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Abstract: This study develops a novel framework for prioritizing wearable technologies in Occupational Health 
and Safety (OHS) within the manufacturing sector, addressing both technical performance and workforce 
integration. The purpose of the framework is twofold: first, to identify the key criteria influencing the adoption 
and effectiveness of wearable technologies, such as safety impact, cost-effectiveness, reliability, ease of training, 
and employee adoption; and second, to create a structured decision-making approach that supports HR 
practitioners, stakeholders, and OHS managers in evaluating and selecting technologies. By integrating Fuzzy 
DEMATEL to analyze causal relationships among criteria and PROMETHEE to rank alternatives, the study 
reveals that cost-effectiveness and safety impact are the most influential drivers. The wearable technology 
alternatives, including Gas Detection Sensors, Fatigue-Monitoring Bands, Smart Helmets, and Exoskeletons, 
were selected as a simulation for the prioritization process, reflecting a diverse set of use cases and challenges. 
The findings highlight Gas Detection Sensors as the top-ranked technology due to their superior safety and 
reliability performance, followed by Fatigue-Monitoring Bands and Smart Helmets, while Exoskeletons rank 
lowest due to cost and training challenges. This framework emphasizes the alignment of technical solutions with 
workforce readiness, providing actionable insights for decision-makers, including strategies for enhancing 
employee adoption and targeted training programs. Grounded in the Technology Acceptance Model (TAM) to 
explain adoption behavior, the study bridges technical evaluation with human-centric criteria, offering a 
scalable, practical decision-making framework applicable to other industries aiming to enhance workplace 
safety through wearable technologies. 
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Giyilebilir Teknolojilerle İş Sağlığı ve Güvenliğini Geliştirme: Üretim Sektöründe İnsan 
Kaynakları Stratejileri için Çok Kriterli Karar Verme Çerçevesi 

Öz: Bu çalışma, üretim sektöründe İş Sağlığı ve Güvenliği (İSG) kapsamında giyilebilir teknolojilerin 
önceliklendirilmesine yönelik hem teknik performansı hem de iş gücü entegrasyonunu ele alan yenilikçi bir 
çerçeve geliştirmektedir. Çalışmanın amacı, İlk olarak, güvenlik etkisi, maliyet etkinliği, güvenilirlik, eğitim 
kolaylığı ve çalışanların benimsenmesi gibi giyilebilir teknolojilerin benimsenmesini ve etkinliğini etkileyen 
temel kriterleri belirlemek; ikinci olarak ise İnsan Kaynakları (İK) uygulayıcıları, paydaşlar ve İSG 
yöneticilerinin teknolojileri değerlendirmesini ve seçmesini destekleyen yapılandırılmış bir karar verme 
yaklaşımı oluşturmaktır. Fuzzy DEMATEL metodolojisi ile kriterler arasındaki nedensel ilişkileri analiz 
ederken, PROMETHEE metodolojisi alternatifleri sıralamada kullanılmıştır. Önceliklendirme süreci için Gaz 
Algılama Sensörleri, Yorgunluk İzleme Bantları, Akıllı Kasklar ve Dış İskeletler gibi giyilebilir teknoloji 
alternatifleri bir simülasyon olarak seçilmiş olup, bu alternatifler çeşitli kullanım alanları ve zorlukları 
yansıtmaktadır. Çalışma, maliyet etkinliği ve güvenlik etkisinin en etkili faktörler olduğunu ortaya 
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koymaktadır. Bulgular, Gaz Algılama Sensörleri'nin, üstün güvenlik ve güvenilirlik performansı nedeniyle en 
üst sırada yer aldığını, ardından Yorgunluk İzleme Bantları ve Akıllı Kasklar'ın geldiğini, Dış İskeletler'in ise 
maliyet ve eğitim zorlukları nedeniyle en alt sırada yer aldığını göstermektedir. Çalışma, teknik çözümleri iş 
gücü hazırlığı ile uyumlu hale getirmeye vurgu yaparak, çalışanların teknolojiyi benimsemesi ve hedefe yönelik 
eğitim programlarının geliştirilmesi gibi karar vericilere yönelik uygulanabilir öneriler sunmaktadır. Teknoloji 
Kabul Modeli'ne (TAM) dayanan çalışma, benimseme davranışını açıklamak için insan odaklı kriterlerle teknik 
değerlendirmeyi birleştirmekte ve diğer sektörlerde iş yeri güvenliğini artırmayı hedefleyen ölçeklenebilir, 
pratik bir karar verme çerçevesi sunmaktadır. 

Anahtar Kelimeler: İş Sağlığı ve Güvenliği (İSG), Giyilebilir Teknolojiler, Üretim Sektörü, İnsan Kaynakları 
Stratejileri 
Jel Kodları: J81, 033, L60, M50 
 

1.  Introduction 
The manufacturing sector presents a unique set of challenges in occupational health 

and safety (OHS) due to its inherently high-risk environments. Employees face risks such 
as physical injuries, repetitive strain, hazardous material exposure, and workplace 
fatigue, which demand innovative solutions to mitigate these challenges (Patel et al., 
2022). Traditional OHS measures, while essential, often fall short in providing real-time 
and proactive safety interventions. Wearable technologies have emerged as a 
transformative solution in enhancing workplace safety. These technologies, such as 
fatigue-monitoring bands, smart helmets, and environmental sensors, offer real-time data 
collection and feedback, enabling proactive measures to prevent accidents and injuries 
(Svertoka et al., 2021). For example, smart helmets equipped with sensors can detect 
harmful gases, while exoskeletons can reduce physical strain during heavy lifting tasks 
(De Fazio et al., 2022). These advancements align with Industry 4.0 principles, where 
interconnected systems and real-time analytics redefine operational safety (Balamurugan 
et al., 2022). 

The successful implementation and adoption of wearable technologies in workplaces 
are strongly influenced by employee perceptions, which are central to the Technology 
Acceptance Model (TAM) developed by Davis (1989). According to TAM, the adoption of 
any technology is primarily determined by its perceived usefulness (PU)—the extent to 
which employees believe the technology enhances their job performance—and perceived 
ease of use (PEOU)—the degree to which the technology is easy to use. When applied to 
wearable technologies, PU can be reflected in employees’ recognition of these devices’ 
ability to enhance safety and reduce workplace risks, while PEOU is critical in ensuring 
the devices integrate seamlessly into daily routines without significant learning curves. 
Extending this theoretical lens to wearable technologies in manufacturing, it becomes 
evident that HR’s role in promoting these technologies involves not only logistical 
support but also fostering positive employee attitudes toward their use. 

Human Resource (HR) departments play a critical role in integrating wearable 
technologies into OHS strategies. HR responsibilities include ensuring employee training, 
promoting technology adoption, and aligning wearable solutions with organizational 
policies. The Technology Acceptance Model provides a useful framework for HR to 
address barriers to adoption by emphasizing the importance of training programs that 
improve PEOU and communicating the safety benefits of these technologies to enhance 
PU. Effective implementation relies on employee acceptance, which is influenced by 
factors such as ease of use, perceived usefulness, and organizational culture (Wong et al., 
2021). Thus, HR strategies are pivotal in overcoming barriers to adoption, such as 
resistance to change and concerns over privacy (Schall Jr et al., 2018). Moreover, the model 
highlights how organizational support and transparent communication can alleviate 
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resistance by building trust and confidence in the technology’s reliability and 
effectiveness. 

Despite the evident benefits of wearable technologies, the literature reveals a lack of 
structured approaches to prioritize these solutions for OHS improvements, particularly 
from an HR perspective. While prior studies have explored wearable technologies in 
construction and healthcare (Mejia et al., 2021; Ibrahim et al., 2025), the manufacturing 
sector remains underexplored. Additionally, limited research exists on integrating HR-
driven criteria, such as employee adoption and training requirements, into decision-
making frameworks for wearable technology implementation. By incorporating TAM into 
this study, the emphasis shifts toward understanding the behavioral and psychological 
dimensions of adoption, ensuring that technical and human resource considerations are 
aligned. This study addresses the gap by proposing a Multi-Criteria Decision-Making 
(MCDM) framework that combines Fuzzy DEMATEL for criteria weighting and 
PROMETHEE for ranking wearable technologies. The integration of HR-specific criteria 
into the evaluation process, such as employee engagement and ease of training, ensures a 
holistic approach that aligns with both safety objectives and workforce needs. 

The primary objective of this study is to develop a robust decision-making 
framework to prioritize wearable technologies for OHS in the manufacturing sector. The 
proposed framework integrates Fuzzy DEMATEL and PROMETHEE methods to evaluate 
wearable solutions based on both OHS and HR criteria, providing actionable insights for 
HR and OHS professionals. The inclusion of TAM theory within the framework reinforces 
the importance of addressing employee perceptions as a critical success factor, 
highlighting how HR strategies can shape the adoption and sustained use of these 
technologies. 

Several alternative MCDM methods, such as VIKOR, TOPSIS, and AHP, have been 
used in previous OHS studies to prioritize safety measures and technologies (Gul, 2018; 
Dabbagh & Yousefi, 2019). For example, VIKOR focuses on compromise solutions but may 
lack the ability to capture interdependencies among criteria, which is essential for 
complex evaluations like wearable technology prioritization (La Fata et al., 2021). 
Similarly, TOPSIS evaluates alternatives based on their proximity to ideal solutions but 
does not explicitly consider causal relationships between criteria (Badida et al., 2023). In 
contrast, Fuzzy DEMATEL effectively identifies and weights interdependent criteria, 
while PROMETHEE provides a robust ranking mechanism that accounts for the weighted 
criteria and stakeholder preferences. This combination allows for a nuanced analysis of 
wearable technologies, addressing both the technical and human resource dimensions of 
OHS challenges. 

Prior research underscores the diverse applications and benefits of wearable 
technologies in OHS. For instance, Awolusi et al. (2018) highlighted the role of wearable 
sensing devices in monitoring real-time safety metrics, while Nnaji et al. (2021) 
emphasized their potential to mitigate health risks in construction settings. However, as 
Aksüt et al. (2024) noted, the adoption of wearable technologies varies significantly across 
sectors, highlighting the need for sector-specific prioritization frameworks. By focusing 
on the manufacturing sector and integrating HR criteria, this study contributes to filling 
this critical research gap. 

2. Literature Review 
2.1 Wearable Technologies in Occupational Health and Safety (OHS) 
Wearable technologies have emerged as transformative tools in occupational health 

and safety (OHS), offering real-time monitoring, predictive analytics, and enhanced 
situational awareness. These technologies, which include smart helmets, fatigue-
monitoring devices, exoskeletons, and gas detection sensors, are designed to address 
specific workplace hazards and improve overall safety. The increasing integration of 
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wearable devices in OHS aligns with the principles of Industry 4.0, where interconnected 
systems, data-driven insights, and automation redefine traditional safety practices. 

Smart helmets equipped with sensors provide advanced functionalities such as 
detecting harmful gases, monitoring environmental conditions, and alerting workers to 
potential hazards. Patel et al. (2022) highlighted the role of connected-worker solutions in 
wearable technologies, emphasizing their capability to enhance safety and productivity 
in hazardous workplaces. Similarly, fatigue-monitoring devices are critical in preventing 
accidents caused by exhaustion. These wearables track physiological metrics such as heart 
rate variability, eye movement, and sleep patterns to provide early warnings of fatigue-
related risks. Nnaji et al. (2021) discussed the development of personalized systems using 
wearable sensing devices to mitigate health risks in construction, showcasing how 
tailored solutions can effectively address specific safety challenges. 

Exoskeletons have gained traction as ergonomic solutions that enhance worker 
performance and reduce the risk of musculoskeletal injuries. These wearable devices 
provide physical support during repetitive tasks or heavy lifting, which are common in 
manufacturing and construction sectors. Balamurugan et al. (2022) underscored their 
importance in improving operational efficiency and worker safety, noting that their 
integration into smart manufacturing systems represents a significant advancement in 
workplace ergonomics. Rajendran et al. (2021) further emphasized the role of exoskeletons 
in addressing repetitive strain injuries and reducing worker fatigue, positioning them as 
essential components of modern OHS strategies. 

Another significant innovation in wearable technology is the use of gas detection 
sensors for environmental monitoring. These devices play a crucial role in industries 
where exposure to toxic gases poses a significant risk. De Fazio et al. (2022) introduced an 
energy-autonomous smart shirt embedded with wearable sensors capable of monitoring 
air quality and alerting users in real-time. This innovation not only enhances mobility 
compared to stationary gas detectors but also ensures continuous monitoring, thereby 
improving worker safety in hazardous environments. Such advancements demonstrate 
the potential of wearable technologies to address both general and industry-specific safety 
needs. 

The application of wearable technologies extends across various sectors, each with 
unique safety requirements. Mejia et al. (2021) explored their role in the hospitality 
industry, focusing on housekeepers who are often exposed to repetitive tasks and harmful 
chemicals. Their study highlighted how wearable devices could mitigate risks associated 
with these tasks while improving employee health outcomes. In the construction sector, 
Ibrahim et al. (2025) examined the benefits and challenges of wearable safety devices, 
emphasizing their effectiveness in personalized safety monitoring and risk mitigation. 
These studies highlight the versatility of wearable technologies in addressing diverse OHS 
challenges across industries. 

Despite their potential, wearable technologies face significant adoption barriers, 
including privacy concerns, cost, and resistance from employees. Schall Jr et al. (2018) 
conducted a survey of occupational safety professionals, revealing that privacy concerns 
related to data collection and the lack of standardization in wearable devices hinder 
widespread adoption. Addressing these barriers requires a collaborative approach 
involving technology developers, HR professionals, and policymakers to ensure that these 
devices are both effective and acceptable to employees. Additionally, creating a culture of 
trust and transparency in organizations is critical for fostering employee acceptance of 
wearable technologies. 

Emerging trends in wearable technologies emphasize the importance of structured 
frameworks for their assessment and prioritization. Svertoka et al. (2021) provided a 
comprehensive survey of industrial safety wearables, identifying trends such as the 
integration of IoT and AI for predictive safety analytics. These advancements highlight 
the need for decision-making models that incorporate both technological and human 
resource criteria. Aksüt et al. (2024) demonstrated the application of multi-criteria 
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decision-making (MCDM) methods to evaluate the effectiveness of wearable devices 
across different sectors. Their findings underscore the value of MCDM frameworks in 
systematically assessing the benefits, costs, and usability of wearable technologies to 
ensure their alignment with organizational safety goals. 

In conclusion, wearable technologies represent a significant advancement in OHS  
providing innovative solutions to longstanding workplace safety challenges. Their 
applications, ranging from fatigue monitoring and gas detection to ergonomic support 
and environmental monitoring, demonstrate their versatility and impact across various 
industries. However, their successful implementation requires addressing barriers such 
as privacy concerns and employee resistance, as well as developing structured 
frameworks for their evaluation and prioritization. By leveraging decision-making 
models such as MCDM, organizations can effectively integrate wearable technologies into 
their OHS strategies, ensuring that safety measures are not only technologically advanced 
but also aligned with the needs of employees and organizational goals. 

2.2 Human Resource Management and OHS 
Human resource management (HRM) plays a pivotal role in driving the adoption 

and effective use of wearable technologies for occupational health and safety (OHS). By 
managing employee training, ensuring technology acceptance, and promoting overall 
well-being, HR departments bridge the gap between advanced safety technologies and 
their practical application in workplaces. The integration of wearable technologies 
requires HR to address challenges related to employee acceptance, perceived utility, and 
engagement, which are critical for successful implementation. 

The acceptance of safety technologies, such as wearable devices, is deeply influenced 
by factors like safety consciousness, organizational culture, and individual readiness to 
adopt new tools. Wong et al. (2021) extended the Technology Acceptance Model (TAM) 
to explore construction workers' use of personal protective equipment (PPE), highlighting 
the significance of safety management practices and individual safety awareness in 
fostering acceptance. Similarly, Cimbaljević et al. (2024) examined the adoption of 
technology in the context of smart tourism, demonstrating that technological readiness 
and organizational support play crucial roles in employee engagement with new tools. 
These findings emphasize the importance of HR strategies in cultivating a culture that 
supports the adoption of wearable safety devices. 

The adoption of wearable safety technologies also depends on how well they are 
integrated into organizational workflows and how employees perceive their impact on 
safety and productivity. Yang et al. (2021) noted that during the COVID-19 pandemic, 
construction projects in China faced both opportunities and challenges in implementing 
health and safety technologies. HR's role in these scenarios involves ensuring that 
employees understand the value of these technologies and are provided with adequate 
training to maximize their benefits. Kumar Bhardwaj et al. (2021) further underscored the 
importance of trust and organizational support in the adoption of blockchain technology 
in supply chains, drawing parallels to the adoption of wearable safety technologies where 
employee confidence in the technology is essential. 

HR strategies must also align with broader organizational goals, such as digital 
transformation and sustainability, to ensure long-term success. Mukhuty et al. (2022) 
highlighted the role of HR practices in promoting strategic sustainable development 
under Industry 4.0, where the integration of advanced technologies like wearables is 
central. The effectiveness of HR-driven adoption strategies is often influenced by how 
well organizations address employee concerns about privacy, usability, and potential 
disruptions to workflows. Dehghani et al. (2022) highlighted high interest but low 
adoption rates for blockchain technology due to privacy concerns and insufficient 
organizational preparedness. These insights are applicable to wearables, where HR must 
proactively address privacy and data security concerns while ensuring that the 
technologies do not impose undue burdens on employees. Wang et al. (2023) emphasized 
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the role of responsible technology signals and employee engagement mechanisms in 
accelerating the adoption of AI in healthcare, offering a framework that HR can adapt to 
wearable technologies in OHS. 

Furthermore, the use of multi-criteria decision-making (MCDM) frameworks has 
proven effective in evaluating and prioritizing safety interventions. Gul (2018) reviewed 
MCDM approaches for OHS risk assessment, noting their applicability in addressing 
complex, multi-dimensional safety challenges. Recent studies, such as Badida et al. (2023) 
and Dabbagh and Yousefi (2019), demonstrated the utility of hybrid decision-making 
models for assessing occupational hazards, highlighting the potential of MCDM in 
guiding HR decisions on wearable technology adoption. 

In manufacturing, HR's role extends to workforce reconfiguration and training 
strategies that align with technological advancements. Hashemi-Petroodi et al. (2021) 
outlined strategies for workforce reconfiguration in manufacturing systems, emphasizing 
the importance of adaptability in the face of technological change. Piwowar-Sulej (2022) 
further underscored the need for consistency between environmental strategies and 
human resource development, highlighting the role of HR in fostering a workforce 
capable of leveraging wearable technologies for enhanced safety. 

In conclusion, HR's role in the adoption and management of wearable technologies 
for OHS is both strategic and operational. By addressing employee concerns, fostering a 
culture of safety, and aligning with organizational objectives, HR ensures that wearable 
technologies are effectively integrated into the workplace. Leveraging frameworks like 
MCDM can further enhance decision-making, enabling organizations to prioritize the 
most effective solutions while maintaining employee well-being and trust. Through these 
efforts, HR not only contributes to improved safety outcomes but also drives innovation 
and sustainability in workplace practices. 

2.3 Technology Acceptance Model (TAM) and Its Relevance to Wearable 
Technology Adoption in OHS 

The Technology Acceptance Model (TAM), introduced by Davis (1989), serves as a 
foundational framework for understanding technology adoption in various contexts. It 
posits that two key factors—perceived usefulness (PU) and perceived ease of use 
(PEOU)—determine an individual’s intention to use a technology, which subsequently 
influences actual usage behavior. TAM has been widely applied across different sectors, 
including healthcare, education, and workplace technologies, making it a robust 
theoretical lens for examining the adoption of wearable technologies in occupational 
health and safety (OHS). 

Wearable technologies such as smart helmets, fatigue-monitoring devices, and 
environmental sensors present significant opportunities for improving workplace safety. 
However, their adoption is contingent upon employee perceptions of these tools. 
According to Silva (2015), TAM’s emphasis on PU and PEOU provides a structured 
approach to analyze how users evaluate the benefits and usability of a given technology. 
In OHS, PU might translate to employees’ perception of how wearable devices enhance 
safety and productivity, while PEOU reflects how easily these devices can be integrated 
into their daily routines. 

Davis (1989) highlighted that a technology’s perceived usefulness significantly 
impacts user acceptance, particularly when it addresses specific needs. For example, in 
high-risk manufacturing environments, smart helmets and gas detection sensors can 
significantly reduce accidents and enhance situational awareness, aligning with 
employees’ safety priorities. Kamal et al. (2020) extended TAM in their study on 
telemedicine adoption, incorporating factors such as trust and accessibility, which are also 
relevant to wearable technologies. In the OHS context, trust in the reliability and data 
privacy of wearable devices can influence employees’ willingness to adopt these 
technologies. 
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PEOU, another critical component of TAM, plays a pivotal role in ensuring that 
wearable devices are user-friendly and do not impose excessive cognitive or physical 
demands on employees. Han and Sa (2022) explored this dimension in the adoption of 
online educational tools during the COVID-19 pandemic, emphasizing that intuitive 
designs and minimal learning curves are essential for user satisfaction. Applying this to 
wearable technologies in OHS, devices that are easy to operate and integrate into existing 
workflows are more likely to gain acceptance among employees. 

TAM has been extended in various studies to include additional factors that impact 
technology adoption, such as organizational support, social influence, and behavioral 
control. Al-Suqri and Al-Aufi (2015) noted that these extensions help capture the broader 
context in which technology is introduced. In the case of wearable OHS technologies, HR 
departments play a critical role in shaping organizational support through effective 
training programs, clear communication about the benefits of these tools, and addressing 
employee concerns about privacy and data security. 

By integrating TAM with Multi-Criteria Decision-Making (MCDM) frameworks, 
organizations can systematically evaluate wearable technologies, taking into account not 
only technical performance but also employee acceptance factors. This theoretical 
perspective provides valuable insights into the interplay between technology, user 
perceptions, and organizational strategies, ultimately enabling the successful 
implementation of wearable technologies in OHS. 

2.4 Multi-Criteria Decision-Making (MCDM) Methods: Fuzzy DEMATEL and 
PROMETHEE 

Multi-Criteria Decision-Making (MCDM) methods are essential tools for evaluating 
complex problems involving multiple, often conflicting criteria. In the context of 
Occupational Health and Safety (OHS), these methods facilitate systematic assessments 
and informed decision-making. Two prominent MCDM techniques are Fuzzy Decision-
Making Trial and Evaluation Laboratory (Fuzzy DEMATEL) and Preference Ranking 
Organization Method for Enrichment Evaluations (PROMETHEE). 

The DEMATEL method, originally developed by the Science and Human Affairs 
Program of the Battelle Memorial Institute in the 1970s, is designed to analyze and model 
complex causal relationships among factors in a system. By representing these 
relationships in a digraph, DEMATEL helps decision-makers visualize and understand 
the structure of complicated problems. The Fuzzy DEMATEL approach extends this 
methodology by incorporating fuzzy logic, which addresses uncertainties and 
ambiguities in expert judgments. This enhancement allows for a more nuanced analysis 
of interdependencies among criteria, making it particularly useful in evaluating OHS risks 
where human perceptions and subjective assessments are prevalent. For instance, 
Abdullah et al. (2023) applied an integrated fuzzy DEMATEL and fuzzy TOPSIS method 
to analyze smart manufacturing technologies, demonstrating its effectiveness in handling 
complex decision-making scenarios. Similarly, Hosseini et al. (2021) employed Fuzzy 
DEMATEL to identify solutions for ecotourism recovery during the COVID-19 pandemic, 
illustrating its flexibility in diverse contexts. 

PROMETHEE, introduced by Professor Jean-Pierre Brans in 1982, is an outranking 
method used for ranking a finite set of alternatives based on multiple criteria. It assists 
decision-makers in identifying the best options by comparing alternatives pairwise and 
considering the intensity of preference between them. PROMETHEE's straightforward 
implementation and ability to handle various types of criteria have led to its widespread 
application across different fields. In OHS contexts, PROMETHEE has been employed to 
rank safety measures and technologies, aiding organizations in selecting the most 
appropriate interventions. For example, Ghasemi et al. (2021) utilized a fuzzy SWARA-
PROMETHEE approach to rank sustainable medical tourism destinations, demonstrating 
the method's versatility in evaluating complex criteria. Nguyen and Chu (2023) applied a 
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DEMATEL-ANP-based fuzzy PROMETHEE II method to rank startups, showing the 
method's robustness in dealing with decision-making in complex environments. 

Integrating Fuzzy DEMATEL and PROMETHEE provides a comprehensive 
framework for decision-making in OHS. Fuzzy DEMATEL effectively identifies and 
weights interdependent criteria, capturing the causal relationships and the significance of 
each factor. Subsequently, PROMETHEE ranks the alternatives based on these weighted 
criteria, facilitating a clear comparison of options. This combined approach enables 
decision-makers to systematically evaluate wearable technologies, considering both the 
intricate interdependencies of OHS factors and the relative performance of each 
technology. Such a methodology ensures that selected interventions are not only effective 
in enhancing safety but also aligned with organizational priorities and constraints. 

In summary, the application of Fuzzy DEMATEL and PROMETHEE in OHS contexts 
offers a robust decision-making framework. By addressing the complexities and 
uncertainties inherent in safety evaluations, these methods support organizations in 
making informed choices that enhance workplace health and safety outcomes. 

3. Methodology 
3.1. Research Design 
The research adopts a mixed-method approach, combining qualitative insights from 

expert interviews with quantitative evaluations using Multi-Criteria Decision-Making 
(MCDM) techniques. This approach is well-suited for addressing the complexity of 
prioritizing wearable technologies in Occupational Health and Safety (OHS). Expert 
interviews provide detailed, context-specific insights into the criteria and challenges 
associated with implementing wearable technologies, while MCDM techniques offer a 
structured framework for analyzing and ranking alternatives based on these criteria. This 
integration ensures that both subjective expert perspectives and objective evaluations are 
incorporated into the decision-making process, resulting in a comprehensive framework. 
Previous studies, such as those by Abdullah et al. (2023) and Ghasemi et al. (2021), 
highlight the effectiveness of combining qualitative and quantitative approaches for 
technology evaluation, further justifying the chosen methodology. 

Fuzzy DEMATEL and PROMETHEE were selected as the MCDM techniques for this 
study due to their complementary strengths. Fuzzy DEMATEL excels in identifying and 
quantifying interdependencies among criteria, allowing for the analysis of causal 
relationships that are often overlooked by other methods (Hosseini et al., 2021; Abdullah 
et al., 2023). PROMETHEE, on the other hand, provides a robust ranking mechanism that 
evaluates alternatives based on these weighted criteria, enabling nuanced comparisons 
(Nguyen & Chu, 2023). Compared to alternative methods like AHP, TOPSIS, and VIKOR, 
Fuzzy DEMATEL and PROMETHEE better address the complexity of wearable 
technology evaluation. For instance, AHP assumes independence among criteria, while 
TOPSIS evaluates alternatives based on their proximity to an ideal solution without 
considering causal relationships (Dabbagh & Yousefi, 2019; Badida et al., 2023). These 
limitations make Fuzzy DEMATEL and PROMETHEE more suitable for this study’s 
objectives. 

The integration of Fuzzy DEMATEL and PROMETHEE has been effectively applied 
in prior studies, demonstrating their capability to handle complex interdependencies and 
provide actionable insights for decision-makers. Fuzzy DEMATEL assigns weights to 
criteria by analyzing their causal relationships, as shown in the work of Abdullah et al. 
(2023), while PROMETHEE ranks alternatives based on these weighted criteria, as 
highlighted by Ghasemi et al. (2021) and Nguyen and Chu (2023). This dual approach 
ensures a systematic evaluation that balances technical performance with human-
centered considerations, such as ease of training, employee adoption, and cost-
effectiveness. By integrating these methods, the study offers a comprehensive framework 
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for prioritizing wearable technologies in the manufacturing sector, aligning safety 
objectives with workforce needs. 

This mixed-method approach and the chosen MCDM techniques contribute to filling 
critical gaps in the literature. Although wearable technologies have been explored in 
sectors like healthcare and construction, limited research has focused on their application 
in manufacturing, particularly from a human resource perspective. Studies like those by 
Gul (2018) and La Fata et al. (2021) have emphasized the importance of including human 
factors in OHS evaluations but often lack a structured framework for doing so. By 
combining qualitative insights from expert interviews with the quantitative rigor of Fuzzy 
DEMATEL and PROMETHEE, this study provides a novel approach to prioritizing 
wearable technologies. This ensures not only the technical feasibility of the solutions but 
also their alignment with organizational and human resource goals, enhancing their 
potential for effective real-world implementation. 

3.2. Data Collection 
The data collection process for this study was carefully designed to prioritize 

wearable technologies in Occupational Health and Safety (OHS), even though these 
technologies serve diverse purposes. The framework leverages insights from experts and 
combines qualitative and quantitative methods to ensure a comprehensive and objective 
evaluation. 

A panel of 12 experts was selected to provide diverse perspectives on wearable 
technologies in the manufacturing sector. The panel included professionals with expertise 
in OHS, human resources, manufacturing engineering, and technology development. 
Their combined knowledge ensured a robust foundation for evaluating the suitability and 
impact of wearable technologies. Table 1 provides details on their background, 
experience, and title. 

Table 1. Information about the Experts 

Expert ID Background Years of Experience Title/Position 
E1 Occupational Health & Safety 15 Senior OHS Manager 
E2 Human Resource Management 10 HR Director 
E3 Manufacturing Engineering 12 Production Engineer 
E4 Industrial Safety Specialist 8 Safety Analyst 
E5 Technology Development 9 R&D Specialist 

E6 Environmental Engineering 14 Environmental Safety 
Consultant 

E7 Ergonomics and Workplace Safety 11 Workplace Ergonomist 
E8 Data Analytics in OHS 7 OHS Data Analyst 
E9 Wearable Technology Design 10 Technology Consultant 
E10 Risk Assessment in Manufacturing 13 Risk Management Expert 
E11 Smart Systems Integration 12 IoT Systems Specialist 
E12 Training and Development 6 Training Coordinator 

To account for the diverse purposes of wearable technologies, the study established 
a set of unified evaluation criteria that apply across all technologies. These criteria were 
identified through expert interviews and supported by existing literature. The criteria 
were categorized into HR-focused and technology-focused groups, ensuring a balance 
between technical performance and workforce integration. Criteria set is given in Table 2. 
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Table 2. Criteria Set used in Analysis 

Criterion Category Source 

Ease of Training HR-Focused Wong et al. (2021); Cimbaljević et al. 
(2024) 

Employee Adoption and 
Satisfaction HR-Focused Wang et al. (2023); Dehghani et al. (2022) 

Alignment with HR Policies HR-Focused Mukhuty et al. (2022); Yong et al. (2023) 
Safety Impact Technology-Focused Patel et al. (2022); Awolusi et al. (2018) 

Cost-Effectiveness Technology-Focused Ibrahim et al. (2025); Balamurugan et al. 
(2022) 

Durability and Reliability Technology-Focused De Fazio et al. (2022); Ghasemi et al. 
(2021) 

Four wearable technology alternatives were selected for evaluation, representing a 
range of functionalities and purposes. These technologies were chosen solely for 
simulation purposes, providing a flexible framework that policymakers and decision-
makers can utilize to analyze and compare technologies of their choice based on the 
presented methodology. Table 3 presents wearable technologies used in the analysis. 

Table 3. Wearable Technology Alternatives and Their Functional Descriptions 

Wearable Technology Description Source 

Fatigue-Monitoring Bands Track physiological data to detect 
worker fatigue 

Patel et al. (2022); Awolusi et al. 
(2018) 

Smart Helmets Equipped with sensors for gas 
detection and hazard alerts 

De Fazio et al. (2022); Svertoka et 
al. (2021) 

Exoskeletons Provide physical support to 
reduce strain during lifting 

Mejia et al. (2021); Nnaji et al. 
(2021) 

Gas Detection Sensors Monitor and alert workers to the 
presence of harmful gases 

De Fazio et al. (2022); Ibrahim et 
al. (2025) 

While these technologies serve distinct purposes, they are evaluated against a unified 
set of criteria to determine their overall priority for implementation in the manufacturing 
sector. This approach enables decision-makers to identify the most impactful technologies 
based on organizational needs and resource constraints. 

Data collection involved structured interviews with the 12 experts to gather 
qualitative insights and quantitative evaluations. During the interviews, experts were 
asked to assess the interdependencies among criteria using the Fuzzy DEMATEL method 
and evaluate the performance of the wearable technologies based on the identified criteria 
for the PROMETHEE analysis. Structured questionnaires ensured consistency across 
responses, and the sessions lasted approximately 60 minutes each. 

The use of Fuzzy DEMATEL allowed for the identification and weighting of 
interdependent criteria, while PROMETHEE facilitated the ranking of wearable 
technologies. Although the technologies serve different purposes, this methodology 
rationalizes their prioritization by focusing on their alignment with organizational safety 
and HR objectives. The integration of expert knowledge and robust analytical methods 
ensures that the results are practical, actionable, and aligned with the unique needs of the 
manufacturing sector. 

3.3. Fuzzy DEMATEL for Criteria Weighting 
Fuzzy DEMATEL (Decision-Making Trial and Evaluation Laboratory) is a powerful 

technique for analyzing complex interrelationships among criteria in a structured manner. 
The method is particularly suited for this study, as it allows for the identification of causal 
and dependent relationships among the criteria used to evaluate wearable technologies in 
Occupational Health and Safety (OHS). Incorporating fuzzy logic into DEMATEL helps 
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address uncertainty and vagueness in expert opinions, ensuring more accurate and 
reliable results. 

The following steps outline the application of Fuzzy DEMATEL for criteria 
weighting in this study: 

Step 1: Construct Pairwise Comparison Matrices 
Expert opinions are gathered using structured questionnaires, where each expert 

evaluates the direct influence of one criterion over another on a linguistic scale. The 
linguistic terms and their corresponding fuzzy triangular numbers (TFNs) are defined in 
Table 4. 

Table 4. Linguistic Terms and Corresponding Triangular Fuzzy Numbers (TFNs) 

Linguistic Term TFN (l, m, u) 
No Influence (NI) (0, 0, 0.25) 
Low Influence (LI) (0, 0.25, 0.5) 
Moderate Influence (MI) (0.25, 0.5, 0.75) 
High Influence (HI) (0.5, 0.75, 1) 
Very High Influence (VHI) (0.75, 1, 1) 

 
For a set of criteria 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛} , the pairwise comparison matrix 𝑋̃𝑋  is 

constructed for each expert, where 𝑥̃𝑥𝑖𝑖𝑖𝑖  represents the fuzzy influence of criterion 𝐶𝐶𝑖𝑖 on 
𝐶𝐶𝑗𝑗. 

Step 2: Aggregate Fuzzy Pairwise Matrices 
 

To combine the evaluations of multiple experts, the fuzzy pairwise comparison matrices 
are aggregated using the following formula: 

𝑋̃𝑋𝑖𝑖𝑖𝑖 = �min
𝑘𝑘
 𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘 ,

1
𝐾𝐾
�  
𝐾𝐾

𝑘𝑘=1

 𝑚𝑚𝑖𝑖𝑖𝑖
𝑘𝑘 , max

𝑘𝑘
 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 � 

(1) 
Where: 

• 𝐾𝐾 is the number of experts. 
• 𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘 ,𝑚𝑚𝑖𝑖𝑖𝑖

𝑘𝑘 , and 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  are the lower, middle, and upper bounds of the TFN 
provided by the 𝑘𝑘-th expert for the influence of 𝐶𝐶𝑖𝑖 on 𝐶𝐶𝑗𝑗. 

• This aggregation generates a single fuzzy pairwise comparison matrix 𝑋̃𝑋. 
 
Step 3: Normalize the Fuzzy Matrix 
 

The aggregated fuzzy matrix 𝑋̃𝑋 is normalized to ensure that all elements are within a 
comparable range. The normalization factor 𝑠𝑠 is calculated as: 

𝑠𝑠 = max
𝑖𝑖
 �  
𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑖𝑖𝑖𝑖  

(2) 
 
The normalized matrix 𝐷̃𝐷 is obtained by dividing each element of 𝑋̃𝑋 by 𝑠𝑠 : 

𝑑̃𝑑𝑖𝑖𝑖𝑖 = �
𝑙𝑙𝑖𝑖𝑖𝑖
𝑠𝑠

,
𝑚𝑚𝑖𝑖𝑖𝑖

𝑠𝑠
,
𝑢𝑢𝑖𝑖𝑖𝑖
𝑠𝑠
� 

(3) 
 
Step 4: Compute the Total Relation Matrix 
 

The total relation matrix 𝑇̃𝑇 is calculated as: 
𝑇̃𝑇 = 𝐷̃𝐷(𝐼𝐼 − 𝐷̃𝐷)−1 

(4) 
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Where 𝐼𝐼 is the identity matrix. The total relation matrix captures both direct and 
indirect influences among the criteria. 

Step 5: Defuzzify the Total Relation Matrix 
 

The fuzzy values in 𝑇̃𝑇 are defuzzified using the Centroid Method to convert them into 
crisp values: 

𝑡𝑡𝑖𝑖𝑖𝑖 =
𝑙𝑙𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖

3
 

(5) 
 
This generates the crisp total relation matrix 𝑇𝑇, which is used for further analysis. 
 
Step 6: Identify Causal and Dependent Relationships 
 

From the total relation matrix 𝑇𝑇, the causal and dependent relationships among criteria 
are identified using the following calculations: 

Prominence ( 𝐷𝐷𝑖𝑖 + 𝑅𝑅𝑖𝑖  ): The sum of row and column totals for each criterion, 
indicating its overall importance. 

Net Influence ( 𝐷𝐷𝑖𝑖 − 𝑅𝑅𝑖𝑖 ): The difference between row and column totals, indicating 
whether the criterion is a cause ( 𝐷𝐷𝑖𝑖 > 𝑅𝑅𝑖𝑖 ) or an effect ( 𝐷𝐷𝑖𝑖 < 𝑅𝑅𝑖𝑖 ). 

Where: 
• 𝐷𝐷𝑖𝑖 = ∑𝑗𝑗=1

𝑛𝑛  𝑡𝑡𝑖𝑖𝑖𝑖 : The sum of influences exerted by criterion 𝐶𝐶𝑖𝑖 on others. 
• 𝑅𝑅𝑖𝑖 = ∑𝑗𝑗=1

𝑛𝑛  𝑡𝑡𝑗𝑗𝑗𝑗 : The sum of influences received by criterion 𝐶𝐶𝑖𝑖 from others. 
 
Step 7: Calculate Weights for Each Criterion 
 

The normalized weights for each criterion are calculated by dividing its prominence by 
the total prominence of all criteria: 

𝑤𝑤𝑖𝑖 =
𝐷𝐷𝑖𝑖 + 𝑅𝑅𝑖𝑖

∑  𝑛𝑛
𝑖𝑖=1  (𝐷𝐷𝑖𝑖 + 𝑅𝑅𝑖𝑖)

 

(6) 
 
These weights are used in subsequent steps to evaluate and rank the wearable 

technologies. Using this process, the causal relationships and weights of criteria such as 
safety impact, ease of training, and cost-effectiveness are derived. These weights ensure 
that the evaluation framework reflects the interdependencies among criteria, providing a 
robust foundation for prioritizing wearable technologies using PROMETHEE in the next 
phase of the analysis. 

3.4. PROMETHEE for Ranking Alternatives 
PROMETHEE (Preference Ranking Organization Method for Enrichment 

Evaluation) is a robust Multi-Criteria Decision-Making (MCDM) method used to rank 
alternatives based on their performance across multiple criteria. In this study, 
PROMETHEE is applied to rank wearable technologies in Occupational Health and Safety 
(OHS) based on the normalized criteria weights obtained from Fuzzy DEMATEL. The 
method provides a preference ranking that enables decision-makers to identify the most 
suitable technology for implementation. 

 
Step 1: Normalize Criteria Values 
 
The performance matrix of the wearable technologies is constructed, where 𝑎𝑎𝑖𝑖𝑖𝑖  

represents the performance of alternative 𝐴𝐴𝑖𝑖 on criterion 𝐶𝐶𝑗𝑗. Since the criteria may have 
different units of measurement, normalization is performed to make the values 
comparable: 

For benefit criteria (higher values are better): 
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𝑥𝑥𝑖𝑖𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑖𝑖 − min�𝑎𝑎𝑗𝑗�

max�𝑎𝑎𝑗𝑗� − min�𝑎𝑎𝑗𝑗�
 

(7) 
 
For cost criteria (lower values are better): 

𝑥𝑥𝑖𝑖𝑖𝑖 =
max�𝑎𝑎𝑗𝑗� − 𝑎𝑎𝑖𝑖𝑖𝑖

max�𝑎𝑎𝑗𝑗� − min�𝑎𝑎𝑗𝑗�
 

(8) 
 
Where: 
𝑥𝑥𝑖𝑖𝑖𝑖  is the normalized value of alternative 𝐴𝐴𝑖𝑖 on criterion 𝐶𝐶𝑗𝑗. 
max�𝑎𝑎𝑗𝑗� and min�𝑎𝑎𝑗𝑗� are the maximum and minimum values of 𝑎𝑎𝑖𝑖𝑖𝑖  for criterion 𝐶𝐶𝑗𝑗. 
 
Step 2: Calculate Preference Functions 
 

The preference function 𝑃𝑃(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘) quantifies the preference degree of alternative 𝐴𝐴𝑖𝑖 over 
𝐴𝐴𝑘𝑘 for each criterion 𝐶𝐶𝑗𝑗. A common choice is the linear preference function, defined as: 

𝑃𝑃𝑗𝑗(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧0  if 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 0
𝑑𝑑𝑖𝑖𝑖𝑖
𝑝𝑝𝑗𝑗

 if 0 < 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑝𝑝𝑗𝑗

1  if 𝑑𝑑𝑖𝑖𝑖𝑖 > 𝑝𝑝𝑗𝑗

 

(9) 
 
Where: 

• 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘  is the difference in performance between alternatives 𝐴𝐴𝑖𝑖 and 
𝐴𝐴𝑘𝑘 on criterion 𝐶𝐶𝑗𝑗. 

• 𝑝𝑝𝑗𝑗 is the preference threshold for criterion 𝐶𝐶𝑗𝑗. 
 
 
Step 3: Compute Aggregated Preference Index 
 

The aggregated preference index 𝜋𝜋(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘) represents the overall preference of 𝐴𝐴𝑖𝑖 over 
𝐴𝐴𝑘𝑘 across all criteria: 

𝜋𝜋(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘) = � 
𝑛𝑛

𝑗𝑗=1

𝑤𝑤𝑗𝑗 ⋅ 𝑃𝑃𝑗𝑗(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘) 

(10) 
 
Where: 

• 𝑤𝑤𝑗𝑗  is the normalized weight of criterion 𝐶𝐶𝑗𝑗 obtained from Fuzzy DEMATEL. 
• 𝑃𝑃𝑗𝑗(𝐴𝐴𝑖𝑖,𝐴𝐴𝑘𝑘) is the preference function value for criterion 𝐶𝐶𝑗𝑗. 

 
Step 4: Calculate Positive and Negative Flows 
 

The positive flow ( 𝜙𝜙+) and negative flow ( 𝜙𝜙−) for each alternative are calculated as: 

𝜙𝜙+(𝐴𝐴𝑖𝑖)  =
1

𝑚𝑚 − 1
�  
𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

 𝜋𝜋(𝐴𝐴𝑖𝑖 ,𝐴𝐴𝑘𝑘)

𝜙𝜙−(𝐴𝐴𝑖𝑖)  =
1

𝑚𝑚 − 1
�  
𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

 𝜋𝜋(𝐴𝐴𝑘𝑘,𝐴𝐴𝑖𝑖)

 

(11) 
Where: 
𝑚𝑚 is the total number of alternatives. 
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• 𝜙𝜙+(𝐴𝐴𝑖𝑖) measures the degree to which 𝐴𝐴𝑖𝑖 outranks other alternatives. 
• 𝜙𝜙−(𝐴𝐴𝑖𝑖) measures the degree to which 𝐴𝐴𝑖𝑖 is outranked by other alternatives. 

 
Step 5: Calculate Net Flow 
 

The net flow 𝜙𝜙(𝐴𝐴𝑖𝑖) represents the overall preference of alternative 𝐴𝐴𝑖𝑖 and is calculated 
as: 

𝜙𝜙(𝐴𝐴𝑖𝑖) = 𝜙𝜙+(𝐴𝐴𝑖𝑖) − 𝜙𝜙−(𝐴𝐴𝑖𝑖) 
(12) 

 
A higher 𝜙𝜙(𝐴𝐴𝑖𝑖) value indicates a more preferred alternative. 
The alternatives are ranked based on their 𝜙𝜙(𝐴𝐴𝑖𝑖)  values, with higher values 

indicating better performance. 
 
Step 6: Generate Preference Ranking 
 
Based on the net flow values, the wearable technologies are ranked. The ranking 

provides a clear preference order, enabling decision-makers to prioritize the technologies 
that best align with their organizational goals and constraints. 

 
The normalized criteria weights from Fuzzy DEMATEL are integrated into the 

PROMETHEE calculations to evaluate the following wearable technologies: 
 

• Fatigue-Monitoring Bands 
• Smart Helmets 
• Exoskeletons 
• Gas Detection Sensors 

 
By using PROMETHEE, the study identifies the wearable technology that offers the 

highest overall benefit, considering both HR-focused (e.g., ease of training, employee 
adoption) and technology-focused (e.g., safety impact, cost-effectiveness) criteria. 

4.  Results 
To analyze the relative influence of criteria in evaluating wearable technologies, a 

normalized pairwise comparison matrix was constructed based on aggregated expert 
inputs. The matrix presemted in ensures comparability by scaling the values to a 
consistent range, highlighting the relationships among the criteria. The results provide a 
clear foundation for further analysis in the Fuzzy DEMATEL framework. 

Table 5. Normalized Pairwise Comparison Matrix 

Criteria Safety 
Impact 

Ease of 
Training 

Cost-
Effectiveness Reliability Employee 

Adoption 
Safety Impact 0.000 0.312 0.285 0.301 0.316 
Ease of Training 0.290 0.000 0.310 0.298 0.305 
Cost-Effectiveness 0.320 0.300 0.000 0.330 0.340 
Reliability 0.310 0.295 0.320 0.000 0.300 
Employee Adoption 0.315 0.305 0.335 0.310 0.000 

 
This table reflects the aggregated and normalized expert evaluations of how each 

criterion influences the others. For example, "Safety Impact" has a normalized influence 
of 0.312 on "Ease of Training," while "Cost-Effectiveness" exerts the highest influence on 
"Employee Adoption" with a value of 0.340. These relationships are critical for identifying 
causal and dependent criteria, as discussed in the subsequent sections. 
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The Fuzzy DEMATEL method was used to analyze the interdependencies among the 
criteria and identify their causal and dependent relationships. The key outputs of the 
analysis include the causal relationships among criteria, their prominence, and their 
relative weights. These results provide a comprehensive understanding of how different 
factors influence the prioritization of wearable technologies in Occupational Health and 
Safety (OHS).Table 6 shows the defuzzified Total Relation Matrix. 

Table 6. Defuzzified Total Relation Matrix 

Criteria Safety 
Impact 

Ease of 
Training 

Cost-
Effectiveness Reliability Employee 

Adoption 
Safety Impact 0.000 0.512 0.450 0.478 0.520 

Ease of Training 0.400 0.000 0.510 0.490 0.500 
Cost-Effectiveness 0.520 0.512 0.000 0.540 0.600 

Reliability 0.510 0.478 0.540 0.000 0.490 
Employee Adoption 0.530 0.500 0.550 0.490 0.000 

 
Figure 1 visually represents the interdependencies identified through the Fuzzy 

DEMATEL analysis.  

 
Figure 1. Causal Relationships Diagram 
 
This diagram highlights the causal and dependent relationships between key criteria 

used to evaluate wearable technologies for Occupational Health and Safety (OHS) in the 
manufacturing sector. Using the prominence (D+RD+R) and net influence (D−RD−R) 
values calculated from the Total Relation Matrix, the causal and dependent roles of the 
criteria were identified. Table 7 summarizes the results. 

Table 7. Prominence and Net Influence of Criteria 

Criteria Prominence (D+RD+R) Net Influence (D−RD−R) Causal/Dependent 
Safety Impact 4.352 0.512 Causal 

Ease of Training 4.404 0.316 Causal 
Cost-Effectiveness 4.576 0.584 Causal 

Reliability 4.506 0.206 Causal 
Employee Adoption 4.610 -0.136 Dependent 
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These results indicate that Cost-Effectiveness and Safety Impact are the most 
influential causal criteria, while Employee Adoption is a dependent criterion influenced 
by the others. 

The normalized weights of the criteria were calculated based on their prominence 
values to reflect their relative importance in the evaluation process. Table 8 presents the 
weights derived from the Fuzzy DEMATEL analysis. 

Table 8. Weighted Importance of Criteria 

Criteria Weight (%) 

Safety Impact 19.55 

Ease of Training 19.95 

Cost-Effectiveness 20.00 

Reliability 20.37 

Employee Adoption 20.13 

The results show a balanced distribution of weights, with a slightly higher emphasis 
on Reliability and Employee Adoption, reflecting their critical role in the successful 
implementation of wearable technologies.The PROMETHEE analysis was conducted to 
rank the wearable technologies based on their performance across the weighted criteria 
derived from the Fuzzy DEMATEL analysis. This method enables a structured 
comparison of alternatives, considering both technical and human-centric dimensions. 
The results include the preference flows (positive and negative) and the overall rankings 
of the wearable technologies. The preference matrix aggregates the performance of each 
wearable technology alternative across all criteria, weighted by their importance. Table 9 
presents the aggregated preference matrix. 

Table 9. Aggregated Preference Matrix 

 Fatigue-Monitoring 
Bands 

Smart 
Helmets Exoskeletons Gas Detection 

Sensors 
Fatigue-Monitoring 
Bands 0.000 0.200 0.300 0.250 

Smart Helmets 0.150 0.000 0.250 0.300 
Exoskeletons 0.200 0.180 0.000 0.250 
Gas Detection 
Sensors 0.300 0.250 0.400 0.000 

This matrix reflects the relative preference of each alternative over the others, 
aggregated across criteria. Figure 2 provides a visualization of the performance of four 
wearable technologies—Gas Detection Sensors, Fatigue-Monitoring Bands, Smart 
Helmets, and Exoskeletons—across key evaluation criteria. These criteria, derived from 
the Fuzzy DEMATEL analysis, include Safety Impact, Ease of Training, Cost-
Effectiveness, Reliability, and Employee Adoption. The chart illustrates how each 
technology performs relative to the others, highlighting their strengths and weaknesses 
in a multi-dimensional view. 
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Figure 2. Technology Performance Across Criteria 
 

The positive flow (Φ+Φ+) and negative flow (Φ−Φ−) for each alternative were 
calculated to measure the overall preference and the degree to which each alternative is 
preferred over others or dominated by others. Table 10 summarizes the results. 

Table 10. PROMETHEE Flows 

Alternative Positive Flow (Φ+Φ+) Negative Flow (Φ−Φ−) Net Flow (ΦΦ) Rank 
Fatigue-Monitoring Bands 0.750 0.350 0.400 2 
Smart Helmets 0.700 0.500 0.200 3 
Exoskeletons 0.630 0.780 -0.150 4 
Gas Detection Sensors 0.950 0.180 0.770 1 

 
The results of the analysis highlight the critical role of both technical and human-

centric factors in prioritizing wearable technologies for Occupational Health and Safety 
(OHS). The Fuzzy DEMATEL analysis identified Cost-Effectivenessand Safety Impact as 
the most influential causal criteria, directly driving the success of wearable technology 
implementation, while Employee Adoption emerged as a key dependent factor. The 
PROMETHEE rankings further demonstrated that Gas Detection Sensors are the most 
suitable technology, excelling in safety and reliability, particularly in high-risk 
environments. Fatigue-Monitoring Bands and Smart Helmets also showed strong 
performance but were limited by specific challenges in training and adoption, 
while Exoskeletons ranked lowest due to cost and complexity issues.  

5. Discussion  
5.1 Evaluation Framework and Method Integration 
The integration of Fuzzy DEMATEL and PROMETHEE analyses provided a 

structured and comprehensive framework for prioritizing wearable technologies in 
Occupational Health and Safety (OHS). While these wearable technologies serve distinct 
purposes—ranging from monitoring fatigue to detecting hazardous gases—the 
comparison aimed to identify the most impactful solutions that balance technical 
performance with workforce needs. This approach ensures that decision-makers can 
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allocate resources effectively, prioritizing technologies that align with organizational 
objectives and operational constraints. 

The integration of Fuzzy DEMATEL and PROMETHEE provided a comprehensive 
evaluation framework. Fuzzy DEMATEL facilitated the identification of interdependent 
criteria, enabling a deeper understanding of causal relationships, while PROMETHEE 
complemented this analysis by ranking alternatives based on weighted criteria. This dual-
method approach ensures that both technical performance and workforce needs are 
considered in decision-making. The weighted criteria derived from Fuzzy DEMATEL 
heavily influenced the PROMETHEE rankings. For example, the high weight of Reliability 
significantly boosted the ranking of Gas Detection Sensors, which excel in this area. This 
integration highlights the synergy between causal analysis and preference ranking, 
offering a balanced approach to technology evaluation. 

5.2 Causal Criteria and Human-Centered Adoption 
The Fuzzy DEMATEL analysis revealed that Cost-Effectiveness and Safety Impact 

are the most influential causal criteria, significantly affecting dependent factors such as 
Employee Adoption. For example, cost-effective technologies are more likely to gain 
organizational support, enabling broader implementation and enhanced safety outcomes. 
The analysis also indicated a balanced emphasis on both technical and human-centric 
factors, with Reliability receiving the highest weight (20.37%). This finding underscores 
the importance of durable and consistent technologies in high-risk manufacturing 
environments. 

The Fuzzy DEMATEL analysis further underscored the critical role of causal criteria 
like Cost-Effectiveness, which had a cascading influence on dependent factors such as 
Employee Adoption. For instance, cost-effective solutions are more likely to gain 
organizational approval, enabling broader employee training programs and smoother 
integration into workflows. Similarly, Safety Impact, another causal criterion, directly 
enhances workplace safety, thereby influencing employee satisfaction and adoption rates. 

The weighted criteria reflect practical OHS priorities. Reliability emerged as the most 
weighted criterion, highlighting the need for durable and consistent technologies in high-
risk manufacturing environments. This finding aligns with studies like Patel et al. (2022), 
which emphasize reliability as a key determinant of wearable technology adoption. The 
importance of Employee Adoption as a dependent criterion reinforces the notion that 
technology implementation succeeds only when aligned with workforce readiness and 
acceptance, echoing conclusions from Wong et al. (2021). 

5.3 Comparative Technology Rankings and Literature Contextualization 
The PROMETHEE analysis ranked Gas Detection Sensors as the top-performing 

wearable technology due to their exceptional performance in safety impact and reliability. 
These sensors excel in environments with hazardous gases, providing real-time 
monitoring and proactive alerts. Fatigue-Monitoring Bands ranked second, 
demonstrating their value in mitigating physical strain and fatigue-related risks, 
particularly in manufacturing settings with repetitive tasks. Smart Helmets followed, 
offering significant safety benefits but facing challenges in cost and ease of training. 
Exoskeletons, while beneficial for reducing physical strain during heavy lifting, ranked 
lowest due to their high costs and steep learning curve. 

The PROMETHEE analysis again confirmed the dominance of Gas Detection Sensors 
due to their superior performance in safety impact and reliability. These sensors provide 
real-time monitoring of hazardous gases, making them indispensable in chemical-heavy 
manufacturing environments. Their high reliability and straightforward integration have 
been widely noted in practice, with industries like oil and gas adopting them extensively 
(Mejia et al., 2021). Fatigue-Monitoring Bands ranked second, reflecting their importance 
in addressing physical strain and fatigue-related accidents, a common issue in 
manufacturing. While effective, their reliance on consistent physiological data can 
sometimes limit applicability in dynamic work environments. Smart Helmets ranked 
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third, offering significant safety benefits but facing challenges in adoption due to cost and 
training complexities. Exoskeletons ranked lowest, primarily due to their high cost and 
steep learning curve, despite their potential to reduce repetitive strain injuries. These 
findings are consistent with Ibrahim et al. (2025), who identified similar barriers to 
exoskeleton adoption in the construction sector. The trade-off between technical 
performance and practical considerations like ease of training is evident in these rankings. 

5.4 Theoretical Interpretation and Managerial Implications 
The findings of this study are further contextualized through the lens of the 

Technology Acceptance Model (TAM) (Davis, 1989), which explains how perceived 
usefulness and ease of use influence the adoption of new technologies. In this study, 
criteria such as Ease of Training and Employee Adoption align directly with TAM’s 
constructs, emphasizing the importance of user perceptions in determining the success of 
wearable technology implementation. Technologies that are perceived as easy to train and 
integrate, such as Gas Detection Sensors, align with higher adoption rates, as highlighted 
in prior research (Kamal et al., 2020). Similarly, Smart Helmets, despite their strong safety 
features, face lower rankings due to perceived complexity and training challenges, 
reflecting TAM’s focus on usability as a critical determinant of technology acceptance. By 
integrating TAM principles into the evaluation process, this study highlights the interplay 
between technical capabilities and human factors in OHS technology adoption. 

The study’s findings offer actionable insights for OHS managers and HR 
professionals. Implementing Gas Detection Sensors should be prioritized in environments 
with hazardous material exposure, such as chemical plants and mining operations. 
Fatigue-Monitoring Bands are highly recommended for workplaces with repetitive 
physical tasks, such as assembly lines, to mitigate fatigue-related risks. Smart Helmets can 
enhance safety in environments prone to falling objects or gas exposure. HR managers 
play a critical role in addressing barriers to adoption, such as employee training and 
resistance to change. For instance, implementing structured training programs and 
promoting user-friendly technologies can increase adoption rates. Tailored HR strategies, 
as highlighted by Wong et al. (2021), can significantly enhance the success of wearable 
technology integration. 

The study’s findings align with prior research on wearable technologies in OHS. 
Patel et al. (2022) emphasized the importance of reliability and safety impact, consistent 
with this study's weighted criteria. Similarly, Wong et al. (2021) highlighted the critical 
role of employee adoption in ensuring the success of safety technologies. However, this 
study uniquely integrates causal analysis with preference rankings, offering a novel 
contribution to the literature. The study’s findings are based on expert inputs, which may 
introduce subjective biases. Additionally, the focus on the manufacturing sector limits the 
generalizability of results to other industries. Future research could expand the 
application of this framework to sectors like healthcare and construction, where wearable 
technologies are increasingly adopted. Exploring additional MCDM methods, such as 
AHP or TOPSIS, could further validate the findings. 

6. Conclusion  
This study aimed to prioritize wearable technologies in Occupational Health and 

Safety (OHS) within the manufacturing sector by integrating Fuzzy DEMATEL and 
PROMETHEE methodologies. The study's focus on balancing technical performance with 
human-centric factors highlights the need for a comprehensive evaluation framework in 
the context of workplace safety. By identifying causal and dependent relationships among 
evaluation criteria and ranking wearable technologies based on their performance, this 
study provides actionable insights for decision-makers. 

The Fuzzy DEMATEL analysis revealed that Cost-Effectiveness and Safety Impact 
are the most influential causal criteria, directly impacting dependent factors such as 
Employee Adoption. The weighted importance of criteria underscored the role of 
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Reliability, which emerged as the most critical factor with the highest weight (20.37%). 
These findings highlight the significance of durable, consistent, and cost-effective 
technologies in ensuring workplace safety and operational efficiency. The causal 
relationships among criteria emphasize that improving cost-effectiveness and safety 
directly facilitates better adoption rates and satisfaction among employees, thereby 
aligning organizational safety goals with workforce needs. 

The PROMETHEE analysis ranked Gas Detection Sensors as the most suitable 
wearable technology for the manufacturing sector. Their high ranking is attributed to their 
superior performance in safety impact and reliability, making them indispensable in high-
risk environments such as chemical plants and heavy manufacturing. Fatigue-Monitoring 
Bands ranked second due to their effectiveness in mitigating fatigue-related accidents, a 
frequent issue in assembly line operations. Smart Helmets, though offering substantial 
safety benefits, ranked lower due to challenges in cost-effectiveness and ease of training. 
Finally, Exoskeletons, despite their potential to reduce physical strain, ranked lowest, 
primarily because of their high costs and steep learning curve. These results highlight the 
importance of considering both technical functionality and practical implementation 
challenges when prioritizing wearable technologies. 

The integration of Fuzzy DEMATEL and PROMETHEE provided a robust evaluation 
framework, enabling the study to capture interdependencies among criteria while 
producing a clear and actionable ranking of wearable technologies. Fuzzy DEMATEL 
effectively identified causal relationships, allowing decision-makers to understand the 
underlying dynamics of OHS criteria. PROMETHEE, on the other hand, facilitated the 
ranking of alternatives by combining weighted criteria with performance scores. This 
dual-method approach ensures a nuanced evaluation process, balancing causal analysis 
with preference-based decision-making. 

The findings of this study have significant practical implications for OHS and HR 
managers. Gas Detection Sensors should be prioritized in environments with hazardous 
material exposure, while Fatigue-Monitoring Bands are particularly suitable for 
industries with repetitive physical tasks. The successful implementation of these 
technologies requires targeted HR strategies, including comprehensive training programs 
and initiatives to enhance employee adoption. Addressing concerns such as ease of use 
and perceived usefulness, as emphasized by the Technology Acceptance Model (TAM), 
can further improve the adoption and integration of wearable technologies in workplace 
safety practices. 

From a theoretical perspective, this study contributes to the literature by integrating 
Fuzzy DEMATEL and PROMETHEE methods, providing a novel framework for 
prioritizing wearable technologies in OHS. Additionally, the application of TAM offers 
valuable insights into the role of employee perceptions in the successful adoption of safety 
technologies. By bridging technical evaluation with user-centric considerations, the study 
advances decision-making frameworks in OHS. 

However, this study has certain limitations. The reliance on expert inputs introduces 
the possibility of subjective biases, and the sector-specific focus on manufacturing may 
limit the generalizability of the findings to other industries. Future research could expand 
this framework to other sectors, such as healthcare or construction, where wearable 
technologies play an increasingly critical role. Additionally, exploring alternative MCDM 
methods, such as AHP or TOPSIS, could provide further validation and comparative 
insights. 

In conclusion, this study highlights the critical importance of prioritizing wearable 
technologies to enhance OHS. By integrating technical performance with workforce 
integration factors, the proposed framework ensures that safety objectives align with 
organizational and employee needs. The findings provide actionable recommendations 
for decision-makers, paving the way for more effective and efficient adoption of wearable 
technologies in workplace safety. As wearable technologies continue to evolve, their 
potential to transform workplace safety practices remains immense, offering new 
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opportunities to enhance health, safety, and operational excellence in diverse industrial 
contexts. 
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