and general solutions, 
demonstrated the method through a numerical application, and found that the results closely matched the exact solution. Gülsu and 
Sezer [36] examined the solution of m-th order and higher-order linear differential difference equations under variable coefficient 
uncertain conditions at any point using the Taylor series approach. Numerous studies and researches have been conducted on the 
Taylor matrix method, including those by Elmaci et al. [37],  Bahşı and Çevik [38], Mukhtar [39], Wang et al. [40], Bayku and Sezer [41], 
Çevik [42], Çayan et al. [43] and Laib et al. [44]. Recently, Çevik et al. [45] provided a review on the development and applications of 
the collocation method, emphasizing its spectral formulation based on matrices and the incorporation of polynomial sequences, such 
as Taylor series. 

In all these studies, this method was compared with other known techniques, and it was shown that the current approach is relatively 
easy and extremely accurate. In the first stage of the method, the given equations are transformed into a matrix equation, and then a 
new matrix equation is formed with the help of Taylor ordering points, where the unknown is only the Taylor coefficient matrix. From 
this, Taylor coefficients are found, resulting in finite Taylor series approximations. 

2.2. Derivation of the Taylor matrix form of the governing equation 

An arbitrary displacement function 𝑢𝑢(𝑥𝑥, 𝑡𝑡), dependent on both time and space variables, can be expressed through its Taylor expansion 
as follows. 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = ��𝑐𝑐𝑝𝑝,𝑞𝑞(𝑥𝑥 − 𝑥𝑥0)𝑝𝑝
𝑁𝑁

𝑞𝑞=0

𝑁𝑁

𝑝𝑝=0

(𝑡𝑡 − 𝑡𝑡0)𝑞𝑞 

  𝑐𝑐𝑝𝑝,𝑞𝑞 =
1

𝑝𝑝! 𝑞𝑞!  𝑢𝑢(𝑝𝑝,𝑞𝑞)(𝑥𝑥0 , 𝑡𝑡0) 

(2) 

This Taylor series of order 𝑁𝑁 is obtained by determining the unknown Taylor coefficient  𝑐𝑐𝑝𝑝,𝑞𝑞 . The displacement function can be 
represented in matrix form as follows: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝐗𝐗(𝑥𝑥)𝐂𝐂𝐂𝐂(𝑡𝑡) (3) 

where 

𝐗𝐗(𝑥𝑥) = [1 (𝑥𝑥 − 𝑥𝑥0) (𝑥𝑥 − 𝑥𝑥0)2     … (𝑥𝑥 − 𝑥𝑥0)𝑁𝑁] (4) 

𝐂𝐂(𝑡𝑡) = [1 (𝑡𝑡 − 𝑡𝑡0) (𝑡𝑡 − 𝑡𝑡0)2     … (𝑡𝑡 − 𝑡𝑡0)𝑁𝑁]𝑇𝑇 (5) 

 𝐂𝐂 = �

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

� (6) 

The first derivative with respect to space can be written as 

𝐗𝐗′(𝑥𝑥) = 𝐗𝐗(𝑥𝑥)𝐃𝐃 (7) 

where 
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𝐃𝐃 =

⎣
⎢
⎢
⎢
⎡
0 1 0
0 0 2 ⋯ 0

0
⋮ ⋱ ⋮

0 0 0
0 0 0 ⋯ 𝑁𝑁

0⎦
⎥
⎥
⎥
⎤
 (8) 

Therefore, the 𝑛𝑛th space derivative becomes 

𝐗𝐗(𝑛𝑛)(𝑥𝑥) = 𝐗𝐗(𝑥𝑥)𝐃𝐃𝑛𝑛 (9) 

Similarly, the 𝑛𝑛th time derivative is expressed as 

𝐂𝐂(𝒏𝒏)(𝑡𝑡) = (𝐃𝐃𝑇𝑇)𝑛𝑛𝐂𝐂(𝑡𝑡) (10) 

Using Eqs. (9) and (10), the space and time derivatives of (3) are  

𝜕𝜕𝑛𝑛𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥𝑛𝑛 = 𝐗𝐗(𝑥𝑥)𝐃𝐃𝑛𝑛𝐂𝐂𝐂𝐂(𝑡𝑡) (11) 

𝜕𝜕𝑛𝑛𝑢𝑢(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑡𝑡𝑛𝑛 = 𝐗𝐗(𝑥𝑥)𝐂𝐂(𝐃𝐃𝑇𝑇)𝑛𝑛𝐂𝐂(𝑡𝑡) (12) 

The external excitation function in Eq. (1) can be expressed in matrix form as 

𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝐗𝐗(𝑥𝑥)𝐆𝐆𝐂𝐂(𝑡𝑡) (13) 

where 

𝐆𝐆 = �

𝑔𝑔00
𝑔𝑔10
⋮

𝑔𝑔𝑁𝑁0

    

𝑔𝑔01 ⋯ 𝑔𝑔0𝑁𝑁
𝑔𝑔11 ⋯ 𝑔𝑔1𝑁𝑁
⋮

𝑔𝑔𝑁𝑁1
⋱
⋯

⋮
𝑔𝑔𝑁𝑁𝑁𝑁

� (14) 

By substituting Eqs. (11-13) into Eq. (1), we obtain 

𝐸𝐸𝐸𝐸𝐗𝐗(𝑥𝑥)𝐃𝐃4𝐂𝐂𝐂𝐂(𝑡𝑡) + 𝑁𝑁0 𝐗𝐗(𝑥𝑥)𝐃𝐃2𝐂𝐂𝐂𝐂(𝑡𝑡) + 𝜌𝜌𝜌𝜌𝐗𝐗(𝑥𝑥)𝐂𝐂(𝐃𝐃𝑇𝑇)2𝐂𝐂(𝑡𝑡) = 𝐗𝐗(𝑥𝑥)𝐆𝐆𝐂𝐂(𝑡𝑡) (15) 

Simplifying Eq. (15) gives: 

𝐸𝐸𝐸𝐸𝐃𝐃4𝐂𝐂 + 𝑁𝑁0 𝐃𝐃2𝐂𝐂 + 𝜌𝜌𝜌𝜌𝐂𝐂(𝐃𝐃𝑇𝑇)2 = 𝐆𝐆 (16) 

The left and right sides of Eq. (16) are matrices of size (𝑁𝑁 + 1) × (𝑁𝑁 + 1). To find the unknown 𝐂𝐂 matrix with constant Taylor 
coefficients on the left side, a new matrix 𝐒𝐒(𝑁𝑁+1)2×(𝑁𝑁+1)2  is defined, transforming the 𝐂𝐂 and 𝐆𝐆 matrices into column matrices of size 
(𝑁𝑁 + 1)2 × 1. In this case, Eq. (16) can be represented as follows: 

𝐒𝐒(𝑁𝑁+1)2×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = 𝐆𝐆�(𝑁𝑁+1)2×1 (17) 

To find the matrix 𝐂𝐂� in Eq. (17), the following equation must be solved. 

𝐂𝐂� = 𝑖𝑖𝑛𝑛𝑖𝑖(𝐒𝐒)𝐆𝐆� 
(18) 

 

2.3. Formulating boundary and intial condition matrices for the present method  

2.3.1. Simple-simple supported beam  

For a simple-simple supported beam, shown in Figure 1, the boundary conditions are 

𝑢𝑢(0, 𝑡𝑡) = 0; 𝑢𝑢′′(0, 𝑡𝑡) = 0;  𝑢𝑢(𝐿𝐿, 𝑡𝑡) = 0;  𝑢𝑢′′(𝐿𝐿, 𝑡𝑡) = 0 (19) 

and the initial conditions are assumed to be 

𝑢𝑢 �
𝐿𝐿
2 , 0� = 𝑢𝑢0 ;  �̇�𝑢 �

𝐿𝐿
2 , 0� = 𝑖𝑖0 (20) 
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Figure 1. Simple-simple supported beam 

By substituting the boundary conditions specified in Eq. (19) into Eq. (3), the matrix form of the boundary condition equations are 
obtained as follows. 

𝐗𝐗(0)𝐂𝐂𝐂𝐂(𝑡𝑡) = [0 0     … 0]𝐂𝐂(𝑡𝑡) ⇒ 𝐗𝐗(0)𝐂𝐂 = [0 0     … 0] 
𝐗𝐗(0)𝐃𝐃2𝐂𝐂𝐂𝐂(𝑡𝑡) = [0 0     … 0]𝐂𝐂(𝑡𝑡) ⇒ 𝐗𝐗(0)𝐃𝐃2𝐂𝐂 = [0 0     … 0] 

𝐗𝐗(𝐿𝐿)𝐂𝐂𝐂𝐂(𝑡𝑡) = [0 0     … 0]𝐂𝐂(𝑡𝑡) ⇒ 𝐗𝐗(𝐿𝐿)𝐂𝐂 = [0 0     … 0]  
𝐗𝐗(𝐿𝐿)𝐃𝐃2𝐂𝐂𝐂𝐂(𝑡𝑡) = [0 0     … 0]𝐂𝐂(𝑡𝑡) ⇒ 𝐗𝐗(𝐿𝐿)𝐃𝐃2𝐂𝐂 = [0 0     … 0] 

(21) 

 Each expression in Eq. (21) is applied individually to derive boundary condition matrices for each specific boundary condition. 

𝐗𝐗(0)𝐂𝐂 = [1 0 0     … 0] �

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

� 

= [𝑐𝑐00 𝑐𝑐01 𝑐𝑐02     … 𝑐𝑐0𝑁𝑁] 
= [0 0     … 0] 

(22) 

Rewriting Eq. (22) in terms of Eq. (17), the augmented 𝐒𝐒 matrix is obtained as follows: 

𝐒𝐒(𝑁𝑁+1)×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = �
1
0
⋮
0

    
0 ⋯ 0
1 ⋯ 0
⋮
0

⋱
⋯

⋮
1

    
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

  ⋯   
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

� 𝐂𝐂� = 𝟎𝟎(𝑁𝑁+1)×1 (23) 

In Eq. (23), the first matrix on the left side is the boundary condition 1 matrix, denoted as 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒. Next, 

𝐗𝐗(0)𝐃𝐃2𝐂𝐂 =  [1 0 0     … 0]

⎣
⎢
⎢
⎢
⎢
⎡00
⋮
0
0
0

    

0 2 0 ⋯ 0
0 0 6 ⋯ 0
⋮ ⋮ ⋮

0
0
0

0
0
0

0
0
0

⋱⋯⋯
⋯

⋮
(N − 1)N

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

�

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

� 

= [2𝑐𝑐20 2𝑐𝑐21 2𝑐𝑐22     … 2𝑐𝑐2𝑁𝑁] 

(24) 

Rewriting Eq. (24) in terms of Eq. (17), the augmented 𝐒𝐒 matrix is obtained as follows: 

𝐒𝐒(𝑁𝑁+1)×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = �
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
2
0
⋮
0

    
0 ⋯ 0
2 ⋯ 0
⋮
0

⋱
⋯

⋮
2

  ⋯   
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

� 𝐂𝐂� = 𝟎𝟎(𝑁𝑁+1)2×1 (25) 

In Eq. (25), the first matrix on the left side is the boundary condition 2 matrix, denoted as 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒. Next,  

𝐗𝐗(𝐿𝐿)𝐂𝐂 = [1 𝐿𝐿 𝐿𝐿2     … 𝐿𝐿𝑁𝑁] �

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

� 

= [𝑐𝑐00 + 𝐿𝐿𝑐𝑐10 + ⋯+ 𝐿𝐿𝑁𝑁𝑐𝑐𝑁𝑁0 … 𝑐𝑐0𝑁𝑁 + 𝐿𝐿𝑐𝑐1𝑁𝑁 + ⋯+ 𝐿𝐿𝑁𝑁𝑐𝑐𝑁𝑁𝑁𝑁] 
= [0 0 0     … 0] 

(26) 

Rewriting Eq. (26) in terms of Eq. (17), the augmented 𝐒𝐒 matrix is obtained as follows: 

𝐒𝐒(𝑁𝑁+1)×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = �
1
0
⋮
0

    
0 ⋯ 0
1 ⋯ 0
⋮
0

⋱
⋯

⋮
1

    
𝐿𝐿
0
⋮
0

    
0 ⋯ 0
𝐿𝐿 ⋯ 0
⋮
0

⋱
⋯

⋮
𝐿𝐿

    
𝐿𝐿2
0
⋮
0

    
0 ⋯ 0
𝐿𝐿2 ⋯ 0
⋮
0

⋱
⋯

⋮
𝐿𝐿2

  ⋯   
𝐿𝐿𝑁𝑁
0
⋮
0

    
0 ⋯ 0
𝐿𝐿𝑁𝑁 ⋯ 0
⋮
0

⋱
⋯

⋮
𝐿𝐿𝑁𝑁
� 𝐂𝐂� = 𝟎𝟎(𝑁𝑁+1)×1 (27) 

In Eq. (27), the first matrix on the left side is the boundary condition 3 matrix, denoted as 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒. Next,  
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𝐗𝐗(𝐿𝐿)𝐃𝐃2𝐂𝐂 = [1 𝐿𝐿     … 𝐿𝐿𝑁𝑁]

⎣
⎢
⎢
⎢
⎢
⎡00
⋮
0
0
0

    

0 2 0 ⋯ 0
0 0 6 ⋯ 0
⋮ ⋮ ⋮

0
0
0

0
0
0

0
0
0

⋱⋯⋯
⋯

⋮
(𝑁𝑁 − 1)𝑁𝑁

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

�

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

� 

= [2𝑐𝑐20 + 6𝐿𝐿𝑐𝑐30 + ⋯+ 𝑁𝑁(𝑁𝑁 − 1)𝐿𝐿𝑁𝑁−2𝑐𝑐𝑁𝑁0 … 2𝑐𝑐2𝑁𝑁 + 6𝐿𝐿𝑐𝑐3𝑁𝑁 + ⋯+ 𝑁𝑁(𝑁𝑁 − 1)𝐿𝐿𝑁𝑁−2𝑐𝑐𝑁𝑁𝑁𝑁] 
= [0 0 0     … 0] 

(28) 

Rewriting Eq. (28) in terms of Eq. (17), the augmented 𝐒𝐒 matrix 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 is obtained. 

Substituting the initial conditions specified in Eq. (20) into Eq. (3) yields the initial condition equations as shown below. 

𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒;  𝐗𝐗�
𝐿𝐿
2�𝐂𝐂𝐂𝐂

(0) = 𝑢𝑢0 

𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒;  𝐗𝐗�
𝐿𝐿
2�𝐂𝐂𝐃𝐃

T𝐂𝐂(0) = 𝑖𝑖0 
(29) 

Each expression in Eq. (29) is used to derive boundary condition matrices for each specific boundary condition. 

𝐗𝐗 �
𝐿𝐿
2�𝐂𝐂𝐂𝐂

(0) = �1
𝐿𝐿
2

 �
𝐿𝐿
2�

2
    … �

𝐿𝐿
2�

𝑁𝑁
� �

𝑐𝑐00
𝑐𝑐10
⋮
𝑐𝑐𝑁𝑁0

    

𝑐𝑐01 ⋯ 𝑐𝑐0𝑁𝑁
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮
𝑐𝑐𝑁𝑁1

⋱
⋯

⋮
𝑐𝑐𝑁𝑁𝑁𝑁

�

⎣
⎢
⎢
⎡
1
0
0
⋮
0⎦
⎥
⎥
⎤
 

= �1
𝐿𝐿
2

 �
𝐿𝐿
2�

2
    … �

𝐿𝐿
2
�
𝑁𝑁
�

⎣
⎢
⎢
⎢
⎡
𝑐𝑐00
𝑐𝑐10
𝑐𝑐20
⋮
𝑐𝑐𝑁𝑁0⎦

⎥
⎥
⎥
⎤
 

= 𝑐𝑐00 +
𝐿𝐿
2 𝑐𝑐10 + �

𝐿𝐿
2�

2
𝑐𝑐20 + ⋯+ �

𝐿𝐿
2�

𝑁𝑁
𝑐𝑐𝑁𝑁0 

= 𝑢𝑢0 

(30) 

Rewriting Eq. (30) in terms of Eq. (17), the augmented 𝐒𝐒 matrix is obtained as follows: 

𝐒𝐒1×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = �1 0 ⋯ 0
𝐿𝐿
2 0 ⋯ 0 ⋯ �

𝐿𝐿
2�

𝑁𝑁

0 ⋯ 0� 𝐂𝐂� = 𝑢𝑢0 (31) 

In Eq. (31), the first matrix on the left side is the initial condition 1 matrix, denoted as 𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒. Next,  

𝐗𝐗 �
𝐿𝐿
2�𝐂𝐂𝐃𝐃

𝑇𝑇𝐂𝐂(0) = 𝑐𝑐01 +
𝐿𝐿
2 𝑐𝑐11 + �

𝐿𝐿
2�

2
𝑐𝑐21 + ⋯+ �

𝐿𝐿
2�

𝑁𝑁
𝑐𝑐𝑁𝑁1 = 𝑖𝑖0 (32) 

Rewriting Eq. (32) in terms of Eq. (17), the augmented 𝐒𝐒 matrix is obtained as follows: 

𝐒𝐒1×(𝑁𝑁+1)2𝐂𝐂�(𝑁𝑁+1)2×1 = �0 1 0 ⋯ 0 0
𝐿𝐿
2 0 ⋯ 0 ⋯ 0 �

𝐿𝐿
2�

𝑁𝑁
0 ⋯ 0� 𝐂𝐂� = 𝑖𝑖0 (33) 

In Eq. (33), the first matrix on the left side is the initial condition 2 matrix, denoted as 𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒. 

2.3.2. Cantilever beam  

The boundary and initial conditions for the cantilever beam, shown in Figure 2, are 

𝑢𝑢(0, 𝑡𝑡) = 0, 𝑢𝑢′(0, 𝑡𝑡) = 0, 𝑢𝑢′′(𝐿𝐿, 𝑡𝑡) = 0, 𝑢𝑢′′′(𝐿𝐿, 𝑡𝑡) = 0 (34) 

𝑢𝑢(𝐿𝐿, 0) = 𝑢𝑢0, �̇�𝑢(𝐿𝐿, 0) = 𝑖𝑖0 (35) 

 
Figure 2. Cantilever beam 

The matrix forms of these equations are derived in a manner similar to that described in the previous section. 
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2.3.3. Fixed-fixed beam  

The boundary and initial conditions for the fixed-fixed beam are 

𝑢𝑢(0, 𝑡𝑡) = 0, 𝑢𝑢′(0, 𝑡𝑡) = 0, 𝑢𝑢(𝐿𝐿, 𝑡𝑡) = 0, 𝑢𝑢′(𝐿𝐿, 𝑡𝑡) = 0 (36) 

𝑢𝑢 �
𝐿𝐿
2 , 0� = 𝑢𝑢0, �̇�𝑢 �

𝐿𝐿
2 , 0� = 𝑖𝑖0 (37) 

The matrix forms of these equations are derived in a manner similar to that described in Section 2.3.1. 

2.4. Development of the general matrix equation for the system  

The matrix form of the motion equation for the Euler-Bernoulli beam has been prepared in the previous sections. The matrix forms of 
the boundary and initial conditions obtained in Section (2.3) will be substituted into Eq. (15) by deleting its 30 rows. This allows for 
the creation of an augmented matrix equation that accommodates both the governing equation and the boundary-initial conditions. 
The resulting matrix is then solved using the Taylor matrix method to obtain the 𝐒𝐒 matrix we seek. The inverse of this 𝐒𝐒 matrix is 
calculated and multiplied by the 𝐆𝐆 matrix to determine the unknown Taylor coefficients 𝑐𝑐𝑝𝑝,𝑞𝑞 . 

3. Application Examples 

In this section, we investigate the transverse vibration of the Euler-Bernoulli beam under axial load for three different support 
conditions. Since the first mode is generally the most critical, all numerical examples concentrate on the corresponding mode shape. 
The geometric and physical parameters considered for the beam in all numerical examples are as follows: 

𝐿𝐿 = 5𝑚𝑚, 𝜌𝜌 = 0.01𝑚𝑚2, 𝐸𝐸 = 20 × 1010
𝑁𝑁
𝑚𝑚2 , 𝜌𝜌 = 8 × 103

𝑘𝑘𝑔𝑔
𝑚𝑚3 , 

𝐸𝐸 = 8.33 × 10−6, 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 10−4𝑐𝑐𝑐𝑐𝑐𝑐3𝑡𝑡, 𝑁𝑁0 = 100𝑁𝑁 

 

 

3.1. Application example 1:  Simple-simple supported beam  

Given the initial conditions 𝑢𝑢0 = 0.01𝑚𝑚 and �̇�𝑢0 = 0, and for 𝑁𝑁 = 6 at the origin (𝑥𝑥0, 𝑡𝑡0) = (0,0), the unknown Taylor coefficients within 
the matrix series expansion are computed according to Eq. (18). These coefficients are then substituted into Eq. (3) to obtain the 
solution for the transverse forced vibration equation. The matrix forms corresponding to the boundary conditions for a simply 
supported beam, along with the initial condition matrices, are structured as follows. 

The 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 matrix in Eq. (23) is calculated for 𝑁𝑁 = 6 as follows: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = �
1
0
⋮
0

    
0 ⋯ 0
1 ⋯ 0
⋮
0

⋱
⋯

⋮
1

    
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

  ⋯   
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

�

7×49

 (38) 

Similarly, the 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 matrix in Eq. (25) is calculated for 𝑁𝑁 = 6 as follows: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = �
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
2
0
⋮
0

    
0 ⋯ 0
2 ⋯ 0
⋮
0

⋱
⋯

⋮
2

  ⋯   
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

�

7×49

 (39) 

and the 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 matrix in Eq. (27) is calculated as follows: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = �
1
0
⋮
0

    
0 ⋯ 0
1 ⋯ 0
⋮
0

⋱
⋯

⋮
1

    
5
0
⋮
0

    
0 ⋯ 0
5 ⋯ 0
⋮
0

⋱
⋯

⋮
5

    
52
0
⋮
0

    
0 ⋯ 0

52 ⋯ 0
⋮
0

⋱
⋯

⋮
52

  ⋯   
56
0
⋮
0

    
0 ⋯ 0

56 ⋯ 0
⋮
0

⋱
⋯

⋮
56
� (40) 

Finally, the 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 matrix is calculated as follows: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 = �
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
0
0
⋮
0

    
0 ⋯ 0
0 ⋯ 0
⋮
0

⋱
⋯

⋮
0

    
2
0
⋮
0

    
0 ⋯ 0
2 ⋯ 0
⋮
0

⋱
⋯

⋮
2

  ⋯   
3054

0
⋮
0

    
0 ⋯ 0

3054 ⋯ 0
⋮
0

⋱
⋯

⋮
3054

�

7×49

 (41) 

The initial condition matrices for 𝑁𝑁 = 6 are computed using Eqs. (30-33) as follows: 

𝐗𝐗 �
5
2�𝐂𝐂𝐂𝐂

(0) = 0.01 (42) 
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𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒 = �1 0 ⋯ 0
5
2 0 ⋯ 0 ⋯ �

5
2�

6

0 ⋯ 0�
1×49

 (43) 

𝐗𝐗 �
5
2�𝐂𝐂𝐃𝐃

𝑻𝑻𝐂𝐂(0) = 0 (44) 

𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒 = �0 1 0 ⋯ 0 0
5
2 0 ⋯ 0 ⋯ 0 �

5
2�

6

0 ⋯ 0�
𝐒𝐒×49

 (45) 

Substituting Eqs. (38-45) into Eq. (16) and rewriting in the form of Eq. (17) yields the 𝐂𝐂�49×1 and 𝐆𝐆�49×1 matrices. 

𝐂𝐂� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑐𝑐00
𝑐𝑐01
⋮
𝑐𝑐06
𝑐𝑐10
𝑐𝑐11
⋮
𝑐𝑐16
⋮
𝑐𝑐60
𝑐𝑐61
⋮
𝑐𝑐66⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

49×1

, 𝐆𝐆� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑔𝑔00
𝑔𝑔01
⋮
𝑔𝑔06
𝑔𝑔10
𝑔𝑔11
⋮
𝑔𝑔16
⋮
𝑔𝑔60
𝑔𝑔61
⋮
𝑔𝑔66⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

49×1

 (46) 

By substituting the column matrices above into Eq. (16) and isolating the 𝐒𝐒 matrix, the element in the 𝑖𝑖th row and 𝑗𝑗th column of the 
resulting 49 × 49  𝐒𝐒 matrix is obtained as follows: 

𝑐𝑐𝑖𝑖,𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧ (𝑖𝑖 𝑚𝑚𝑐𝑐𝑚𝑚 (𝑁𝑁 + 1)) × ��𝑖𝑖 𝑚𝑚𝑐𝑐𝑚𝑚 (𝑁𝑁 + 1)� + 1� × 8 × 103 × 0.01 ; 𝑚𝑚𝑐𝑐𝑚𝑚(𝑖𝑖,𝑁𝑁 + 1) < 𝑁𝑁 𝑎𝑎𝑛𝑛𝑚𝑚 𝑗𝑗 = 𝑖𝑖 + 2

(((𝑖𝑖 − 1) 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑁𝑁 + 1)) + 1) × (((𝑖𝑖 − 1) 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑁𝑁 + 1)) + 2) × 100 ; 𝑗𝑗 > 2(𝑁𝑁 + 1) 𝑎𝑎𝑛𝑛𝑚𝑚 𝑗𝑗 = 𝑖𝑖 + 2(𝑁𝑁 + 1)
(((𝑖𝑖 − 1) 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑁𝑁 + 1)) + 4)!

((𝑖𝑖 − 1) 𝑚𝑚𝑖𝑖𝑖𝑖 (𝑁𝑁 + 1))!
0

× 20 × 1010 × 8,33 × 10−6
;
;

𝑗𝑗 > 4(𝑁𝑁 + 1) 𝑎𝑎𝑛𝑛𝑚𝑚 𝑗𝑗 = 𝑖𝑖 + (𝑁𝑁 + 1)
𝑐𝑐𝑡𝑡ℎ𝑒𝑒𝑒𝑒

 (47) 

Here, 𝑎𝑎 𝑚𝑚𝑐𝑐𝑚𝑚 𝑏𝑏 gives the remainder when the integer 𝑎𝑎 is divided by the integer 𝑏𝑏, while 𝑎𝑎 𝑚𝑚𝑖𝑖𝑖𝑖 𝑏𝑏 gives the quotient obtained from 
dividing the integer 𝑎𝑎 by the integer 𝑏𝑏. 

In Eq. (47), following the insertion of rows 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒, 𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒, and 𝐁𝐁𝐁𝐁𝐒𝐒𝐒𝐒 into the 𝐒𝐒 matrix, if the augmented 𝐒𝐒� matrix is 
singular, adjustments are made by modifying alternative rows until the singularity is resolved. The  𝑖𝑖th row, 𝑗𝑗th column element of the 
matrix is then computed as follows: 

�̅�𝑐𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑐𝑐𝑖𝑖,𝑗𝑗 ; 𝑖𝑖 < (𝑁𝑁 + 1) × (𝑁𝑁 − 3) − 1
𝑐𝑐𝑏𝑏111,𝑗𝑗 ; 𝑖𝑖 = (𝑁𝑁 + 1) × (𝑁𝑁 − 3) − 1
𝑏𝑏𝑏𝑏121,𝑗𝑗

𝑐𝑐𝑐𝑐11�𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁+1)�+1,𝑗𝑗

𝑐𝑐𝑐𝑐12�𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁+1)�+1,𝑗𝑗

𝑐𝑐𝑐𝑐13�𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁+1)�+1,𝑗𝑗

𝑐𝑐𝑐𝑐14�𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑁𝑁+1)�+1,𝑗𝑗

;
;
;
;
;

𝑖𝑖 = (𝑁𝑁 + 1) × (𝑁𝑁 − 3)
(𝑁𝑁 + 1) × (𝑁𝑁 − 3) < 𝑖𝑖 ≤ (𝑁𝑁 + 1) × (𝑁𝑁 − 2)
(𝑁𝑁 + 1) × (𝑁𝑁 − 2) < 𝑖𝑖 ≤ (𝑁𝑁 + 1) × (𝑁𝑁 − 1)

(𝑁𝑁 + 1) × (𝑁𝑁 − 1) < 𝑖𝑖 ≤ (𝑁𝑁 + 1) × 𝑁𝑁
(𝑁𝑁 + 1) × 𝑁𝑁 < 𝑖𝑖 ≤ (𝑁𝑁 + 1)2

 (48) 

In Eq. (16), the expression on the right side represents the column matrix 𝐆𝐆�. To determine the 𝐆𝐆� matrix, Eq. (13) can be alternatively 
expressed as follows: 

𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝐗𝐗(𝑥𝑥)𝐆𝐆𝐂𝐂(𝑡𝑡) = ��
1

𝑝𝑝! 𝑞𝑞! 𝑓𝑓
(𝑝𝑝,𝑞𝑞)�𝑥𝑥𝑝𝑝, 𝑡𝑡𝑞𝑞�(𝑥𝑥 − 0)𝑝𝑝(𝑡𝑡 − 0)𝑞𝑞

6

𝑞𝑞=0

6

𝑝𝑝=0

 (49) 

whereas 

𝐆𝐆 = ��
1

𝑝𝑝! 𝑞𝑞! 𝑓𝑓
(𝑝𝑝,𝑞𝑞)�𝑥𝑥𝑝𝑝, 𝑡𝑡𝑞𝑞�𝐆𝐆

6

𝑞𝑞=0

6

𝑝𝑝=0

 

= 𝑓𝑓(𝑥𝑥0)cos3𝑡𝑡0 − 3𝑓𝑓(𝑥𝑥0)sin3𝑡𝑡1 −
9
2 𝑓𝑓

(𝑥𝑥0)cos3𝑡𝑡2 +
9
2 𝑓𝑓

(𝑥𝑥0)sin3𝑡𝑡3 + ⋯ 
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Knowing that  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 10−4𝑐𝑐𝑐𝑐𝑐𝑐3𝑡𝑡   

𝐆𝐆� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑓𝑓(𝑥𝑥0)cos3𝑡𝑡0
−3𝑓𝑓(𝑥𝑥0)sin3𝑡𝑡1

−
9
2 𝑓𝑓

(𝑥𝑥0)cos3𝑡𝑡2
9
2 𝑓𝑓

(𝑥𝑥0)sin3𝑡𝑡3
27
8 𝑓𝑓(𝑥𝑥0)cos3𝑡𝑡4

−
81
40 𝑓𝑓

(𝑥𝑥0)sin3𝑡𝑡5

−
81
80𝑓𝑓

(𝑥𝑥0)cos3𝑡𝑡6
0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

49×1

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 10−4

0

−
9
2

10−4

0
27
8 10−4

0

−
81
80

10−4

0
⋮
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

49×1

 (50) 

The values of the Taylor coefficients, 𝑐𝑐�̅�𝑝𝑞𝑞 , are determined based on Eq. (18). Since the initial conditions have been inserted into the top 
two rows of the 𝐆𝐆�, the corresponding values of 0.01 and 0 are likewise positioned in the first two rows of this column matrix. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐𝑐00 = 0
𝑐𝑐01 = 0
𝑐𝑐02 = 0
𝑐𝑐03 = 0
𝑐𝑐04 = 0
𝑐𝑐05 = 0
𝑐𝑐06 = 0

𝑐𝑐10 = 0.0064
𝑐𝑐11 = 0

𝑐𝑐12 = 1.4 × 10−9⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐𝑐13 = 0
𝑐𝑐14 = 1.05 × 10−9

𝑐𝑐15 = 0
𝑐𝑐16 = −3.16 × 10−10

𝑐𝑐20 = 0
𝑐𝑐21 = 0
𝑐𝑐22 = 0
𝑐𝑐23 = 0
𝑐𝑐24 = 0
𝑐𝑐25 = 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐𝑐26 = 0
𝑐𝑐30 = 5.00 × 10−4

𝑐𝑐31 = 0
𝑐𝑐32 = 1.13 × 10−10

𝑐𝑐33 = 0
𝑐𝑐34 = −8.44 × 10−11

𝑐𝑐35 = 0
𝑐𝑐36 = 2.53 × 10−11

𝑐𝑐40 = 5.00 × 10−5
𝑐𝑐41 = 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑐𝑐42 = 1.13 × 10−11

𝑐𝑐43 = 0
𝑐𝑐44 = 8.44 × 10−12

𝑐𝑐45 = 0
𝑐𝑐46 = −2.53 × 10−12

𝑐𝑐50 = 1.54 × 10−9
𝑐𝑐51 = 0

𝑐𝑐52 = −3.38 × 10−16
𝑐𝑐53 = 0

𝑐𝑐54 = 2.53 × 10−16 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑐𝑐55 = 0
𝑐𝑐56 = −7.60 × 10−17

𝑐𝑐60 = −1.02 × 10−10
𝑐𝑐61 = 0

𝑐𝑐62 = 2.25 × 10−17
𝑐𝑐63 = 0

𝑐𝑐64 = −1.69 × 10−17
𝑐𝑐65 = 0

𝑐𝑐66 = 5.06 × 10−18 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (51) 

By substituting the Taylor coefficients from Eq. (51) into Eq. (3), the displacement function is obtained as follows: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 0.0064− 1.406 × 10−9𝑥𝑥𝑡𝑡2 + 1.055 × 10−9𝑥𝑥𝑡𝑡4 − 3.164 × 10−10𝑥𝑥𝑡𝑡6 − 5 × 10−4𝑥𝑥3 + 1.125 × 10−10𝑥𝑥3𝑡𝑡2
− 8.438 × 10−11𝑥𝑥3𝑡𝑡4 + 2.531 × 10−11𝑥𝑥3𝑡𝑡6 + 5 × 10−5𝑥𝑥4 − 1.125 × 10−11𝑥𝑥4𝑡𝑡2 + 8.438 × 10−12𝑥𝑥4𝑡𝑡4
− 2.531 × 10−12𝑥𝑥4𝑡𝑡6 + 1.536 × 10−9𝑥𝑥5 − 3.375 × 10−16𝑥𝑥5𝑡𝑡2 + 2.531 × 10−16𝑥𝑥5𝑡𝑡4 − 7.595 × 𝑥𝑥5𝑡𝑡6
− 1.024𝑥𝑥6 + 2.25 × 10−17𝑥𝑥6𝑡𝑡2 − 1.688 × 10−17𝑥𝑥6𝑡𝑡4 + 5.062 × 𝑥𝑥6𝑡𝑡6 

(52) 

The solution function found in Eq. (52) is plotted for the time interval 𝑡𝑡 = 0 − 20𝑐𝑐, resulting in the graph depicted in Figure 3. 

 
Figure 3. General solution using the Taylor matrix method for the first mode of the simple-simple supported beam in example 1

3.2. Application example 2: Cantilever beam  

The initial conditions 𝑢𝑢0 = 0.01𝑚𝑚 and 𝑢𝑢0 = 0 for 𝑁𝑁 = 6 will be used. The unknown Taylor coefficients in the matrix series expanded 
at the origin (𝑥𝑥0, 𝑡𝑡0) = (0,0) will be calculated according to Eq. (18), then substituted into Eq. (3) to obtain the transverse forced 
vibration equation. 
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𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 0.0008𝑥𝑥2 − 1.687𝑥𝑥2𝑡𝑡2 + 1.266 × 10−9𝑥𝑥2𝑡𝑡4 − 3.796 × 10−10𝑥𝑥2𝑡𝑡6 − 0.0001𝑥𝑥3 + 2.25 × 10−10𝑥𝑥3𝑡𝑡2
− 1.687 × 10−10𝑥𝑥3𝑡𝑡4 + 5.061 × 10−11𝑥𝑥3𝑡𝑡6 + 5.33 × 10−6𝑥𝑥4 − 1.12 × 10−11𝑥𝑥4𝑡𝑡2 + 8.43 × 10−12𝑥𝑥4𝑡𝑡4
− 2.53 × 10−12𝑥𝑥4𝑡𝑡6 + 3.2 × 10−10𝑥𝑥5 − 6.748 × 10−16𝑥𝑥5𝑡𝑡2 + 5.061 × 10−16𝑥𝑥5𝑡𝑡4 − 1.518 × 10−17𝑥𝑥5𝑡𝑡6
− 1.066 × 10−11𝑥𝑥6 + 2.248 × 10−17𝑥𝑥6𝑡𝑡2 − 1.686 × 10−9𝑥𝑥6𝑡𝑡4 + 5.059 × 10−18𝑥𝑥6𝑡𝑡6 

(53) 

When Eq. (53) is plotted for the time interval 𝑡𝑡 = 0 − 20𝑐𝑐, the graph shown in Figure 4 is generated.  

 

Figure 4. General solution using the Taylor matrix method for the first mode of the cantilever beam in example 2 

3.3. Application example 3: Fixed-fixed beam  

The initial conditions 𝑢𝑢0 = 0.01𝑚𝑚 and 𝑢𝑢0 = 0 for 𝑁𝑁 = 6 will be used. The unknown Taylor coefficients in the matrix series expanded 
at the origin (𝑥𝑥0, 𝑡𝑡0) = (0,0) will be calculated according to Eq. (18), then substituted into Eq. (3) to obtain the transverse forced 
vibration equation. 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 0.0064𝑥𝑥2 − 2.813 × 10−10𝑥𝑥2𝑡𝑡2 + 2.11 × 10−10𝑥𝑥2𝑡𝑡4 − 6.328 × 10−11𝑥𝑥2𝑡𝑡6 − 0.0026𝑥𝑥3 + 1.125 × 10−10𝑥𝑥3𝑡𝑡2
− 8.437 × 10−11𝑥𝑥3𝑡𝑡4 + 2.531 × 10−11𝑥𝑥3𝑡𝑡6 + 0.00026𝑥𝑥4 − 1.125 × 10−11𝑥𝑥4𝑡𝑡2 + 8,436 × 10−12𝑥𝑥4𝑡𝑡4
− 2.531 × 10−12𝑥𝑥4𝑡𝑡6 + 7.697 × 10−9𝑥𝑥5 − 3.375 × 10−16𝑥𝑥5𝑡𝑡2 + 2.531 × 10−16𝑥𝑥5𝑡𝑡4
− 7.593 × 10−17𝑥𝑥5𝑡𝑡6 − 5.12 × 10−10𝑥𝑥6 + 2.25 × 10−17𝑥𝑥6𝑡𝑡2 − 1.687 × 10−17𝑥𝑥6𝑡𝑡4 + 5.062 × 10−18𝑥𝑥6𝑡𝑡6 

(54) 

When Eq. (54) is plotted for the time interval t = 0 − 20s, the graph shown in Figure 5 is generated. 

 
Figure 5. General solution using the Taylor matrix method for the first mode of the fixed-fixed beam in example 3 

4. Validation of the Method 

In this section, the separation of variables method is employed to derive the exact solution for the simply supported case. This solution 
is then compared with the results obtained through the Taylor matrix method. During this validation process, the beam and material 
properties applied in the numerical examples are also considered for both the Taylor matrix solution and the exact solution. 

In applying the separation of variables method, we propose a solution of the form 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑇𝑇(𝑡𝑡) (55) 

where the displacement and time functions are defined as 

𝑇𝑇(𝑡𝑡) = 𝑐𝑐1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐2𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (56) 

𝑋𝑋(𝑥𝑥) = 𝜌𝜌𝑐𝑐𝑖𝑖𝑛𝑛𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴𝑥𝑥 (57) 

By substituting the given values, boundary conditions, and initial conditions, and performing the necessary calculations, the 
homogeneous solution is obtained as follows: 
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𝑢𝑢ℎ(𝑥𝑥, 𝑡𝑡) = −0.005𝑐𝑐𝑖𝑖𝑛𝑛 �
𝑛𝑛𝑛𝑛
𝐿𝐿 𝑥𝑥� �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖� (58) 

and the first mode’s natural frequency is calculated for 𝑛𝑛 = 1, using Eq. (59) 

𝜔𝜔 = �
𝑛𝑛2𝑛𝑛2

𝐿𝐿2𝜌𝜌𝜌𝜌 (
𝑛𝑛2𝑛𝑛2

𝐿𝐿2 𝐸𝐸𝐸𝐸 − 𝑁𝑁0 ) (59) 

Similarly the particular solution will be 

𝑢𝑢𝑝𝑝 = −
10−4

9𝜌𝜌𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(3𝑡𝑡) (60) 

Thus the general solution is 

𝑢𝑢𝑔𝑔(𝑥𝑥, 𝑡𝑡) = −0.005𝑐𝑐𝑖𝑖𝑛𝑛 �
𝑛𝑛𝑛𝑛
𝐿𝐿 𝑥𝑥� �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖� −

10−4

9𝜌𝜌𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(3𝑡𝑡) 

= −0.005𝑐𝑐𝑖𝑖𝑛𝑛 �
𝑛𝑛𝑛𝑛
𝐿𝐿 𝑥𝑥��𝑒𝑒

𝑖𝑖�𝑛𝑛
2𝜋𝜋2

𝐿𝐿2𝜌𝜌𝜌𝜌(𝑛𝑛
2𝜋𝜋2
𝐿𝐿2 𝐸𝐸𝐸𝐸−𝑁𝑁0 )𝑖𝑖

+ 𝑒𝑒
−𝑖𝑖�𝑛𝑛

2𝜋𝜋2
𝐿𝐿2𝜌𝜌𝜌𝜌(𝑛𝑛

2𝜋𝜋2
𝐿𝐿2 𝐸𝐸𝐸𝐸−𝑁𝑁0 )𝑖𝑖

� −
10−4

9𝜌𝜌𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(3𝑡𝑡) 
(61) 

Substituting the given values, the general solution is obtained in its final form as follows: 

𝑢𝑢𝑔𝑔(𝑥𝑥, 𝑡𝑡) = −0.005𝑐𝑐𝑖𝑖𝑛𝑛(0,6283𝑥𝑥)�𝑒𝑒56,97𝑖𝑖𝑖𝑖 + 𝑒𝑒−56,97𝑖𝑖𝑖𝑖� − 0.0014 × 10−4𝑐𝑐𝑐𝑐𝑐𝑐(3𝑡𝑡) (62) 

The exact solution for the first natural frequency mode, obtained from Eq. (62) and the solution derived using the Taylor matrix 
method are plotted for 𝑡𝑡 = 0.5 and displayed in Figure 6. When the graphs of Eq. (62) and Eq. (52) are overlaid, a minimal difference 
between the two solutions is observed. This difference can be further reduced by increasing the value of 𝑁𝑁. 

 
Figure 6. Comparison of the Taylor matrix method and the exact solution for the simple-simple supported case in the first natural 

frequency mode at 𝑡𝑡 = 0.5 (- - - Taylor matrix method, — exact solution) 

 

We have comprehensively evaluated the transverse vibration of Euler-Bernoulli beams, affirming the robustness of the Taylor matrix 
method in solving such problems. By comparing our results with existing literature, we have demonstrated that this method not only 
aligns closely with the exact solutions derived through the separation of variables but also offers considerable advantages in terms of 
computational efficiency and ease of application. The results show minimal discrepancies, which can be further reduced by increasing 
the number of terms in the Taylor series expansion. This validation underscores the method's effectiveness for beams under various 
support conditions, while its inherent versatility suggests promising applications for more complex scenarios, such as functionally 
graded material beams and higher vibrational modes. Our findings reinforce the practicality of the Taylor matrix method as a powerful 
tool for researchers and engineers in the field of structural analysis, contributing to the ongoing discourse on improvements in 
vibration analysis techniques. 

5. Conclusion 

In conclusion, this study demonstrates the effectiveness of the Taylor matrix method in solving the Euler-Bernoulli beam equation for 
various boundary conditions, including simply supported, cantilever, and fixed-fixed configurations. By transforming the governing 
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differential equations into matrix form, the Taylor matrix approach provides a computationally efficient and accurate alternative to 
conventional methods, such as separation of variables. Through comparison with exact solutions, this method has proven to yield 
results with minimal discrepancies, which further decrease as the number of terms in the Taylor series expansion increases. The 
numerical examples validate the method's capability to handle complex vibration analyses for beams subjected to transverse loads, 
offering an accessible tool for engineers and researchers in structural analysis. This study highlights the Taylor matrix method as a 
valuable addition to the range of techniques available for solving differential equations in engineering, particularly in applications 
where efficiency and accuracy are critical. Future work may extend the method’s application to more complex beam models and 
different load conditions, further broadening its utility in structural engineering. 
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