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Abstract: This study presents a deep learning-based approach for high-precision surface water 
extraction from Sentinel-2 multispectral imagery. A modified U-Net architecture, trained and 
evaluated on two Turkish lake systems (Kuş and Uluabat Lakes), achieved superior performance 
compared to traditional methods. The model attained an overall accuracy of 0.9980, precision of 
0.9980, recall of 0.9980, F1-score of 0.9980, and Intersection over Union (IoU) of 0.9961, 
outperforming both Normalized Difference Water Index (NDWI) and Modified NDWI (MNDWI). 
Analysis reveals that the U-Net effectively mitigates spectral confusion in heterogeneous 
environments, demonstrating its potential for enhanced water resource monitoring, flood mapping, 
and hydrological modeling applications. While NDWI and MNDWI achieved IoU scores of 0.9956 and 
0.9953, respectively, the deep learning model's higher IoU signifies more accurate boundary 
delineation. The improved performance highlights the value of deep learning in automated surface 
water mapping for enhanced decision-making in water resource management. These results suggest 
that while traditional spectral indices are useful for preliminary analysis, deep learning approaches 
offer a more refined classification, particularly in complex or heterogeneous landscapes.   
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1. Introduction 

Surface Water, encompassing lakes, rivers, reservoirs, and coastal areas, are integral 

components of the Earth's complex ecosystem. Their influence extends far beyond their 

physical boundaries, impacting regional and global climate patterns, sustaining diverse 

aquatic and terrestrial habitats, and providing essential resources for human populations 

(Al-Najjar et al., 2019). Consequently, accurate, reliable, and up-to-date information on the 

spatial extent, distribution, and dynamics of water resources is paramount for informed 

decision-making in a multitude of applications, including water resource management, flood 

risk assessment, ecological monitoring, and land use planning (Yilmaz, 2023). 

Remote sensing technologies, such as Sentinel-2 multispectral imaging, provide high-

resolution spatial and temporal data, enabling large-scale analysis of water dynamics. 

However, traditional methods for water body extraction often rely on manual thresholding 

or spectral indices such as the Normalized Difference Water Index (NDWI) (Moumane et al., 

2025)and the Modified Normalized Difference Water Index (MNDWI) (Yao et al., 2025), 

which exploit the strong absorption of water in the near-infrared (NIR) and shortwave 

infrared (SWIR) regions of the electromagnetic spectrum. While these spectral indices offer 

a simple and computationally efficient approach for water body mapping, they can be 

susceptible to errors caused by spectral confusion with other land cover types, such as 

shadows, vegetation, and built-up areas. 
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Supervised classification techniques, such as maximum likelihood and support vector 

machines (SVMs) (Liong & Sivapragasam, 2002; Pang et al., 2023), have also been widely 

used for water body extraction from remote sensing imagery. These methods require 

training data, which consists of labeled samples representing different land cover classes, 

and can achieve high accuracy when trained with representative data (Li et al., 2021). 

However, the performance of supervised classification methods is highly dependent on the 

quality and quantity of training data, and they can struggle to generalize well to unseen areas 

or time periods. Furthermore, these traditional methods often require manual feature 

engineering, where domain experts select and extract relevant spectral, spatial, and textural 

features from the imagery to improve classification accuracy. This manual feature 

engineering process can be time-consuming, subjective, and may not always capture the full 

complexity of the underlying data. 

In recent years, the field of image analysis has been transformed by the rapid 

development and widespread adoption of deep learning (DL) techniques (Digra et al., 2022; 

Shabbir et al., 2021). DL, a subfield of machine learning, employs artificial neural networks 

with multiple layers to learn hierarchical representations of data, enabling the automatic 

extraction of complex features from raw input data. Deep learning architectures, particularly 

convolutional neural networks (CNNs), have achieved remarkable success in a wide range of 

computer vision tasks, including image classification, object detection, and semantic 

segmentation. Semantic segmentation, in particular, has emerged as a powerful tool for pixel-

wise classification of images, assigning a specific category label to each pixel in an image. This 

fine-grained classification capability makes semantic segmentation ideally suited for 

extracting complex spatial features from remote sensing imagery, such as water bodies, with 

high accuracy and detail (Al-Najjar et al., 2019; Digra et al., 2022; Zhao et al., 2020). 

The application of DL architectures, such as convolutional neural networks (CNNs), has 

demonstrated remarkable success in remote sensing analysis. For instance, studies 

leveraging CNNs for LULC classification have achieved superior accuracy in distinguishing 

fine-grained features, including buildings, vegetation, and water bodies, by integrating multi-

modal data like digital surface models (DSMs) (Al-Najjar et al., 2019). Similarly, residual 

dense networks (RDNs) enhanced with channel-spatial attention mechanisms have shown 

improved feature representation in high-resolution imagery (Zhao et al., 2023). Transfer 

learning approaches, such as fine-tuning pre-trained models like ResNet50 and Inception-v3, 

further optimize performance while reducing computational costs (Fayaz et al., 2024; 

Shabbir et al., 2021). Despite these advancements, surface water extraction poses unique 

challenges due to the spectral similarity between water and shadows, seasonal variations, 

and the need for precise boundary delineation in Sentinel-2 data. 

While existing frameworks like DPPNet Priyanka et al. (2023) and U-Net (Atik, 2023) 

have advanced semantic segmentation in remote sensing, few studies explicitly address 

water body extraction using Sentinel-2’s spectral bands. Campos-Taberner (2023) 

emphasized the interpretability of DL models for Sentinel-2 time series, identifying red and 

near-infrared bands as critical for LULC tasks (Campos-Taberner et al., 2020). However, the 

integration of multi-spectral data with deep semantic segmentation remains underexplored 

for water-specific applications.  

This research focuses on the application of deep learning-based semantic segmentation 

for extracting surface water from Sentinel-2 imagery. By leveraging the power of CNNs, this 

research aims to develop a robust and efficient method for automatically mapping surface 

water with high accuracy and detail from Sentinel-2 imagery.  
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2. Materials and Methods 

2.1. Study area  

This study focuses on two significant lake systems in Turkey: Kuş and Uluabat Lakes, 

both located within the Marmara region and exhibiting contrasting ecological characteristics 

(See Figure 1.)(Barlas et al., 2005; Filik Iscen et al., 2008; Uzun, 2024). Kuş Lake, a relatively 

small, shallow freshwater lake situated near Bandırma, is recognized as an important 

wetland ecosystem and a Ramsar site, supporting a diverse array of bird species, particularly 

during migration seasons. Its ecological importance stems from its role as a key stopover 

point for migratory birds traveling along the western Palearctic flyway. The lake's shallow 

depth and surrounding reed beds provide essential habitat for nesting, foraging, and resting. 

However, Kuş Lake faces increasing pressures from agricultural runoff, industrial discharge, 

and climate change, impacting water quality and threatening the delicate balance of its 

ecosystem (Dervisoglu, 2021; Yilmaz, 2023). 

In contrast, Uluabat Lake, is a much larger and deeper freshwater lake located south of 

Bursa. As designated Ramsar site, it holds significant ecological value, supporting a rich 

biodiversity of fish, birds, and other aquatic life. Uluabat Lake plays a critical role in regional 

water regulation and supports local fisheries. However, similar to Kuş Lake, it faces growing 

environmental challenges, including pollution from surrounding agricultural activities, 

industrial development, and urban expansion. These pressures contribute to eutrophication, 

habitat degradation, and the decline of native species.   

 

Figure. 1. Location of the study area Kuş (Training) and Uluabat Lakes (Testing) in Turkey. 

The selection of these two lakes provides a valuable comparative context for evaluating 

the performance of the proposed surface water extraction method. Their contrasting 

characteristics, in terms of size, depth, surrounding land use, and ecological pressures, 

present diverse scenarios for assessing the model's ability to accurately delineate water 

boundaries and monitor changes in water extent.  
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2.2. Data collection  

Sentinel-2 Surface Reflectance imagery, provided by the European Space Agency (ESA) 

via the Copernicus program, was utilized in the study area. The Uluabat and Kuş lakes were 

considered as areas of interest (AOIs). The AOIs were delineated using latitude-longitude 

coordinates in the Google Earth Engine (GEE) platform. 

The dataset was filtered for the period between January 1, 2020, and December 30, 

2020, to ensure temporal consistency. To minimize the impact of atmospheric disturbances, 

images with less than 20% cloud cover were pre-selected.   

The selected bands included the visible spectrum (B4, B3, B2) for red, green, and blue, 

respectively, and the near-infrared band (B8) to enhance vegetation analysis. Median 

composite imagery was generated by aggregating all cloud-free images within the specified 

period, ensuring a representative dataset for subsequent analysis.  

2.3. Dataset preprocessing 

The preprocessing of the dataset was conducted to ensure the quality, consistency, and 

readiness of the data for deep learning-based water bodies mapping. The raw satellite 

imagery and corresponding ground truth labels underwent a series of transformations, 

including handling invalid values, normalization, and tile generation, to prepare the data for 

model training and testing. 

 

Figure. 2. Locations of an example of the training Sentinel-2 images  

Initially, Sentinel-2 imagery and binary water Label were clipped to the region of 

interest (ROI) and tiled into smaller sections of 128×128 pixels using the GeoTile library (See 

Figure 2.). This tiling approach ensured the compatibility of the data with the input size 

requirements of the deep learning model and optimized memory usage. Each tile was 

carefully labeled with its respective water label to establish a supervised learning dataset. 
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Next, normalization was applied to the pixel values of the Sentinel-2 imagery, scaling 

them to a range of 0 to 1. This step was crucial for enhancing model convergence by 

standardizing input values and eliminating the influence of varying data scales.  

A validation process was carried out to identify and exclude erroneous tiles. Specifically, 

label tiles containing invalid values, such as pixel intensities exceeding the binary range (0 

and 1), were flagged, and removed. This step ensured that only valid and meaningful tiles 

contributed to the model training process. After validation, the dataset consisted of 600 high-

quality tiles, each containing multispectral Sentinel-2 imagery and its corresponding binary 

water label. Figure 3. Illustrating few examples from the RGB Sentinel-2 imagery and thir 

corresponding label for each image. 

 

Figure. 3. An example of the training Sentinel-2 tiles including (B4, B3, B2 bands) for red, green, and 

blue, respectively, and the near-infrared band (B8) with their respected water Label 

2.4. U-Net model development 

In this study, a U-Net architecture was developed for surface water mapping (See Figure 

4.), leveraging its strengths in semantic segmentation tasks. The model was designed to 

process input tiles of size 128×128×4, where the four input channels correspond to the 

multispectral bands of Sentinel-1 or Sentinel-2 imagery. The U-Net model consists of two 

main components: an encoder for feature extraction and a decoder for reconstructing spatial 

information, with skip connections linking the two to retain fine details. 

The encoder begins with an input layer that accepts tiles of shape (128, 128, 4). This 

input passes through a series of convolutional layers that apply a 3×3 kernel with ReLU 

activation and same padding to preserve spatial dimensions. Dropout layers are employed 

after each convolution to prevent overfitting by randomly deactivating a fraction of neurons. 

The first convolutional block extracts 32 feature maps, followed by a max-pooling operation 

to reduce spatial dimensions by half. This process is repeated, with the number of feature 

maps increasing to 64 in deeper layers, enhancing the model’s capacity to capture complex 

spatial patterns.  

https://dergipark.org.tr/en/pub/tuzal
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The final encoding layer produces a compact representation of the input, balancing 

spatial resolution and feature richness. 

The decoder reconstructs the spatial dimensions of the input through transposed 

convolutional layers, which perform upsampling while learning reconstruction filters. Skip 

connections from the encoder are concatenated with the corresponding decoder layers to 

recover spatial details lost during downsampling. Each decoder block comprises transposed 

convolutions with ReLU activation and dropout layers to maintain regularization. The 

decoder progressively increases the spatial resolution back to the original tile size while 

reducing the number of feature maps. 

To generate the binary for water body map, the final decoder output passes through a 

series of 1×1 convolutional layers, which refine the output to a single channel. The final 

activation function is a sigmoid, suitable for binary classification tasks, as it maps pixel 

intensities to values between 0 and 1. 

The U-Net model was compiled using the Adam optimizer, which provides adaptive 

learning rates for efficient training. The binary cross-entropy loss function was used, given 

the binary nature of the output (Water or no-Water), along with accuracy as an evaluation 

metric. This U-Net implementation effectively balances spatial detail retention and 

computational efficiency, making it well-suited for water bodies mapping. 

 

Figure. 4.The architecture of the U-Net. 

To train the U-Net model for water bodies mapping, TensorFlow's deep learning 

framework were utilized.  The training process involved the use of callbacks and 

hyperparameter tuning to ensure optimal model performance and prevent overfitting. A key 

component of the training strategy was the integration of a checkpointing mechanism using 

TensorFlow’s ModelCheckpoint callback. This callback monitored the validation loss during 

training and saved the model weights only when the validation loss improved, ensuring that 

the best-performing model was preserved. The callback function was configured with the 

"val_loss" metric as the monitor, a verbose output to track progress, and a "min" mode to 

identify and save the model with the minimum validation loss. The use of ModelCheckpoint 

mitigated the risk of overfitting, as it allowed the training process to store optimal weights 

while discarding suboptimal training iterations. This ensured that the final model was 

generalizable to unseen data. An optional early stopping mechanism, which halts training if 
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the validation loss does not improve for a specified number of epochs, was considered but 

not activated for this particular implementation to allow the model to train for the full 50 

epochs. The model was trained on the preprocessed dataset using 50 epochs and a batch size 

of 16.  

The model utilizes the Adam optimizer with its default configuration during training. 

Specifically, the learning rate is set to 0.001, which is the standard default value for Adam in 

TensorFlow. This adaptive optimizer is well-suited for binary segmentation tasks due to its 

efficient handling of sparse gradients and noisy data. 

During training, the model’s performance was monitored in terms of the loss values for 

both training and validation datasets. By saving the model weights at the point of lowest 

validation loss, the risk of overfitting or underfitting was minimized, and the saved model 

could then be used for subsequent evaluation and prediction tasks. 

This training framework ensured the development of a robust U-Net model optimized 

for accurate surface water mapping, capable of effectively generalizing to new spatial data. 

2.5. Performance evaluation 

The performance of the proposed deep learning model for surface water extraction was 

assessed using a suite of established metrics: Precision, Recall, F1-score, and Intersection 

over Union (IoU). These metrics provide a comprehensive evaluation of the model's ability 

to correctly classify water pixels while minimizing both false positives (non-water pixels 

classified as water) and false negatives (water pixels misclassified as non-water). This multi-

faceted evaluation allows for a nuanced understanding of the model's strengths and 

weaknesses in accurately delineating surface water from Sentinel-2 imagery. 

Precision, quantifying the accuracy of positive predictions, measures the proportion of 

correctly identified water pixels out of all pixels classified as water by the model. A high 

precision indicates a low rate of false positives, meaning the model is effectively avoiding 

misclassifying non-water features as water.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 (1) 

Recall, also known as sensitivity, assesses the model's ability to capture all actual water 

pixels. It measures the proportion of correctly identified water pixels out of all true water 

pixels present in the ground truth data. A high recall signifies a low rate of false negatives, 

indicating the model is successfully identifying the vast majority of water pixels within the 

study area.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
  (2) 

The F1-score, the harmonic mean of precision and recall, provides a balanced measure 

of overall accuracy, particularly valuable when dealing with potentially imbalanced datasets 

where one class (e.g., water) may have significantly fewer pixels than another. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 (3) 

Finally, the Intersection over Union (IoU), offers a direct measure of the spatial overlap 

between the predicted water mask and the ground truth water mask. It is calculated as the 

ratio of the intersection of the predicted and ground truth masks to the union of the two 

masks. A higher IoU signifies better segmentation performance, indicating a closer alignment 

between the model's predicted water boundaries and the actual water extent.  

𝐼𝑜𝑈 =
 |𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
 (4) 
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A represents the set of pixels in the predicted segmentation mask. B represents the set 

of pixels in the ground truth mask. 

|A ∩ B| denotes the number of pixels in the intersection of A and B (i.e., the number of 

true positives). It represents the area where both the prediction and the ground truth agree 

that the pixel belongs to the object of interest (in this case, water). 

|A ∪ B| denotes the number of pixels in the union of A and B (i.e., the sum of true 

positives, false positives, and false negatives). It represents the total area covered by either 

the prediction or the ground truth, or both. 

3. Results 

This section presents the results of the deep learning-based approach for water body 

extraction using Sentinel-2 imagery. The performance of the U-Net model evaluated using 

several metrics, including Precision, Recall, F1-score, and IoU. a visual comparison of 

predicted water bodies against actual boundaries provided. The results are further discussed 

in comparison with traditional models. 

3.1. Analysis of the training log 

The U-Net model's performance was assessed using a suite of metrics designed to 

capture its effectiveness in water body delineation. The model was trained for 20 epochs. As 

shown in Figure 5, both the training and validation accuracy increased over the epochs, while 

the corresponding loss values decreased. This trend indicates consistent improvement in the 

model's ability to distinguish surface water from other land cover types. The use of the 

ModelCheckpoint callback used to save the best model weights.  

The model achieved a final training accuracy of 0.9990 and a validation accuracy of 

0.9976. Due to the high quality of the satellite images and low noise, the slight difference 

between training and validation accuracy indicates a minor degree of overfitting. However, 

the high validation accuracy still demonstrates the model's robustness and its capacity to 

perform well on unseen data. Examining the loss curves in Figure 5 reveals that the training 

loss stabilized around 0.0026, while the validation loss reached its lowest point of 0.0078 at 

epoch 20. Each epoch took between 170 and 201 seconds. Therefore, the total training 

duration is 3487 seconds. The early stabilization of the validation loss suggests that further 

training beyond this point might offer limited performance gains and could potentially 

increase the risk of overfitting. 

The rapid convergence of the model, achieving near-optimal performance within a few 

epochs, as observed in Figure 5, can indeed be unusual in some deep learning scenarios. 

However, several factors contribute to this rapid convergence: (A) The Sentinel-2 imagery 

used in this study is of high quality with minimal noise. The preprocessing steps, including 

cloud masking and atmospheric correction, further enhance the data quality and reduce 

potential confounding factors. This clean and consistent input data facilitates efficient model 

training and faster convergence. (B)The U-Net architecture, with its encoder-decoder 

structure and skip connections, is particularly well-suited for semantic segmentation tasks. 

Its design enables efficient capture of both local and global contextual information, leading 

to faster learning and convergence, especially for well-defined features like water bodies. (C) 

The inclusion of the near-infrared (NIR) band, alongside the red, green, and blue (RGB) 

bands, significantly contributes to the rapid convergence. Water exhibits strong absorption 

in the NIR spectrum, providing a distinct spectral signature that contrasts sharply with most 

other land cover types. This clear spectral separability allows the model to quickly learn the 

differentiating characteristics of water bodies, leading to faster convergence. 
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Figure.5. Training and validation accuracy (left figure), training and validation loss (right figure) 

The confusion matrix and ROC curve, presented in Figure 6, offers a better view of the 

model's classification performance. It shows 1474835 true positives (correctly identified 

water pixels), 3198 true negatives (correctly identified non-water pixels), 8336146 false 

positives (non-water pixels misclassified as water), and 16221 false negatives (water pixels 

misclassified as non-water). Based on these values, the calculated Precision is 0.9992, Recall 

is 0.9851, F1-score is 0.9921, and IoU is 0.9843. The high precision indicates a low rate of 

false positives, meaning the model effectively avoids misclassifying non-water features as 

water. The slightly lower recall, while still high, suggests a small number of missed water 

pixels. The F1-score, a balanced measure of precision and recall, confirms the model's overall 

strong performance, and the IoU further corroborates this by quantifying the significant 

overlap between predicted and actual water body extents. The ROC curve with an AUC of 

0.99 highlights the model’s excellent discrimination capability, with a low false positive rate. 

These results suggest that the model successfully generalizes to unseen data, which is crucial 

for large-scale water body mapping. 

 

Figure.6. Model performance evaluation: confusion matrix and ROC curve 

Analysis of the training log reveals fluctuations in the time taken per epoch. This 

variation is likely due to external factors such as system load and does not reflect inherent 

model inefficiency. While the training time varied from 171 seconds to as high as 201 

seconds, the average time per epoch gives a better representation of the model’s 

computational needs. This information can be valuable in estimating resource requirements 
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for future applications or for comparing the efficiency of different model architectures. The 

detailed breakdown of performance metrics provides a comprehensive understanding of the 

model's strengths and limitations, highlighting its effectiveness in accurately mapping 

surface water from Sentinel-2 imagery. 

3.2. Comparison of predicted water bodies against actual boundaries 

The comparison between the predicted water bodies and the actual ground truth 

demonstrates the high accuracy of the model in delineating surface water. The input image, 

ground truth, and predicted output are visualized side by side in Figure.7. The predicted 

water extent closely matches the ground truth, with minimal contradictions along the 

boundary regions.  

Figure.7. Water body segmentation: model prediction vs. ground truth 

 

Figure.8. Predicted water area overlaid on original Sentinel 2 Satellite Image. 

The predicted water body is overlaid on the input image (See Figure 8.), offering a 

spatial perspective of the classification. The predicted water extent aligns well with the lake’s 

actual boundaries, demonstrating the model’s ability to accurately segment surface water in 

satellite imagery. However, minor deviations may be observed along the edges, potentially 

due to spectral similarities between water and adjacent land cover types, such as wetlands 

or shadowed areas. This analysis highlights the effectiveness of the model in surface water 

detection while also emphasizing the need for further refinement in complex boundary 

regions. The findings support the potential application of this approach in hydrological 

studies, environmental monitoring, and flood mapping, where precise water body 

delineation is essential. 
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3.3. Comparison with traditional models 

To assess the effectiveness of the proposed deep learning approach, the performance of 

traditional surface water extraction methods compared. Specifically, U-Net model 

benchmarked against two widely used spectral indices: the NDWI and MNDWI. These indices 

exploit the spectral characteristics of water in the near-infrared (NIR) and shortwave 

infrared (SWIR) regions of the electromagnetic spectrum to distinguish water from other 

land cover types.  

 

Figure.9. Comparison of predicted water areas with NDWI, and MNDWI 

The overall agreement between the predicted image and the spectral indices highlights 

the robustness of the model in surface water delineation. However, minor discrepancies 

along complex shoreline regions suggest that while the model effectively generalizes water 

features, it may still require refinement in areas with mixed land-water characteristics. The 

advantage of the deep learning-based prediction is its ability to integrate spatial and 

contextual information beyond simple spectral thresholding, making it more adaptable in 

challenging environments such as turbid or shallow waters. The results indicate that while 

traditional spectral indices remain useful for water mapping, machine learning-based 
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approaches offer promising improvements in classification accuracy, especially in 

heterogeneous landscapes where spectral confusion is prevalent. 

The confusion matrices (See Figure 10.) provide a comparative evaluation of the 

performance of the deep learning-based prediction model against the NDWI and MNDWI. 

The predicted image achieves the lowest false positives (4,016) and false negatives (16,277), 

demonstrating a strong ability to distinguish between water and non-water areas. In 

contrast, the NDWI method exhibits a slightly higher number of false negatives (18,975), 

suggesting it may under-classify some water pixels, potentially due to variations in water 

turbidity or spectral similarities with land surfaces. The MNDWI index, while effective, 

records the highest false positives (16,553), indicating a tendency to misclassify certain land 

areas as water, which may be influenced by factors such as urban features or wet soil 

reflecting similarly to water in the modified spectral bands. 

Table 1. Comparison of Classification Performance: Predicted Image vs. NDWI and MNDWI 
 

Accuracy Precision Recall F1-score IoU 
Predicted Image 0.9980 0.9980 0.9980 0.9980 0.9961 

NDWI 0.9978 0.9978 0.9978 0.9978 0.9956 
MNDWI 0.9976 0.9976 0.9976 0.9976 0.9953 

 

The performance metrics in the Table.1. demonstrate that the predicted image from the 

model achieves the highest accuracy (0.9980), precision (0.9980), recall (0.9980), F1-score 

(0.9980), and Intersection over Union (IoU = 0.9961) compared to the NDWI and MNDWI 

indices. While all three approaches exhibit strong performance, the deep learning-based 

prediction slightly outperforms the NDWI and MNDWI, particularly in terms of IoU, 

indicating better spatial agreement with the reference surface water. The NDWI and MNDWI 

indices, which rely on spectral thresholding techniques, show very similar performance but 

with marginally lower scores than the model’s prediction. This suggests that while spectral 

indices remain effective for surface water delineation, machine learning-based methods offer 

superior precision and generalization, especially in complex environments where spectral 

misclassification may occur. 

 

 

Figure.10. Comparison of confusion matrices for predicted water bodies, NDWI, and MNDWI 

classification 

The consistently high performance across all methods highlights the reliability of 

satellite-based surface water mapping. However, the slight differences between the 

predicted image and spectral indices suggest that traditional thresholding methods might 

misclassify certain land-water boundary regions, particularly in areas with mixed land cover, 

turbid water, or shadow effects. The deep learning model, on the other hand, integrates 

spatial and contextual information, leading to improved segmentation results. 
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4. Discussion 

In evaluating surface water extraction methodologies, it is vital to compare deep 

learning-based optical image processing, specifically using U-Net models with Sentinel-2 

data, against Synthetic Aperture Radar (SAR)-based approaches. This discussion reveals 

insights into their distinctive advantages and operational contexts. Deep learning models like 

U-Net have gained prominence in optical image processing due to their superior 

performance in extracting fine spatial details. For instance, U-Net architectures demonstrate 

high accuracy when applied to complex image segments such as water bodies, benefiting 

from high spectral resolution data available in Sentinel-2 imagery(Solórzano et al., 2021). 

Their ability to learn intricate patterns through convolutional layers enables a nuanced 

understanding of surface features, leading to precise segmentation. 

Conversely, SAR-based water extraction offers unique advantages under conditions 

unfavorable for optical imagery, such as cloud cover or poor lighting, where optical sensors 

struggle. The utility of SAR data lies in its all-weather, day-and-night imaging capability, 

making it invaluable for consistent surface water monitoring (Bioresita et al., 2018; Xie et al., 

2023). Prior research highlights the efficacy of traditional SAR methods, such as those 

employing the Automatic Water Mapping (AWM) algorithm, which yield high accuracy in 

various applications (Bioresita et al., 2018). Moreover, studies highlight the precision of 

using SAR imagery for continuous water monitoring in challenging climatic regions like the 

Mekong Delta (Pham-Duc et al., 2017). 

In direct comparisons, multiple studies underscore the efficiency of SAR processing 

algorithms, demonstrating comparable or superior performance against optical indices. For 

instance, Zhang et al. (2020) applied a robust thresholding technique specifically adapted for 

SAR data, achieving reliable surface water mapping that outperformed analog optical 

methods. Furthermore, the fusion of Sentinel-1 and Sentinel-2 imagery is explored, where 

the combined datasets can synergistically enhance water detection, allowing for the 

extraction of more complex features (Bai et al., 2021). 

Literature has pointed out that while traditional SAR algorithms can be computationally 

efficient, they often require significant parameter tuning and understanding of local 

geographic features to optimize their performance—facets where deep learning models 

might provide improved usability and scalability due to their learning capabilities from large 

datasets (Šćepanović et al., 2021). This adaptability makes U-Net a compelling choice, 

especially in specific applications such as flood mapping and hydrological modeling, where 

rapid and precise data analysis is necessary (Asaro et al., 2021). 

Therefore, while both methodologies have their merits, the choice between deep 

learning optical image processing and SAR-based techniques hinges on the specific use case 

scenarios, environmental conditions, and operational requirements. The deployment of both 

methods can also complement each other, enhancing overall accuracy and reliability in 

surface water extraction tasks. 

5. Conclusions 

This research demonstrates the power of deep learning for automated water body 

extraction from Sentinel-2 imagery, offering a significant advancement over traditional 

methods. The modified U-Net model's ability to accurately delineate water boundaries, even 

in complex environments, has broad implications for water resource management, 

environmental monitoring, and ecological studies. 

The modified U-Net model consistently outperformed traditional spectral index-based 

methods, achieving higher precision, recall, F1-score, and IoU. This improvement stems from 

the model's ability to learn complex spatial and spectral patterns, effectively distinguishing 

water from other land cover types, even in challenging scenarios with mixed land-water 
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interfaces, turbidity, or shadow effects. The deep learning approach automates the water 

body extraction process, significantly reducing manual effort and enabling large-scale 

analysis of water resources. This efficiency is crucial for timely monitoring and informed 

decision-making. The model's consistent performance across two distinct lake systems 

suggests good generalizability to diverse hydrological and ecological contexts. This 

robustness makes the approach applicable to various geographic regions and water body 

types. 

The accurate and automated delineation of water bodies using this deep learning 

approach has far-reaching Broader implications for: 

• Water Resource Management: Provides critical information for water allocation, 

drought monitoring, and sustainable water use planning, ultimately contributing to 

more effective water resource management. 

• Hydrological Modeling: Improves the accuracy of hydrological models by providing 

precise water extent data, enabling better predictions of water availability, flow 

dynamics, and flood risks. 

• Flood Risk Assessment and Mitigation: Supports the development of accurate flood 

inundation maps, contributing to better risk assessments and the design of effective 

flood mitigation strategies. 

• Environmental Monitoring and Ecological Studies: Facilitates the monitoring of changes 

in water bodies over time, enabling the detection of trends related to climate change, 

land use changes, pollution, and other environmental pressures. This information is 

crucial for understanding ecosystem health and supporting conservation efforts. 

Researchers can build upon this work by exploring several promising avenues: 

• Extend the analysis to multi-temporal Sentinel-2 data to investigate water body 

dynamics, including seasonal variations, long-term trends, and the impact of climate 

change. Develop specific change detection algorithms for water bodies and use time-

series analysis to understand evolving patterns. This could involve incorporating 

recurrent neural networks or long short-term memory networks to handle the temporal 

dimension. 

• Investigate the fusion of Sentinel-2 data with other satellite sensors (e.g., Landsat-9, 

PlanetScope) to enhance spatial resolution, improve detection of smaller or fragmented 

water bodies, and address spectral confusion in challenging environments. Research 

could focus on optimal fusion strategies and comparative analysis of their effectiveness. 

• Explore advanced deep learning architectures and techniques, such as attention 

mechanisms or transformers, to further refine model accuracy. Develop methods to 

quantify the uncertainty associated with model predictions to enhance reliability 

assessment and support informed decision-making. Bayesian deep learning approaches 

could be a valuable area of exploration. 

• Integrate the deep learning-based water body extraction method with hydrological 

models to improve model calibration, validation, and predictive capabilities. This would 

contribute to more accurate and reliable water resource assessments. 

• A key area for future research is analyzing the model's robustness across varying 

hydrological conditions. This involves using a multi-year dataset encompassing distinct 

dry and rainy seasons to: (1) train and evaluate the model separately on data from these 

periods to assess performance differences and identify specific challenges, and (2) 

develop a more generalized model by incorporating temporal information or training on 

a more diverse dataset that captures the full range of variability in water levels and 

quality. This will lead to a more comprehensive understanding of the model's limitations 

and contribute to the development of more reliable deep learning-based approaches for 

water body extraction. 
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