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1. INTRODUCTION 

In recent years, interest in bioactive compounds 
from marine resources has increased significantly 
due to their positive effects on health. Macroalgae 
(seaweeds) in particular stand out as a rich source 
of various bioactive substances. The cell walls 
of these algae contain different types of sulfated 
polysaccharides, and these compounds show a 
wide range of biological activities such as anti-
coagulant, antiviral, antioxidant, anticancer and 

immunomodulatory effects. Therefore, they 
offer significant potential for the nutraceutical, 
pharmaceutical and cosmeceutical industries [1].

Algae are diverse photosynthetic organisms that 
live in water and encompass thousands of species. 
In general, seaweeds are divided into two main 
classes: microalgae and macroalgae (often called 
seaweeds). Macroalgae are further divided into three 
subgroups: green algae (Chlorophyta), brown algae 
(Phaeophyta), and red algae (Rhodophyta). These 
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ABSTRACT

Algae have become the center of attention due to their strong antioxidants 
and enzyme-inhibitory activities. In this study, green algae (Enteromorpha 
linza) extracts obtained using acetone, hexane and methanol were 
investigated. In the study, antioxidant properties, anti-acetylcholinesterase 
(AChE) potential, ADME estimations and molecular docking analyses 
of green algae extracts were investigated. The best binding position 
was obtained by docking sirsimaritin, daidzein, kaempferol, morin and 
myricetin to the active site of acetylcholinesterase receptor. Docking 
score values were calculated as -10.0, -10.3, -9.9, -9.8 and -9.8 kcal/mol, 
respectively. Experimental analysis revealed that the extracts showed 
inhibitory activity against acetylcholinesterase enzyme. Acetone and 
hexane extract showed good inhibition performance with IC50 values 
of 0.0379 mg/ml and 0.0414 mg/ml, respectively. The IC50 value for 
methanol extract was determined as 0.997 mg/ml. When the antioxidant 
activity results of the extracts were evaluated in terms of both DPPH and 
ABTS radical scavenging capacities, it was revealed that the acetone-
based extract had a higher radical scavenging capacity (DPPH: 17.48%, 
ABTS: 83.58%) compared to the extracts obtained with other solvents. In 
general, the obtained results revealed that the green algae examined can 
be used as a source of natural agents beneficial for human health.
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groups differ in species diversity and chemical 
composition [2]. Green algae, one of the three main 
groups of macroalgae, are widespread in the marine 
environment and are distributed worldwide [3]. The 
genus Enteromorpha (also known as Ulva), a group 
of green algae, is an important macroalgae causing 
green tides. Enteromorpha species are notable for 
their high tolerance to environmental stresses and 
rapid growth rates [4,5]. Enteromorpha species are 
therefore seen as a promising source of biomass for 
various industrial applications [6,7]. Enteromorpha 
species contain a variety of nutrients such as 
carbohydrates, proteins, fats, minerals and vitamins. 
Studies on Enteromorpha extracts and isolates 
have shown that these algae have antioxidant, 
antimicrobial, anti-ageing, anti-radiation and 
moisturizing properties [5,8].

Alzheimer’s disease (AD) is a neurodegenerative 
disease characterized by atypical behavioral 
symptoms, memory impairment, cognitive decline, 
and intellectual disability, frequently seen in the 
ageing population [9,10]. Alzheimer’s disease (AD) 
is pathologically defined by neuronal degeneration, 
the presence of senile plaques located interstitially 
between neurons, and changes in synaptic architecture 
[11]. The aetiology of AD highlights the critical 
function of acetylcholinesterase (AChE) within the 
central nervous system. The primary role of AChE 
involves the enzymatic hydrolysis of acetylcholine 
(ACh) into acetate (CH3COO-) and choline (Ch) 
[12,13]. When AChE content is high and its activity 
is strong, ACh content decreases rapidly. In this case, 
neuronal damage occurs, and AD occurs. Therefore, 
oral drugs that can inhibit the existing AChE content 
in the brain can easily alleviate the symptoms of AD 
patients [14]. Therefore, the use of AChE inhibitors 
(AChEIs) for cholinergic degradation of ACh offers 
a promising and effective approach in the treatment 
of Alzheimer’s disease (AD) [15]. 

Molecular Docking is a computational method 
widely used in drug design. This technique helps to 
introduce new molecules into the field by assessing 
the strength of interactions between the molecules 
under study and biological systems such as enzymes, 
while providing mechanistic insights into chemical 
interactions [16,17].

During normal cellular metabolism in living 
organisms, reactive oxygen species (ROS) are 
produced, which can be detrimental to essential 
biomolecules such as lipids, carbohydrates, nucleic 
acids, and proteins [18–20]. Additionally, ROS 
serve as a primary immune defence mechanism in 
all living beings and are implicated in numerous 
diseases [21,22]. Studies have revealed that oxidative 
stress and reactive oxygen species (ROS) are key 
determinants contributing to numerous chronic 
conditions, including cancer, immunodeficiency 
syndrome, age-related pathologies, cardiovascular 
diseases, arteriosclerosis, diabetes, and obesity 
[23,24]. Consequently, inhibiting the formation of 
ROS may be crucial in reducing the incidence of 
chronic diseases [25]. 

Nowadays, the development of natural and reliable 
treatment strategies for neurodegenerative diseases 
and oxidative stress-related pathologies has been 
receiving increasing attention in the literature. In this 
context, the rich bioactive compound portfolio of 
marine-derived natural products draws attention with 
their potential that has not yet been fully explored. 
In light of current studies, it is thought that a 
comprehensive evaluation of molecular interactions 
and pharmacokinetic properties of green algae 
extracts will better determine the place of natural 
agents in therapeutic applications. This study aims to 
provide new perspectives on the biological activities 
of this natural resource by examining the antioxidant 
and acetylcholinesterase inhibition potentials of 
green algae extracts through the integration of 
experimental analyses and computational methods.

2. MATERIALS AND METHODS 

2.1. Preparation of Extracts

The green algae (Enteromorpha linza) were collected 
from Izmir, Türkiye. The collected sample was 
brought to the laboratory in plastic bags containing 
seawater to prevent evaporation. The algae were 
washed thoroughly with tap water and distilled water 
to remove surface particles and epiphytes and dried 
in the shade for 5 days. They were dried in an oven 
at 50 °C until constant weight was achieved. The 
dried algae were ground into fine powder using an 
electric mixer. They were mixed with acetone (E-
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A), hexane (E-H) and methanol (E-M) (solid/liquid 
ratio 1:10 w/v) as solvents. The mixture was placed 
on a magnetic stirrer and stirred for 2 h. Then, it was 
filtered using a Whatman No. 1 filter. The filtrate 
obtained was dried and stored at 4 oC until needed 
[26,27].

2.2. Molecular Docking Studies 

Molecular docking studies were carried out using 
the AutoDock Vina tool and UCSF Chimera 
software [28–30]. Cholinesterase and bioactive 
phytochemicals (cirsimaritin, daidzein, kaempferol, 
morin and myricetin) were evaluated for molecular 
docking studies. Acetylcholinesterase (PDB:4M0E) 
Structure of human acetylcholinesterase in 
complex with dihydrotanshinone I Method: X-RAY 
diffraction resolution: 2.00 Å) receptor was retrieved 
from the RCSB (https://www.rcsb.org/) protein data 
bank. After minimization, the grid box resolution for 
docking along the x, y and z axes was set to the binding 
region. Results were recorded after docking analysis 
[31,32]. Protein-ligand interactions were evaluated 
in the https://proteins.plus/ and amino acids were 
labelled. Finally, both 2D and 3D structures of the 
protein-ligand interface were shown. The PoseEdit 
system employs the PoseView algorithm and the 
InteractionDrawer JavaScript library (https://github.
com/rareylab/InteractionDrawer) to automatically 
generate highly detailed 2D and 3D diagrams 
illustrating ligand interactions. The structural 
representations adhere to IUPAC guidelines. The 
system visualizes various computed interactions 
between the ligand and nucleic acids, amino acids, 
and metals, including hydrogen bonds, cation-pi 
interactions, pi-stackings, ionic interactions, and 
metal interactions, using colored dashed lines. 
Additionally, hydrophobic contacts are represented 
by green splines with labels [33]. 

2.3. ADME Analysis

Swiss ADME online web tool (http://www.
swissadme.ch/) was used to perform ADME analysis 
of cirsimaritin, daidzein, kaempferol, morin and 
myricetin compounds [34]. ChemDraw was utilized 
to generate SMILES data for these compounds. 
Subsequently, various physicochemical properties 
were evaluated, including lipophilicity, drug-

likeness, pharmacokinetics, topological polar surface 
area (TPSA), the number of rotatable bonds, and any 
violations of Lipinski’s rule of five.

2.4. Acetylcholinesterase (AChE) Inhibition 
Activity

The inhibitory effect of green algae on 
acetylcholinesterase (AChE) was evaluated [35]. 
Briefly, 100 μL of 1 M Tris-HCl buffer (pH 8.0) 
was combined with 10 μL AChE solution and 10 μL 
extract and the total volume was brought to 900 mL 
with distilled water. It was then incubated at 25 °C 
for 5 min. Then, 50 μL of acetylthiocholine iodide 
(AChI) and 50 μL of 5,5’-dithio-bis-(2-nitrobenzoic 
acid) (DTNB) were added to the reaction medium. 
The resulting mixture was incubated for another 5 
min at 25 °C. A control reaction was performed using 
an equivalent volume of dimethyl sulfoxide (DMSO) 
instead of the sample. Absorbance measurement was 
carried out at 405 nm in a spectrophotometer. The 
percentage of inhibition was determined according 
to the following formula (1):

Where Ac is the absorbance value of the control and 
As is the absorbance value of the sample.

2.5. DPPH Radical Scavenging Activity

To study the antioxidant potential of the crude 
extract of green algae, 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) free radical scavenging activity (RSA) was 
performed with slight modifications to the previously 
reported method [36]. The experiment was carried 
out by adding 100 μL (1 mg/mL) of algae extract 
to 900 μL of DPPH (0.1 mM) mixture. The reaction 
mixture was then incubated at room temperature for 
30 min in the dark to record absorbance (517 nm) 
readings on a spectrophotometer. 1 mL of DPPH was 
used as control. DPPH radical scavenging activity 
was calculated according to the following formula 
(2):

Where Ac is the absorbance value of the control and 
As is the absorbance value of the extracts.

https://www.rcsb.org/
https://proteins.plus/
https://github.com/rareylab/InteractionDrawer
https://github.com/rareylab/InteractionDrawer
http://www.swissadme.ch/
http://www.swissadme.ch/
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2.6. ABTS Radical Scavenging Activity

2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS) radical scavenging activity of green 
algae was determined according to the previously 
described method with minor revisions [5]. Briefly, 
ABTS (7 mM) was mixed with potassium persulfate 
(2.45 mM) in the dark at room temperature for 16 h 
to form ABTS radicals. The solution was then diluted 
with phosphate buffer (pH = 7.4) until the absorbance 
at 734 nm was 0.70 ± 0.02. 5 μL of sample solution 
prepared at a concentration of 1 mg/ml was reacted 
with 995 μL of ABTS solution and the absorbance of 
the mixture was measured at 734 nm. 

3. RESULTS AND DISCUSSION 

3.1. Extraction Yield (Ey)

To determine the extraction yield (Ey), the percentage 
of the ratio between the extracted mass and the dry 
sample mass was calculated. Acetone-extract (E-
A), hexane-extract (E-H) and methanol-extract (E-
M) had values of 13.5, 11.4, 14.7%, respectively. 
These values revealed that the methanol extract had 
a higher yield.

3.2. Molecular Docking

A crucial computational technique for examining 
the structural and dynamic characteristics of 
biomolecular systems is molecular docking. This 
method, extensively utilized in drug discovery and 
biotechnology research, enables the investigation of 
how small molecules, known as ligands, interact with 
the active sites of target proteins and the potential 
impacts of these interactions on biological systems 
[37]. Molecular docking analyses evaluate ligand-
protein interactions in terms of binding energies, 
with the lowest docking score indicating the highest 
binding affinity [38]. The composition of the extract 
was determined based on previously published data 
[39–41]. The best binding pose was obtained by 
docking cirsimaritin, daidzein, kaempferol, morin and 
myricetin into the active site of acetylcholinesterase 
(PDB: 4M0E) receptor. Docking score values were 
calculated as -10.0, -10.3, -9.9, -9.8 and -9.8 kcal/
mol, respectively.

Chemical interactions between molecules and 
proteins typically involve conventional hydrogen 
bonds, pi-pi-shaped bonds, pi-alkyl bonds, pi-
anion bonds, carbon-hydrogen bonds, pi-pi stacked 
bonds, and pi-sulfur bonds. The 2D-3D structures of 
hydrogen bonds, Pi-pi interaction, ionic interaction, 
cation-pi interaction and hydrophobic interactions 
are shown in Figure 1. 4M0E protein formed 1 
hydrogen bond with Cirsimaritin, 3 with Daidzein, 
2 with Kaempferol, 2 with Morin and 3 with 
Myricetin. These bonds formed are Phe287, Ser822, 
Tyr866, Tyr870, Phe287, Tyr329, Phe824, Arg825, 
Tyr1030, Arg 1061 and Ala 1053, respectively. All 
other interactions are given in Figure 1. Hydrogen 
bonds provide specific and directional interactions 
between the ligand and the protein. This facilitates 
the localization of the ligand to the correct binding 
site (active site, binding pocket, etc.) on the protein. 
The aromatic rings of the ligand can contribute to 
binding stability by forming π-π interactions with 
aromatic amino acids in the protein. Specific binding 
is critical for accuracy in biological processes. 
The colored spirals in the protein represent α-helix 
regions. These regions often provide structural 
stability and can be important in ligand binding [42].

Several compounds, including cirsimaritin, daidzein, 
kaempferol, morin, and myricetin, demonstrated 
inhibitory effects on various enzymes such as 
CYP1A2, CYP2C9, CYP2D6, CYP2C19, and 
CYP3A4. The BOILED-Egg graph, a predictive 
model based on molecular lipophilicity and 
polarity, was utilized to assess the likelihood of 
gastrointestinal absorption and blood-brain barrier 
(BBB) penetration. This graph is divided into three 
distinct areas. As illustrated in Figure 2, the white 
section of the BOILED-Egg graph (albumin) signifies 
molecules with high potential for gastrointestinal 
(GI) absorption, while the yellow area represents 
possible BBB permeability. Molecules with low 
GI absorption and minimal brain penetration 
are depicted in the gray region. The presence of 
cirsimaritin, kaempferol, and morin in the white 
area suggests a high likelihood of GI absorption, 
indicating that these compounds may have increased 
bioavailability when taken orally.
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Figure 1. The 2D and 3D binding mode of Cirsimaritin, Daidzein, Kaempferol, Morin and Myricetin ligands with AChE 
(4M0E)
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ADME calculations are performed for the use of 
molecules as drugs in human metabolism. According 
to chemical parameters such as molar masses of 
molecules, dipole moment of molecules, hydrogen 
bonds given and taken by molecules and biological 
parameters such as absorption of molecules through 
intestinal and blood barriers, absorption through 
the skin or numerical values of oral absorption, it is 
seen that there is no harm in using them as drugs. 
The presence of different groups in cirsimaritin, 
daidzein, kaempferol, morin and myricetin suggests 
that their activity can be enhanced by changing their 
physicochemical properties and pharmacokinetic 
parameters to increase their bioavailability and 
metabolic stability as well as their binding affinity 
to receptors.

The ADME properties of selected flavonoids provide 
insights into their pharmacokinetic potential (Table 
1). Gastrointestinal (GI) absorption is high for all 
compounds except for myricetin, which exhibits 
lower absorption likely due to its high total polar 
surface area (TPSA = 151.59 Å). In terms of blood-
brain barrier (BBB) permeability, only daidzein 
shows the ability to penetrate the central nervous 
system, which can be attributed to its lower TPSA 

(70.67 Å) and moderate lipophilicity (iLOGP = 1.77, 
XLOGP3 = 2.47).

Regarding metabolism, all flavonoids inhibit 
CYP1A2 and CYP3A4, suggesting potential drug-
drug interactions. However, only cirsimaritin inhibits 
CYP2C9, which is involved in the metabolism 
of several anti-inflammatory drugs. Furthermore, 
all flavonoids except myricetin inhibit CYP2D6, 
which is responsible for metabolizing numerous 
psychoactive drugs.

Lipophilicity indices (iLOGP, XLOGP3, and 
WLOGP) suggest that cirsimaritin is the most 
lipophilic compound, while myricetin is the 
least. This is consistent with their respective skin 
permeation coefficients (Log Kp), where cirsimaritin 
exhibits the highest permeability (-5.86 cm/s) and 
myricetin the lowest (-7.40 cm/s). These results 
indicate that cirsimaritin might be better suited for 
transdermal delivery systems.

All compounds comply with Lipinski’s rule of 
five, indicating good oral bioavailability. However, 
myricetin does not satisfy Veber, Egan, or 
Muegge rules, which may imply limitations in its 
bioavailability and drug-likeness.

M
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in

Figure 1. The 2D and 3D binding mode of Cirsimaritin, Daidzein, Kaempferol, Morin and Myricetin ligands with AChE 
(4M0E) (Continued)
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Figure 2. BOILED-Egg chart
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3.3. Acetylcholinesterase (AChE) Inhibition 
Activity

Acetylcholinesterase is an enzyme found in nerve 
synapses. Its primary function is to break down the 
neurotransmitter acetylcholine [43]. In the present 
study, the acetone-based green algae (Enteromorpha 

linza) extract obtained showed the highest AChE 
inhibition with an IC50 value equal to 0.0379 mg/
mL (Figure 3). The hexane extract showed inhibition 
close to the acetone extract and had an IC50 value 
of 0.0414 mg/mL (Figure 4). Methanol-based extract 
had the lowest inhibition value and IC50 value was 
calculated as 0.997 mg/mL (Figure 5). 

Table 1. Physicochemical and ADME properties of cirsimaritin, daidzein, kaempferol, morin, and myricetin
Cirsimaritin Daidzein Kaempferol Morin Myricetin

Molecular weight 314.29 g/mol 254.24 g/mol 286.24 g/mol 302.24 g/mol 318.24 g/mol
Num. H-bond acceptors 6 4 6 7 8
TPSA 89.13 Å 70.67 Å 111.13 Å 131.36 Å 151.59 Å
iLOGP 2.56 1.77 1.70 1.47 1.08
(XLOGP3) 3.32 2.47 1.90 1.54 1.18
WLOGP 2.89 2.87 2.28 1.99 1.69
MLOGP 0.47 1.08 -0.03 -0.56 -1.08
SILICOS-IT 3.07 3.02 2.03 1.54 1.06
ESOL -4.20 -3.53 -3.31 -3.16 -3.01
GI absorption High High High High Low
BBB permeant No Yes No No No
CYP1A2 inhibitor Yes Yes Yes Yes Yes
CYP2C19 inhibitor No No No No No
CYP2C9 inhibitor Yes No No No No
CYP2D6 inhibitor Yes Yes Yes Yes No
CYP3A4 inhibitor Yes Yes Yes Yes Yes
Log Kp (skin permeation) -5.86 cm/s -6.10 cm/s -6.70 cm/s -7.05 cm/s -7.40 cm/s
Lipinski Yes Yes Yes Yes Yes
Ghose Yes Yes Yes Yes Yes
Veber Yes Yes Yes Yes No
Egan Yes Yes Yes Yes No
Muegge Yes Yes Yes Yes No
Bioavailability Score 0.55 0.55 0.55 0.55 0.55

Figure 3. Effect of acetone-based extract (E-A) 
concentration on the activity of the AChE

Figure 4. Effect of hexane-based extract (E-H) 
concentration on the activity of the AChE
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3.4. Antioxidant Test

Studying the antioxidant properties of natural 
substances is an important first step in evaluating 
potential new therapeutic drugs and understanding 
their various functions in different diseases [44]. 
Table 2 summarizes the radical scavenging capacities 
of green algae extracts. It was found that the algae 
extracts showed variable radical scavenging abilities 
on DPPH and ABTS. The DPPH radical scavenging 
capacity of extracts with 100 µg/mL concentration 
showed the highest antioxidant property with 17.48 
% for acetone extract. The hexane and methanol 
extracts showed similar radical scavenging capacity 
(11.89 and 11.48 %, respectively). When the extracts 
with 5 µg/mL concentration were evaluated in 
terms of ABTS radical scavenging capacity, acetone 
extract showed the highest antioxidant capacity with 
83.58 % radical scavenging. Then methanol extract 
showed 78.38 % and hexane extract showed 25.78 % 
ABTS radical scavenging capacity. 

In a previous study, it was reported that the extracts 
obtained using different solvents such as acetone, 
hexane and methanol showed different DPPH and 

ABTS radical scavenging activities, as in our study 
[45]. DPPH and ABTS radical scavenging capacities 
were evaluated by calculating IC50 (μg/mL) values. 
The highest radical scavenging for DPPH was 
achieved by methanol: 35.1 ± 0.27, acetone: 38.3 ± 
0.58, hexane: 66.0 ± 3.81. The highest radical removal 
for ABTS was methanol: 43.2 ± 0.24, acetone: 43.4 
± 0.39, hexane: 91.4 ± 0.39, respectively. Unlike our 
study, the highest radical scavenging capacity was 
found in methanol extract. The differences between 
the antioxidant activities of the extracts may be due 
to differences in the composition or amounts of 
antioxidant components in the extracts.

4. CONCLUSION

The present study determined that green algae 
extract exhibited significant biological activities 
such as anti-acetylcholinesterase and antioxidant 
properties. In particular, acetone (IC50: 0.0379 
mg/mL) and hexane (IC50: 0.0414 mg/mL) based 
extracts were determined to have inhibitory potential 
on acetylcholinesterase enzyme. Molecular docking 
analyses supported these findings by showing 
interactions between bioactive compounds and 
AChE. Furthermore, ADME evaluations revealed 
that the identified bioactive compounds exhibited 
promising pharmacokinetic properties, enhancing 
their potential for drug development. Among the 
selected flavonoids, daidzein appears to have the 
best central nervous system accessibility, while 
cirsimaritin demonstrates the highest permeability 
and lipophilicity. The strong CYP enzyme inhibition 
across all compounds suggests that these flavonoids 
could interact with other drugs metabolized by 
these pathways. Further experimental studies are 
required to validate these predictions and explore 
their pharmacological potential. As a result of DPPH 
and ABTS radical scavenging analyses, acetone 
extract was determined to have higher antioxidant 
capacity (DPPH: 17.48%, ABTS: 83.58%) than 
hexane and methanol extracts. Overall, the obtained 
results indicate that green algae extract can be used 
for human benefit due to its promising biological 
activities.

Figure 5. Effect of methanol-based extract (E-M) 
concentration on the activity of the AChE

Table 2. DPPH and ABTS free radical-scavenging activity 
(inhibition %) of extracts
Extracts DPPH ABTS
Aceton Extract (E-A) 17.48 83.58
Hexane Extract (H-A) 11.89 25.78
Methanol Extract (M-A) 11.48 78.38
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