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Abstract− Helices and constant procession curves are special examples of slant curves.
However, there is no example of a k-slant curve for a positive integer k ≥ 2 in three dimensional
Euclidean spaces. Furthermore, the position vector of a k-slant curve for a positive integer
k ≥ 2 has not been known thus far. In this paper, we propose a method for constructing
k-slant curves in three dimensional Euclidean spaces. We then show that spherical k-slant
curves and Nk-constant procession curves can be derived from circles, for k ∈ N, the set
of all nonnegative integers. In addition, we provide a new proof of the spherical curve
characterization and define a curve in the sphere called a spherical prime curve. Afterward,
we apply k-slant curves to magnetic curves. Finally, we discuss the need for further research.
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1. Introduction

Curves are geometric sets of points or loci in spaces. In differential geometry, special curves, such as
geodesics, circles, circular helices, general helices, slant helices, C-slant curves, and glad helices, have
been extensively studied in various spaces. Helical structures are ubiquitous in nature, appearing in
physics, kinematic motion, architectural design, and even in the double helix structure of DNA. A
curve is called a general helix (or constant slope curve) if its tangent vector field makes a constant
angle with a fixed straight line. The classical characterization of general helices was first proposed by
Lancret in 1802 and later solved by Saint-Venant in 1845, who showed that a curve is a general helix
if and only if the ratio of its curvature (κ) to torsion (τ) is constant. The curve is called a circular
helix if the curvature is a non-zero constant. Additionally, straight lines and circles are considered
degenerate helices.

Blum first introduced the concept of slant curves in 1966 [1], who studied curves with curvature func-
tions given by κ(s) = w cos(as+ b) and τ(s) = w sin(as+ b). Earlier, in 1878, Mannheim investigated
curves satisfying κ2 + τ2 = w2, which Blum later connected to curves of constant precession. Izumiya
and Takeuchi [2] provided a key characterization of slant helices, proving that a curve α is a slant
helix if and only if the geodesic curvature of the spherical image of its principal normal indicatrix satisfies:
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σ = κ2

(κ2 + τ2)
3
2

(
τ

κ

)′

Kula and Yaylı [3] and Menninger [4] further explored the properties of slant curves. Camcı et al. [5]
studied spherical slant curves in three dimensional Euclidean spaces. Besides the classical slant curves,
such as Salkowski curves, a special type of slant helices with a constant curvature function κ, many
studies have been conducted on the generalized slant curves. Ali [6] provided the general equation
for the position vectors of slant curves and introduced k-slant helices, which generalize the concept of
slant curves. Takahashi and Takeuchi [7] defined new special curves, such as clad (2-slant) and g-clad
(3-slant) helices, extending the study of helical curves in three dimensional Euclidean spaces.

Curves of constant precession are another important class of curves, characterized by the property that
they are traversed with unit speed, their centrode maintains a constant angle with a fixed axis, and they
revolve at a constant speed. Scofield [8] provided a detailed study of such curves, while Uzunoğlu et
al. [9] introduced a new approach using an alternative moving frame. Although Izumiya and Takeuchi
mentioned the term slant curve [2], Blum did the foundational study [1] in 1966. Blum’s study of curves
with specific curvature and torsion functions laid the groundwork for later developments, including the
connection to Mannheim curves and curves of constant precession.

Recently, the properties of slant helices have been studied not only in three dimensional Euclidean
spaces but also within the framework of Semi-Riemannian Geometry. These studies have focused on
the geometric characterization of slant helices in various ambient spaces, including Lorentzian and
Sasakian manifolds, as well as their applications in differential geometry and physics. For more details,
see [10–15].

The rest of the paper is organized as follows: Section 2 presents some basic properties to be used in the
following sections. Section 3 propound a method for constructing k-slant curves in three dimensional
Euclidean spaces. It demonstrates that spherical k-slant curves and Nk-constant procession curves can
be derived from circles, for k ∈ N. Section 4 presents a new proof of the spherical curve characterization
and defines a curve in the sphere called a spherical prime curve. The most crucial point is that spherical
helices oscillate in the sphere’s equator. Section 5 applies k-slant curves to magnetic curves. The final
section inquires whether further research should be conducted.

2. Preliminaries

In three dimensional Euclidean spaces E3, let γ be a unit-speed curve with a coordinate neighborhood
(I, γ), and let {T,N,B, κ, τ} represent the Serret-Frenet apparatus of the curve. The derivations of
the Serret-Frenet vectors are as follows:

T ′

N ′

B′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B


The centrode of the curve C is defined as follows [16]:

W (s) = τ(s)T (s) + κ(s)B(s)

If the curve is a spherical curve, then γ(s) is perpendicular to T = γ′(s), for all s ∈ I. Thus,
{γ(s), T (s) = γ′(s), Y (s) = γ(s) × T (s)} forms an orthonormal frame along γ. This frame is called the
Sabban frame [17] along γ. The Serret-Frenet formula of a spherical curve is given by
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
γ′

T ′

Y ′

 =


0 1 0

−1 0 κg

0 −κg 0




γ

T

Y


where κg = det (γ, T, T ′), called the geodesic curvature along the curve in 2-sphere [17].

Recently, Ali [18] has defined a unit vector as follows:

ψk+1(s) = ψ′
k∥∥ψ′
k

∥∥
where ψ0(s) = γ(s), ψ1(s) = T (s), and ψ2(s) = N(s). Hence, it can be defined a regular curve γk as
follows [19]:

γk(s) =
s∫
0

ψk+1(u)du

Let {Tk, Nk, Bk, κk, τk} be the Serret-Frenet apparatus of the curve γk. Then, [18] shows that

Tk = ψk+1, Nk =
ψ′
k+1∥∥∥ψ′
k+1

∥∥∥ = ψk+2 = Tk+1, and Bk = Tk ×Nk

The Serret-Frenet formulas of the curve γk is given as follows [18]:
T ′
k

N ′
k

B′
k

 =


0 κk 0

−κk 0 τk

0 −τk 0




Tk

Nk

Bk


Furthermore, [18,19] show that κk =

√
κ2
k−1 + τ2

k−1 and τk = σk−1κk where

σk−1 =
κ2
k−1(

κ2
k−1 + τ2

k−1

) 3
2

(
τk−1
κk−1

)′

is the geodesic curvature of the spherical image of the principal normal of γk+1. The centrode of the
curve γk is defined by

Wk(s) = τk(s)Tk(s) + κk(s)Bk(s), s ∈ I

If there exists a constant angle between ψk+1(s) and any constant vector, i.e., γk, a general helix, then
it is said that γ is a k-slant curve [18]. Thus, the following expressions are equivalent [18,19]:

i. γ is a k-slant curve

ii. γk−1 is a slant curve (1-slant)

iii. γk is a general helix (0-slant)

iv. γk+1 is a planar curve

3. Construction of Spherical k-Slant Curves

In three dimensional Euclidean spaces, let γ be a regular spherical curve with a coordinate neighborhood
(I, γ). Hence, a curve I(γ) : I → R3 is defined as follows:

I(γ)(t, θ0) = α(t) =
t∫
0

Sγ(u, θ0)γ(u)du

where Sγ : I −→ R is a differentiable function. Thus, the following lemma is obtained:



Camcı / Constructing k-Slant Curves in Three Dimensional Euclidean Spaces 101

Lemma 3.1. The curve I(γ) is a spherical curve if and only if

Sγ(t, θ0) =
∥∥γ′(t)

∥∥ cos

 t∫
0

det(γ(u), γ′(u), γ′′(u))
∥γ′(u)∥2 du+ θ0

 (3.1)

Proof. Without loss of generality, suppose that the sphere’s center is the origin. If I(γ) = α is a
regular spherical curve, then

∥α(t)∥ =

∥∥∥∥∥∥
t∫
0

Sγ(u)γ(u)du

∥∥∥∥∥∥ = 1

and α(t) is perpendicular to γ(t), for all t ∈ I. Hence, there exist functions f and g such that

α(t) =
t∫
0

Sγ(u)γ(u)du = f(t)γ′(t) + g(t)Y (t) (3.2)

where Y (t) = γ(t) × γ′(t). From (3.2),

(f(t))2 + (g(t))2 = 1
∥γ′(t)∥2

or
f(t) = − 1

∥γ′(t)∥ cos θ(t) and g(t) = 1
∥γ′(t)∥ sin θ(t) (3.3)

where θ : I −→ R is a function. If we derivate (3.2), then

Sγ(t)γ(t) = f ′(t)γ′(t) + f(t)γ′′(t) + g′(t)(γ(t) × γ′(t)) + g(t)(γ(t) × γ′′(t)) (3.4)

From (3.3) and (3.4),
Sγ(t) =

∥∥γ′(t)
∥∥ cos θ(t) (3.5)

Moreover, using (3.3),

f ′(t) = ⟨γ′(t), γ′′(t)⟩
∥γ′(t)∥3 cos θ(t) + θ′(t)

∥γ′(t)∥ sin θ(t) (3.6)

and from (3.4),

f ′(t)
∥∥γ′(t)

∥∥2 + f(t)
〈
γ′(t), γ′′(t)

〉
− g(t) det(γ(t), γ′(t), γ′′(t)) = 0 (3.7)

Using (3.3), (3.6), and (3.7),

θ′(t)
∥∥γ′(t)

∥∥− det(γ(t), γ′(t), γ′′(t))
∥γ′(t)∥ = 0 (3.8)

If we integrate (3.8), then

θ(t) =
t∫
0

det(γ(u), γ′(u), γ′′(u))
∥γ′(u)∥2 du+ θ0

Using (3.5),

Sγ(t, θ0) =
∥∥γ′(t)

∥∥ cos

 t∫
0

det(γ(u), γ′(u), γ′′(u))
∥γ′(u)∥2 du+ θ0



Corollary 3.2. Let SC be a set of spherical regular curves. From Lemma 3.1, we can define a map as

I : SC × [0, 2π] → SC

(γ, θ0) → I(γ, θ0)
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where

S
I0(γ)

(t, θ0) :=
∥∥γ′(t)

∥∥ cos

 t∫
0

det(γ(u), γ′(u), γ′′(u))
∥γ′(u)∥2 du+ θ0



I(γ, θ0) (t) := I(γ)(t, θ0) = α(t) =
t∫
0

S
I0(γ)

(u, θ0)I0(γ)(u)du

and I0(γ) := γ. Thus,

SI(γ)(t, θ̃1) =
∥∥I(γ)′(t, θ0)

∥∥ cos

 t∫
0

det(I(γ)(u, θ0), I(γ)′(u, θ0), I(γ)′′(u, θ0))
∥I(γ)′(u, θ0)∥2 du+ θ1


and

I(I(γ)(t, θ0), θ1) := I2(γ)(t, θ̃1) =
t∫
0

SI(γ)(u, θ̃1)I(γ)(u, θ0)du

where θ̃1 = (θ0, θ1). By the mathematical induction,

SIn(γ)(t, θ̃n) =
∥∥∥In(γ)′(t, θ̃n−1)

∥∥∥ cos

 t∫
0

det(In(γ)(u, θ̃n−1), In(γ)′(u, θ̃n−1), In(γ)′′(u, θ̃n−1))∥∥∥In(γ)′(u, θ̃n−1)
∥∥∥2 du+ θn


and

I(In(γ)(t, θ̃n−1), θn) = In+1(γ)(s, θ̃n) =
t∫
0

SIn(γ)(t, θ̃n)In(γ)(u, θ̃n−1)du

where θ̃n = (θ0, θ1, . . . , θn). Define

I−1(γ)(t, θ0) := I(−γ)(t, θ0) = −I(γ)(t,−θ0)

Then,
I−n(γ)(t, θ̃n−1) = In(−γ)(t, θ̃n−1) = −In(γ)(t,−θ̃n−1)

where −θ̃n−1 = (−θ0,−θ1, . . . ,−θn−1). Consider the set

Z(γ) =
{
. . . , I−2(γ), I−1(γ), I0(γ) = γ, I(γ), I2(γ), . . .

}
Then, it can be observed that (Z(γ),+, .) with the following addition and multiplication defined on
Z(γ) is a ring:

In(γ) + Im(γ) = In+m(γ)

and
In(γ).Im(γ) = Inm(γ)

where n,m ∈ Z.

Throughout this paper, let Sγ(t) and I(γ)(t) denote Sγ(t, 0) and I(γ)(t, 0), respectively.

Theorem 3.3. In three dimensional Euclidean spaces, the curve γ is a spherical k-slant curve if and
only if I(γ) is a spherical (k + 1)-slant curve.

Proof. Let γ be a regular curve with a coordinate neighborhood (I, γ). Hence,

ψ0(t) = γ(t) = α′(t)
Sγ(t) = ψ1(t)
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Thus, γ is the tangent indicatrix of the curve I(γ) and ψk = ψk+1 where ψk(t) = ψ′
k−1(t)

∥ψ′
k−1(t)∥ and

ψk+1(t) = ψ
′
k(t)∥∥ψ′
k(t)
∥∥ .

Example 3.4. Let γ(t) =
(
− 1√

2 sin 2t, 1√
2 sin 2t, cos 2t

)
. Then, ∥γ′(t)∥ = 2, det(γ(t), γ′(t), γ′′(t)) = 0,

Sγ(t, θ0) = 2 cos(θ0), and

I(γ)(t, θ0) =
∫

2 cos(θ0)
(

− 1√
2

sin 2t, 1√
2

sin 2t, cos 2t
)
dt (3.9)

It can be observed that the geodesic circle γ(t) is the intersection of the plane x+ y = 0 and the unit
sphere S2(O, 1) where the center of the sphere is the origin. By integrating (3.9),

I(γ)(t, θ0) = cos(θ0)
( 1√

2
cos(2t) + c1,−

1√
2

cos(2t) + c2, sin(2t) + c3

)
Here, I(γ)(t, θ0) lies on sphere S2(M, r) where M = (−c1,−c2,−c3) and r = | cos(θ0)|. In this case,
I(γ) lies on S2(O, 1) if and only if c1 = c2 = c3 = 0 and cos(θ0) = ε = ±1. Thus,

I(γ)(t) =
(
ε√
2

cos(2t),− ε√
2

cos(2t), ε sin(2t)
)

It can be observed that the geodesic circle I(γ) is the intersection of the plane x + y = 0 and the
sphere S2(O, 1) and ⟨γ(t), I(γ)(t)⟩ = 0. Therefore, there are four types of arc, belong to a geodesic
circle: I(γ) = γ, I2(γ) = γ, I3(γ) = γ, and I4(γ) = γ.

Example 3.5. Consider the following steps, constructing all k-slant curves:

Step 1. Let γ = S1 (−→a , r) be a circle in the unit sphere centered at the origin where γ(s) =
(r cosws, r sinws, a), w = 1

r , −→a = (0, 0, a), and a2 + r2 = 1. Hence,

Sγ(s, θ0) = cos(aws+ θ0)

and
I(γ)(s, θ0) =

∫
cos(aws+ θ0)(r cosws, r sinws, a)ds

where ∥γ′(s)∥ = r and det (γ(s), γ′(s), γ′′(s)) = aw. Then, we have a curve I(γ) as follows:

I(γ)(s, θ0) =



r
2

[
1

w(a+1) sin (w(a+ 1)s+ θ0) + 1
w(a−1) sin (w(a− 1)s+ θ0)

]
,

r
2

[
− 1
w(a+1) cos (w(a+ 1)s+ θ0) + 1

w(a−1) cos (w(a− 1)s+ θ0)
]
,

r sin (aws+ θ0)


where ∥I(γ)(s, θ0)∥ = 1. In Figure 1, the graph of I(γ)(s, θ0) is provided where r = 1

2 , a =
√

3
2 , and

θ0 = 0.

Figure 1. Graph of I(γ)(s, 0) where r = 1
2 and a =

√
3

2
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Hence, it can be observed that this curve is a spherical helix. Furthermore, since tangent indicatrices
of I(γ)(s, θ0) are equal to γ = S1(a, r), all spherical helices are of the form I(γ)(s, θ0), where axis of
the helix is equal to −→u = (0, 0, 1). Blaschke [16,20] has established that all spherical helices are of the
form I(γ)(s, θ0), where the axis of the helix is equal to −→u = (0, 0, 1). Moreover, Blaschke [16,20] has
shown that the projections of the spherical helices onto the plane xy are arcs of epicycloid.

Step 2. From (3.1),

SI(γ)(s, θ̃1) = cos(aws+ θ1) cos
( 1
aw

cos(aws+ θ1) + θ2

)
Thus, we have a curve I(I(γ)(s, θ0), θ1) = I2(γ)(s, θ̃1) as follows:

I2(γ)(s, θ̃1) =
∫
SI(γ)(s, θ̃1)I(γ)(s, θ̃0)ds

In Figure 2, the graph of 1-slant curve is given where r = 1
2 , a =

√
3

2 , and θ0 = θ1 = 0.

Figure 2. Graph of I2(γ)(s, θ̃1) where r = 1
2 , a =

√
3

2 , and θ̃1 = (0, 0)

Since tangent indicatrices of I2(γ)(s, θ̃1) are equal to I(γ)(s, θ̃0), all spherical slant curves are of the
form I2(γ)(s, θ̃1) in which the axis of the slant curve is equal to −→u = (0, 0, 1).

Step 3. Let I2(γ) be a spherical curve where

I2(γ)(s, θ̃1) =
∫
SI(γ)(s, θ̃1)I(γ)(s, θ̃0)ds

Then,

SI2(γ)(s, θ̃2) = cos(aws+ θ0) cos
( 1
aw

cos(aws+ θ0) + θ1

)
× cos

(∫
det(γ(s), α(s), α′(s))ds+ θ2

)
Thus, we have a curve C2(a, r) as follows:

I3(γ)(s, θ̃2) =
∫
SI2(γ)(s, θ̃2)I2(γ)(s, θ̃1)ds

This curve is a spherical 2-slant curve. Since tangent indicatrices of I3(γ) are equal to I2(γ), all spherical
2-slant curves are of the form I3(γ) in which the axis of the 2-slant curve is equal to −→u = (0, 0, 1).

We have all 3-slant curves I4(γ) by the mathematical induction method. With similar method, we
have all k-slant curves Ik+1(γ) where axis of the k-slant curve is equal to −→u = (0, 0, 1), for all k ∈ N.
Consequently, we have the following corollary.
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Corollary 3.6. In three dimensional Euclidean spaces, there exists a spherical k-slant curve, for all
k ∈ N. Furthermore, all spherical k-slant curves are of the form Ik+2(γ), where the axis of the k-slant
curve is equal to −→u = (0, 0, 1), for all k ∈ N. If the geodesic circle which lies on the sphere is changed,
then we have all spherical k-slant curves.

Definition 3.7. In three dimensional Euclidean spaces, consider the set

S
(
S1(−→a , r)

)
=
{
. . . , I−2(γ), I−1(γ), γ = S1(−→a , r), I(γ), I2(γ), I3(γ), . . .

}
We say that S

(
S1(−→a , r)

)
is a set of spherical slant curve. Hence, the set of all spherical k-slant curve,

denoted by
(
SI
)
, is given by

SI = ∪−→a ∈D
S
(
S1(−→a , r)

)
where D =

{−→a = (a1, a2, a3) | a2
1 + a2

2 + a3
3 < 1

}
and ∥−→a ∥2 + r2 = 1.

In [21], the authors have demonstrated that a curve lies on the 2-sphere if and only if((1
κ

)′ 1
τ

)′
+ τ

κ
= 0 (3.10)

The solution of (3.10) is given by

1
κ

= A cos

 s∫
0

τ(u)du

+B sin

 s∫
0

τ(u)du

 (3.11)

where R =
√
A2 +B2 is the radius of a sphere [21–23]. From (3.11),

1
κ

= R

A
R

cos

 s∫
0

τ(u)du

+ B

R
sin

 s∫
0

τ(u)du

 (3.12)

If cosα0 = A
R , then sinα0 = −B

R . From (3.12),

1
κ

= R cos

 s∫
0

τ(u)du+ α0

 (3.13)

Let M be a unit-speed regular curve with a coordinate neighborhood (I, γ). In this paper, we suppose
that 0 ∈ I without loss of generality. For all s ∈ I, the oscillating sphere of a curve is equal to the
sphere in which the curve lies on the sphere. Furthermore, the oscillating circle lies on this sphere.
From (3.13), 1

κ0
= cosα0 = R0

R . If R is equal to 1, then

cosα0 = R0 = 1
κ0

where R0 = 1
κ0

= sup
{

1
κ(s) | s ∈ I

}
. Hence, we can provide another proof of the characterization of

spherical curves.

Proof. Let β be a regular spherical curve with a coordinate neighborhood (I, β), s be the arc-length
parameter of the curve, and κ and τ be curvatures of the curves. Thus, we can define a spherical curve
as Sγ(s)γ(s) = β′(s) where

Sγ(s) =
∥∥γ′(s)

∥∥ cos

 s∫
0

det(γ(u), γ′(u), γ′′(u))
∥γ′(u)∥2 du+ θ0


Since Sγ(s)γ(s) = β′(s), Sγ(s) = 1 and γ(s) = β′(s). Then,
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1 = κ cos

 s∫
0

τ(u)du+ θ0

 (3.14)

Conversely, we suppose a curve K satisfies (3.14). Let K be a unit-speed regular curve with a
coordinate neighborhood (I, γ). We can define a curve M with the coordinate neighborhood (I, γ)
where γ(s) = β′(s). From (3.14), Sγ(s) = 1 and

∫
Sγ(s)γ(s)ds =

∫
β′(s)ds = β(s). From Lemma 3.1,

K is a regular spherical curve.

4. Construction of k-Slant Curves in E3

Lemma 3.1 can be applied to curve theory. Let γ be a unit-speed curve with a coordinate neighborhood
(I, γ) and {T,N,B, κ, τ} be the Serret-Frenet apparatus of the curves. Hence, ∥γ′(s)∥ = 1 and tangent
indicatrix of curve γ is σ(s) = γ′(s) = T (s). Then, there exist a differentiable function ST : I −→ R
such that ∥∥∥∥∫ ST (s)γ′(s)ds

∥∥∥∥ = 1

where

ST (s) = κ(s) cos

 s∫
0

τ(u)du+ θ0


In this case, we can define a unit-speed curve β with a coordinate neighborhood (I, β) such that

I(Dγ)(s, θ0) = β′(s) =
∫
ST (s)γ′(s)ds

and
β′′(s) = ST (s)γ′(s) (4.1)

Thus, the curve β is obtained as follows:

β(s) = D−1I(Dγ)(s, θ0) = J(γ)(s, θ0)

where
J(γ) = D−1I(Dγ)

and D is a derivative operator. Let T , N , and B be the Serret-Frenet vectors and κ and τ be the
curvature and torsion of a curve K, respectively, where

κ(s) = ST (s) = κ(s) cos

 s∫
0

τ(u)du+ θ0


and

τ(s) = κ(s) sin

 s∫
0

τ(u)du+ θ0


From (4.1),

N(s) = εT (s) (4.2)

where ε = ±1. Without loss of generality, we suppose that

κ(s) = κ(s) cos

 s∫
0

τ(u)du+ θ0


From (4.1) and (4.2), it can be observed that the principal normal of β and the tangent of γ is colinear.
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Theorem 4.1. In three dimensional Euclidean spaces, let γ be a unit speed curve with a coordinate
neighborhood (I, γ). In this case, γ is a k-slant curve if and only if J(γ) is a (k + 1)-slant curve.

The proof of Theorem 4.1 is the same as that of Theorem 3.3. Therefore, it can be observed that

i. γ is a planar curve if and only if J(γ) is a general helix

ii. γ is a general helix if and only if J(γ) is a slant curve

Note 4.2. In three dimensional Euclidean spaces, let γ be a unit-speed regular curve with a coordinate
neighborhood (I, γ). From (4.1), if the curve γ is a planar curve, then we have a helix in the first step,
i.e., J(γ). In the second step, we have a 1-slant curve (slant curve). In the third step, we have 2-slant
curve, i.e., J2(γ). If this procedure is continued, in the k+ 1. step, we have k-slant curve, i.e., Jk+1(γ).
Hence, the following set can be obtained:

Z(γ) =
{
. . . , J−2(γ), J−1(γ), γ, J(γ), J2(γ), . . .

}
We said that this set is a slant curve chain taken by a planar curve γ..

Definition 4.3. The set Z(γ) =
{
. . . , J−2(γ), J−1(γ), γ, J(γ), J2(γ), . . .

}
in Note 4.2 is called a slant

curve chain generated by a planar curve γ.

Example 4.4. In three dimensional Euclidean spaces, let γ = S1 be a circle provided by γ(s) =
(r cosws,−r sinws, 0) where w = 1

r . Hence, κ = w and τ = 0.

Step 1. Let κ(s) = ϵw cos c0 = A and τ(s) = ϵw sin c0 = B where A and B are constants. Moreover,

β′′(s) = A(− sinws,− cosws, 0) (4.3)

By integrating (4.3), we have the curve β as

β(s) = (Ar2 cos (ϵws) , Ar2 sin (ϵws) , bws+ c1)

Because β is a unit speed curve, b = r sin c0. If a = Ar2 = ϵr cos c0 and c1 = 0, then

J(γ)(s) = (a cos (ws) , a sin (ws) , bws)

where r =
√
a2 + b2.

Step 2. If J(γ)(s) = (a cosws, a sinws, bws), then κ = aw2 and τ = bw2. From (4.3), κ(s) =
ϵaw2 cos

(
bw2s

)
and τ(s) = ϵaw2 sin

(
bw2s

)
. Hence,

J2(γ)′′(s) = ϵaw2 cos
(
bw2s

)
(−aw sinws, aw cosws, bw)

and
J2(γ)′′(s) =

(
−ϵa2w3 cos

(
bw2s

)
sinws, ϵa2w3 cos

(
bw2s

)
cosws, ϵabw3 cos

(
bw2s

))
(4.4)

By integrating (4.4),

J2(γ)′(s) = ϵaw2


a
2

[
1

1+bw cos (w(1 + bw)s) + 1
1−bw cos (w(1 − bw)s)

]
,

a
2

[
1

1+bw sin (w(1 + bw)s) + 1
1−bw sin (w(1 − bw)s)

]
,

1
w sin

(
bw2s

)

 (4.5)

Therefore,
∥∥J2(γ)′(s)

∥∥ = 1. If we integrate (4.5), then we have the curve J2(γ)(s) = (x(s), y(s), z(s))
where

x(s) = εa2w

2

[
1

(1 + bw)2 sin (w(1 + bw)s) + 1
(1 − bw)2 sin (w(1 − bw)s)

]
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y(s) = −εa2w

2

[
1

(1 + bw)2 cos (w(1 + bw)s) + 1
(1 − bw)2 cos (w(1 − bw)s)

]

z(s) = − εa

bw
cos

(
bw2s

)
and ε = ±1.

Thus,

x2 + y2 − b2

a2 z
2 = b2

a4w4 (4.6)

If γ is a unit circle, i.e., if r = 1, then w = 1
r = 1. From (4.6),

x2 + y2 − b2

a2 z
2 = b2

a4

Thus, we obtain similar solutions as in [1, 8].

Step 3. If

J2(γ)(s) =


a2w

2

[
1

(1+bw)2 sin (w(1 + bw)s) + 1
(1−bw)2 sin (w(1 − bw)s)

]
,

−a2w
2

[
1

(1+bw)2 cos (w(1 + bw)s) + 1
(1−bw)2 cos (w(1 − bw)s)

]
,

− a
bw cos

(
bw2s

)


then κ(s) = aw2 cos

(
bw2s

)
and τ(s) = aw2 sin

(
bw2s

)
. From (4.3),

κ(s) = ϵaw2 cos
(
bw2s

)
cos

(
a

b
cos

(
bw2s

))
and

τ(s) = ϵaw2 cos
(
bw2s

)
sin
(
a

b
cos

(
bw2s

))
Thus,

J3(γ)(s)′′(s) = κ(s)


a2w2

2

[
1

1+bw cos (w(1 + bw)s) + 1
1−bw cos (w(1 − bw)s)

]
,

a2w2

2

[
1

1+bw sin (w(1 + bw)s) + 1
1−bw sin (w(1 − bw)s)

]
,

1
w sin

(
bw2s

)


Furthermore, from [24], if t = ei(

π
2 −ϕ), then

cos(x cosϕ) = J0(x) + 2
∞∑
k=1

(−1)kJ2k(x) cos(2kϕ)

and
sin(x cosϕ) = 2

∞∑
k=1

(−1)kJ2k−1(x) cos ((2k − 1)ϕ)

where Jn is the Bessel function defined by

Jn(x) =
∞∑
k=1

(−1)k Γ(n+ 1)
22kk!Γ(n+ k + 1)x

2k+n

or

Jn(x) = 1
π

π∫
0

cos (nϕ− x sinϕ) dϕ
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where n is an integer. If ϕ(s) = bw2s and x = a
b , then

cos
(
a

b
cos

(
bw2s

))
= J0

(
a

b

)
+

∞∑
k=1

2(−1)kJ2k

(
a

b

)
cos

(
2kbw2s

)
(4.7)

and
sin
(
a

b
cos

(
bw2s

))
= 2

∞∑
k=1

(−1)kJ2k−1

(
a

b

)
cos

(
(2k − 1)bw2s

)
(4.8)

From (4.7),

κ(s) = ϵaw2 cos
(
bw2s

)(
J0

(
a

b

)
+

∞∑
k=1

2(−1)kJ2k

(
a

b

)
cos

(
2kbw2s

))

Since J3(γ)(s)′′(s) = (x′′(s), y′′(s), z′′(s)), then

x′′(s) = εa3w4

4

(
1

1+bw
cos (w(1 + 2bw)s) + 1

1−bw
cos (w(1 − 2bw)s) + 2

a2w2 cos (ws)
)(

J0( a
b

) +
∞∑

k=1
2(−1)kJ2k( a

b
) cos(2kbw2s)

)
y′′(s) = εa3w4

4

(
J0( a

b
) +

∞∑
k=1

2(−1)kJ2k( a
b

) cos(2kbw2s)
)(

1
1+bw

sin (w(1 + 2bw)s) + 1
1−bw

sin (w(1 − 2bw)s) + 2
a2w2 sin (ws)

)
and

z′′(s) = εaw cos
(
bw2s

)
sin
(
bw2s

)
cos

(
a

b
cos

(
bw2s

))
Thus,

x′′(s) = εa
3w4

4 J0(ab )
(

1
1+bw cos (w(1 + 2bw)s) + 2

a2w2 cos (ws) + 1
1−bw cos (w(1 − 2bw)s)

)
+εa3w4

4

[
1

1+bw
∞∑
k=1

(−1)kJ2k(ab ) (cos ((2bw (k + 1) + 1)ws) + cos ((2bw (k − 1) − 1)ws))

+ 1
1−bw

∞∑
k=1

(−1)kJ2k(ab ) (cos ((2bw (k − 1) + 1)ws) + cos ((2bw (k + 1) − 1)ws))

+ 1
a2w2

∞∑
k=1

2(−1)kJ2k(ab ) (cos ((2kbw + 1)ws) + cos ((2kbw − 1)ws))
]

y′′(s) = εa
3w4

4 J0(ab )
(

1
1+bw sin (w(1 + 2bw)s) + 2

a2w2 sin (ws) + 1
1−bw sin (w(1 − 2bw)s)

)
+εa3w4

4

[
1

1+bw
∞∑
k=1

(−1)kJ2k(ab ) (sin ((2bw (k + 1) + 1)ws) + sin ((2bw (k − 1) − 1)ws))

+ 1
1−bw

∞∑
k=1

(−1)kJ2k(ab ) (sin ((2bw (k − 1) + 1)ws) + sin ((2bw (k + 1) − 1)ws))

+ 1
a2w2

∞∑
k=1

(−1)kJ2k(ab ) (sin ((2kbw + 1)ws) + sin ((2kbw − 1)ws))
]

and
z′′(s) = εaw cos

(
bw2s

)
sin
(
bw2s

)
cos

(
a

b
cos

(
bw2s

))
If we integrate the above equations, then

x′(s) = ε a3w3

4 J0( a
b
)
(

1
(1+bw)(1+2bw) sin (w(1 + 2bw)s) + 2

a2w2 sin (ws) + 1
(1−bw)(1−2bw) sin (w(1 − 2bw)s)

)
+ε a3w3

4

[
1

1+bw

∞∑
k=1

(−1)kJ2k( a
b
)
(

1
(2bw(k+1)+1) sin ((2bw (k + 1) + 1) ws) + 1

(2bw(k−1)−1) sin ((2bw (k − 1) − 1) ws)
)

+ 1
1−bw

∞∑
k=1

(−1)kJ2k( a
b
)
(

1
(2bw(k−1)+1) sin ((2bw (k − 1) + 1) ws) + 1

(2bw(k+1)−1) sin ((2bw (k + 1) − 1) ws)
)

+ 1
a2w2

∞∑
k=1

2(−1)kJ2k( a
b
)
(

1
(2kbw+1) sin ((2kbw + 1) ws) + 1

(2kbw−1) sin ((2kbw − 1) ws)
)]
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y′(s) = −ε a3w3

4 J0( a
b )
(

1
(1+bw)(1+2bw) cos (w(1 + 2bw)s) + 2

a2w2 cos (ws) + 1
(1−bw)(1−2bw) cos (w(1 − 2bw)s)

)
−ε a3w3

4

[
1

1+bw

∞∑
k=1

(−1)kJ2k( a
b )
(

1
(2bw(k+1)+1)2 cos ((2bw (k + 1) + 1) ws) + 1

(2bw(k−1)−1)2 cos ((2bw (k − 1) − 1) ws)
)

+ 1
1−bw

∞∑
k=1

(−1)kJ2k( a
b )
(

1
(2bw(k−1)+1)2 cos ((2bw (k − 1) + 1) ws) + 1

(2bw(k+1)−1)2 cos ((2bw (k + 1) − 1) ws)
)

+ 1
a2w2

∞∑
k=1

2(−1)kJ2k( a
b )
(

1
(2kbw+1)2 cos ((2kbw + 1) ws) + 1

(2kbw−1)2 cos ((2kbw − 1) ws)
)]

and

z′(s) = εb3w4

a

(
cos

(
a

b
cos

(
bw2s

))
+ a

b
cos

(
bw2s

)
sin
(
a

b
cos

(
bw2s

)))
where (x′(s))2 + (y′(s))2 + (z′(s))2 = 1. From (4.7) and (4.8),

z′(s) = ϵb3w4

a

(
J0( a

b ) +
∞∑

k=1
2(−1)kJ2k( a

b ) cos(2kbw2s) + 2a
b cos

(
bw2s

) ∞∑
k=1

(−1)kJ2k−1( a
b ) cos

(
(2k − 1)bw2s

))
Hence,

z′(s) = − ϵb
aw

(
J0( a

b ) +
∞∑

k=1
2(−1)kJ2k( a

b ) cos(2kbw2s) + a
b

∞∑
k=1

(−1)kJ2k−1( a
b )
(
cos
(
kbw2s

)
+ cos

(
2(k − 1)bw2s

)))
If we integrate the above equations, then we have a curve J3(γ)(s) = (x(s), y(s), z(s)) where

x(s) = −ε a3w2

4 J0( a
b
)
(

1
(1+bw)(1+2bw)2 cos (w(1 + 2bw)s) + 2

a2w2 cos (ws) + 1
(1−bw)(1−2bw)2 cos (w(1 − 2bw)s)

)
−ε a3w2

4

[
1

1+bw

∞∑
k=1

(−1)kJ2k( a
b
)
(

1
(2bw(k+1)+1)2 cos ((2bw (k + 1) + 1) ws) + 1

(2bw(k−1)−1)2 cos ((2bw (k − 1) − 1) ws)
)

+ 1
1−bw

∞∑
k=1

(−1)kJ2k( a
b
)
(

1
(2bw(k−1)+1)2 cos ((2bw (k − 1) + 1) ws) + 1

(2bw(k+1)−1)2 cos ((2bw (k + 1) − 1) ws)
)

− 1
a2w2

∞∑
k=1

2(−1)kJ2k( a
b
)
(

1
(2kbw+1)2 cos ((2kbw + 1) ws) + 1

(2kbw−1)2 cos ((2kbw − 1) ws)
)]

y(s) = −εa3w2

4 J0( a
b )
(

1
(1+bw)(1+2bw)2 sin (w(1 + 2bw)s) + 2

a2w2 sin (ws) + 1
(1−bw)(1−2bw)2 sin (w(1 − 2bw)s)

)
−εa3w2

4

[
1

1+bw

∞∑
k=1

(−1)kJ2k( a
b )
(

1
(2bw(k+1)+1) sin ((2bw (k + 1) + 1)ws) + 1

(2bw(k−1)−1) sin ((2bw (k − 1) − 1)ws)
)

+ 1
1−bw

∞∑
k=1

(−1)kJ2k( a
b )
(

1
(2bw(k−1)+1) sin ((2bw (k − 1) + 1)ws) + 1

(2bw(k+1)−1) sin ((2bw (k + 1) − 1)ws)
)

+ 1
a2w2

∞∑
k=1

2(−1)kJ2k( a
b )
(

1
(2kbw+1) sin ((2kbw + 1)ws) + 1

(2kbw−1) sin ((2kbw − 1)ws)
)]

and

z(s) = − εb
aw

[
J0( a

b
)s +

∞∑
k=1

(−1)kJ2k( a
b

)
kbw2 sin(2kbw2s) + a

b2w2

∞∑
k=1

(−1)kJ2k−1( a
b
)
(

1
k

sin
(
kbw2s

)
+ 1

2(k−1) sin
(
2(k − 1)bw2s

))]
Therefore, we have a 2-slant curve J3(γ)(s).

Definition 4.5. In three dimensional Euclidean spaces, if γ = S1(−→a , r) , then the set

Z(γ) =
{
. . . , J−2(γ), J−1(γ), γ, J(γ), J2(γ), . . .

}
is said to be constant precession curve chain. Hence, the set of all the Nk-constant procession curves,
denoted by ZN , is as follows:

ZN =
⋃

−→a ∈E3
r>0

Z
(
S1(−→a , r)

)
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Furthermore, the set of all the k-slant curves in three dimensional Euclidean spaces is provided by
ZJ ∪ SI where

ZJ =
⋃

γ is a planar curve
Z (γ)

5. k-Slant Curves and Magnetic Curves

Let M be 2n+ 1-smooth manifold. If there exists a structure (ϕ, ξ, η, g) such that for all X,Y ∈ χ(M),
ϕ2(X) = −X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ), η(ξ) = 1, ϕ(ξ) = 0, and
η ◦ ϕ = 0, then it is said that (M,ϕ, ξ, η, g) is an almost contact metric manifold where ϕ, ξ, and η are
type tensors (1, 0), (1, 0), and (0, 1), respectively, and g is a metric tensor [25]. In an almost contact
metric manifold, it is said that Φ is a fundamental form of the almost contact metric manifold where
Φ(X,Y ) = g(ϕX, Y ) [25]. Let (M,ϕ, ξ, η, g) be a 3-dimensional almost contact metric manifold. The
extended of the cross-product is defined as follows [26]:

X ∧ Y = −g(ϕX, Y ) − η(Y )ϕX + η(X)ϕY, for all X,Y ∈ χ(M)

Thus, ϕ(X) = ξ ∧X. In three dimensional Euclidean spaces, the set V = {(v1, v2, 0) : v1, v2 ∈ R} is a
subspace of R3. Hence, we can define a natural projection from R3 to V by π(v1, v2, v3) = (v1, v2, 0)
and an almost complex map on V given by J(v1, v2, 0) = (−v2, v1, 0). Consider ϕ = J ◦ π, η = dz,
and ξ = ∂

∂z . Then,
(
R3, ϕ, ξ, η, g

)
is an almost contact metric manifold where g is the standard Euclid

metric [26]. In this case, X ∧ Y = X × Y where × is the ordinary cross product [26]. Let γ be a
unit-speed regular curve with a coordinate neighborhood (I, γ) and {T,N,B, κ, τ} be the Serret-Frenet
apparatus of the curve. Hence, T ∧N = B, N ∧B = T , and B ∧T = N . Then, the following equations
hold:

ϕ(T ) = η(B)N − η(N)B

ϕ(N) = η(T )B − η(B)T

and
ϕ(B) = η(N)T − η(T )N

where ξ = η(T )T + η(N)N + η(B)B and η(T )2 + η(N)2 + η(B)2 = 1 [26]. Let ξ be a magnetic field
and Φ be a close 2-form on M3 where Φ(X,Y ) = g(ϕX, Y ) and ϕ(X) = ξ ∧X. Here, ϕ is the Lorentz
force of Φ. If the following Landau-Hall equation is satisfied, then the curve γ is the magnetic curve of
(M, g,Φ) where ∇ is a Levi-Civita connection of g [27]:

∇TT = ϕ(T ) = ξ × T

In this case,
(
M3, ϕ, ξ, η, g

)
is an almost contact metric manifold, and Φ is the fundamental form of

this manifold. From the Landau-Hall equation,
ϕ(T )
ϕ(N)
ϕ(B)

 =


0 κ 0

−κ 0 w

0 −w 0




T

N

B


Therefore, the curve γ is magnetic curve if and only if ξ = wT + κB [28]. Bozkurt et al. [29] have
defined a new type Landau-Hall equation as follows:

∇TN = ϕ(N) = ξ ×N
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where N is a normal vector field along the curve. If

∇TN = ϕ(N) = ξ ×N

then γ is an N−magnetic curve of (M, g,Φ) [29]. From the Landau-Hall equation,
ϕ(T )
ϕ(N)
ϕ(B)

 =


0 κ Ω

−κ 0 τ

−Ω −τ 0




T

N

B


Then, the curve γ is an N−magnetic curve if and only if ξ = τT + κB − ΩN [29]. Therefore, Bozkurt
et al. [29] have defined a B-magnetic curve of (M, g,Φ) [29]. If

∇TB = ϕ(B) = ξ ×B

then the curve γ is a B-magnetic curve of (M, g,Φ) [29]. From the Landau-Hall equation,
ϕ(T )
ϕ(N)
ϕ(B)

 =


0 w 0

−w 0 τ

0 −τ 0




T

N

B


Therefore, the curve γ is a B-magnetic curve if and only if ξ = τT + wB [29]. Similarly, we can define
the generalized Landau-Hall equation as follows:

∇TZ = ϕ(Z) = ξ × Z

Hence, it is said that the curve γ is an Z-magnetic curve of (M, g,Φ). From the generalized Landau-Hall
equation, we have the following theorem.

Theorem 5.1. The curve γ is an Z-magnetic curve of (M, g,Φ) if and only if
Z ′

1
Z ′

2
Z ′

3

 =


0 κ− ξ3 ξ2

− (κ− ξ3) 0 τ − ξ1

−ξ2 − (τ − ξ1) 0



Z1

Z2

Z3


where ξ = ξ1T + ξ2N + ξ3B and Z = Z1T + Z2N + Z3B

If ∇TNk = ϕ(Nk) = ξ × Nk, then it is said that the curve γ is an Nk-magnetic curve. The Lorentz
force in the Serret-Frenet frame of γk is given by

ϕ(Tk)
ϕ(Nk)
ϕ(Bk)

 =


0 κk Ωk+1

−κk 0 τ

−Ωk+1 −τk 0




Tk

Nk

Bk


and the Serret-Frenet formulas of the curves are given by

Tḱ

N´
k

B́k

 =


0 κk 0

−κk 0 τk

0 −τk 0




Tk

Nk

Bk


Thus, the curve γ is an Nk-magnetic curve of the magnetic field ξ if and only if

ξ = τkTk − Ωk+1Nk + κkBk ∈ Kerϕ

If we derive ξ along the curve, then

∇T ξ =
(
τ ′
k + Ωk+1κk

)
Tk − Ω′

k+1Nk +
(
κ′
k − Ωk+1τk

)
Bk
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If ξ is a constant vector field along the curve, then

τ ′
k = −Ωk+1κk (5.1)

and
κ′
k = Ωk+1τk (5.2)

where Ωk+1 is a constant. From (5.1) and (5.2),

κk = R cos (Ωk+1s+ c0) (5.3)

and
τk = R sin (Ωk+1s+ c0) (5.4)

where R is a constant. From (5.3) and (5.4), γk = J2(S1(−→a , r)) and γ = Jk+2(S1(−→a , r)). Furthermore,
Ramiz et al. [19] have defined Nk-constant procession curves in 3-Euclidean spaces. In this spaces, the
Darboux vectors of γk is defined as

Wk = τkTk + κkBk

and
Ak = Wk ± Ωk+1Nk

where Ωk+1 is a constant. Then, the curve γ is said to be an Nk-constant procession curve in three
dimensional Euclidean spaces if there exists a constant angle between Wk and fixed direction Ak. From
Theorem 4 in [19], the following statements are equivalent:

i. The curve γ is an Nk-constant procession curve

ii. κk = R cos (Ωk+1s+ c0) and τk = R sin (Ωk+1s+ c0)

where Ωk+1 and c0 are constants. Consequently, the following theorem is obtained:

Theorem 5.2. In three dimensional Euclidean spaces, an Nk-magnetic curve is an Nk-constant
procession curve if and only if ξ = τkTk − Ωk+1Nk + κkBk is a constant vector field along the curve.

6. Conclusion

In this study, we proposed a method for constructing k-slant curves from spherical curves in three
dimensional Euclidean space. We showed that spherical k-slant and Nk-constant precession curves
can be derived from circles, offering a novel proof for characterizing spherical curves. Furthermore,
we introduced the concept of spherical prime curves and applied k-slant curves to magnetism theory,
highlighting their significance in the analysis of magnetic curves. Generalizing k-slant curves to
higher-dimensional spaces or non-Euclidean geometries is worth studying for future research. Moreover,
their potential applications can be investigated, particularly in fields like quantum mechanics or fluid
dynamics.
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