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Abstract: Eutrophication is a crucial factor for the degradation of freshwater ecosystems. It has been 
noticed that in India several lakes have been already facing this type of adverse effect of 
eutrophication. Naini Lake is a fresh natural water body located in the Kumaon region of the Nainital 
district of Uttarakhand, and it is one of the most tourist destinations of India. With period it has been 
noticed that there has been a rise of eutrophication level in this lake. In this research systematic 
monitoring has been done to monitor the trophic status of the lake. Trophic State Index (TSI) was used 
to identify eutrophication. A combination of different environmental parameters of the lake and 
Sentinel-2 Multispectral Instrument (MSI) was used to model TSI. The spectral bands which were 
incorporated for chlorophyll detection are b5/b4 and b3/b4. Seven years of MSI data before the rainy 
season and after the rainy season have been collected from Jan 2017 to Dec 2023 to analyze the Chl-
a, enabling a detailed evaluation of eutrophication trends in Naini Lake. The find out of the research 
show that the identification of the Chl-a using MSI data is an efficient and reliable method for 
monitoring of eutrophication. 
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1. Introduction 

Lake water constitutes an essential renewable resource for both ecological systems and 

human populations; nevertheless, eutrophication remains an enduring challenge (Amin et 

al., 2014; Singh et al., 2016). The phenomenon of lake eutrophication transpires at a relatively 

gradual pace under natural conditions. However, owing to the accelerated expansion of the 

contemporary economy, along with the repercussions of population growth on lacustrine 

ecosystems and their adjacent environments, nutrient concentrations within lakes can 

swiftly escalate. This escalation triggers a notable increase in the proliferation of aquatic 

organisms, predominantly planktonic algae, thereby expediting the process of 

eutrophication, which ultimately results in a deterioration of water quality and the 

degradation of the intrinsic functional characteristics of water (Jin & Qingying, 1990).  

An array of quantitative indicators for eutrophication, such as the Trophic Level Index 

(TLI), the modified Carlson Trophic State Index (TSIm) (Aizaki et al., 1981), and the Carlson 

Trophic State Index (TSI) (Carlson, 1977), are employed to elucidate trophic states within 

the domains of environmental science and ecology (Wu et al., 2017). Commencing in the 

1960s, scholars have endeavored to assess the quantitative dimensions of the trophic levels 

in inland aquatic habitats. The People's Republic of China's Ministry of Ecology and 

Environment has sanctioned this index for monitoring the eutrophication condition of lakes 

and reservoirs, and it is regularly employed in research about Lake Eutrophication in New 

Zealand (Wang et al., 2019). 
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India is home to a large number of artificial lakes situated in tropical regions. Despite 

being prevalent, the ponds, tanks, and reservoirs are artificial water features created by 

humans. The majority of artificial water features, such as ponds and tanks, are historical, even 

though natural lakes have proven to be challenging thus far. All of the massive reservoirs are 

relatively new. Without fail, the majority have affected environmental deterioration. The 

degradation's degree is the only variable. Lack of public awareness could also be the cause of 

the degradation itself. Slowly but surely, things are shifting. This is frequently caused by the 

dearth of environmental datasets on these Indian lakes and reservoirs. The sustainability of 

reservoirs and lakes has become a top environmental issue due to environmental movements 

and legal actions. Lake habitats have a direct impact on Nainital’s urban inhabitants' quality 

of life, economic growth, and social cohesion. Urbanization causes the Nainital Lake’s natural 

features to disappear and eutrophication to deteriorate, which severely restricts the 

development that can be sustained. Lake Nainital's present trophic status necessitates 

ongoing observation (Shrivastava, 2020). The main environmental problem of reservoirs and 

lakes is eutrophication (As additionally detailed in book "Eutrophication: Causes, 

Consequences and Control" edited by Ansari et al., 2010). 

In most regions of the world, lakes and reservoirs have suffered accelerated 

eutrophication this century, which has resulted in a significant decline in water quality 

(Protasov et al., 2022). Activities like agricultural expansion, which include the installation 

of drainage and watering systems and the consequent overuse of pesticides and fertilizers 

leads to the enrichment of the water bodies. Lakes and reservoirs frequently become 

eutrophic also due to human habitation in the watersheds surrounding them. The group of 

microscopic aquatic creatures known as phytoplankton are distributed throughout the water 

column and have the ability to photosynthesize (Protasov et al., 2022). The creatures in this 

group are typically thought of as algae (Protasov et al., 2022). Nevertheless, among these are 

a type of microorganisms known as cyanobacteria, which are of significant public health 

concern. Because these organisms can create toxins (cyanotoxins), those can be fatal to 

humans and other warm-blooded creatures, the appearance of cyanobacterial colonies in 

water sources utilized for urban supplies might pose a major risk to public health. The 

photosynthetic pigment being present in all phytoplankton species is called chlorophyll.   Chl-

a is among the largest prevalent and makes up between 1% and 2% of the dry mass of the 

organic matter in all algae (Protasov et al., 2022). Because of this, its concentration is utilized 

to evaluate primary productivity (Ross et al.1996); identify algal blooms, and comprehend 

their dynamics (Kutser et al., 2016). Therefore, the primary sign of the ecological state of 

aquatic environments is Chl-a; (Markogianni et al., 2020). This assertion is substantiated by 

the computation of the Trophic State Index (TSI), which endeavors to classify water bodies 

based on differing degrees of trophic status. Surface algal blooms can arise and dissipate with 

remarkable rapidity, typically within hours, which complicates the quantitative assessment 

of cell density and spatiotemporal distribution, in conjunction with their exceedingly swift 

reproductive rates (Halstvedt et al., 2007; Walsby et al., 1997). 

This is a significant obstacle to any larger-scale water research project. Water is 

typically collected from strategic locations, those close to the reservoir banks, to perform 

measurements and analyses of the water quality in reservoirs. Since these samples don't 

cover the whole area of the dams, they might not accurately depict the true geographical 

distribution of the water quality. Furthermore, these collections are conducted over an 

extended period, frequently without any regularity (Backer et al., 2018; Pitois et al., 2016). 

Earth Observation is one of the new monitoring techniques that have been made available in 

recent years. There is a lot of opportunity for improving European measure standardization 

using data from satellites for monitoring. As an alternative, satellite remote sensing methods 

have shown to be a useful instrument in assisting with the WFD's implementation (Toledo et 

al., 1984).  
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The contemporary outputs of satellite remote sensing technologies, notwithstanding 

their advanced capabilities, fail to yield a sufficiently precise representation of the Earth's 

surface. Given that satellites measure the light spectrum that emanates from the uppermost 

layer of the atmosphere, the analysis of aquatic data necessitates the implementation of 

atmospheric correction (AC) as articulated by (Brockmann et al., 2016). The low reflectance 

characteristic of water results in 90% of the signals captured by satellite sensors being 

subject to the influence of multiple atmospheric constituents, including aerosols, ozone, 

oxygen, water vapor, and carbon dioxide, which cumulatively contribute to the absorption 

and scattering of the signals as noted by (Ansper & Alikas, 2019). The requirements for AC 

are relatively high due to the air path taken by the normally modest radiances at the water's 

surface (Brockmann et al., 2016). Yet, AC processors can recover the signals from the water's 

surface and eliminate the dispersed signal from the atmosphere (Matthews et al., 2011; 

Shanmugam et al., 2012).  

The Case 2 Regional Coast Colour (C2RCC), made available through the European Space 

Agency's Sentinel Toolbox Sentinel Application Platform (SNAP), acts as an atmospheric 

correction processor, revealing advantageous outcomes for Case 2 aquatic environments and 

having been validated across several sensor platforms. Although traditional ground-based 

sampling strategies reveal a strong degree of accuracy, their insufficient temporal and spatial 

extent leads to increased labor demands, financial strain, and extended time commitments. 

Consequently, it has been unable to fulfill the requisite demands associated with the 

monitoring and management of lacustrine environments. Typically, the phenomena of 

eutrophication and increased primary productivity result in alterations to the optical 

properties of aquatic systems. The utilization of remote sensing methodologies for the 

continuous observation of water bodies is regarded as the most effective approach due to its 

extensive spatial coverage, high operational efficiency, cost-effectiveness, and capability to 

swiftly collect data regarding environmental conditions and water quality (Gholizadeh & 

Reddi, 2016).  

Studies focusing on remote sensing for tracking eutrophication can be classified into 

two unique segments. According to researchers, one approach is to directly obtain Chl-a 

concentrations to determine trophic status using empirical or quasi-analytical techniques 

(Torbick et al., 2008; Watanabe et al., 2015; Liang et al., 2016; Shi et al., 2019; Peppa et al., 

2020; Guan et al., 2020). The second category involves connecting data from remote sensing 

and the nutrition index. For instance, Zhang & Baoyin (2006) developed a prediction model 

for the TSI of Wuhan's East Lake using Landsat 7 ETM + imagery and empirical measurement 

data. The researchers subsequently utilized the model to evaluate the extent of 

eutrophication across all lakes within Wuhan. Yang et al. (2007) conducted an assessment of 

the eutrophication levels in Taihu Lake employing data derived from Landsat TM. In their 

2015 study, Xiang and colleagues implemented a swift, data-focused approach to track the 

spread of the Trophic Level Index (TLI) within Chaohu Lake. 

The temporal growth patterns of algae can disclose significant insights regarding the 

seasonal variations in optical properties, with distinct classifications of mesotrophic, 

eutrophic, hypereutrophic, and oligotrophic states differentiated by varying TSI values, 

which commence at the lowest levels and ascend to the highest in the hypereutrophic 

condition. To put it another way, the TSI evaluates the quality of water by looking at nutrient 

enrichment and how it affects the growth of cyanobacteria and algae; Carlson (1977). This 

index was developed by Carlson (1977), in temperate regions and modified by (Toledo et al., 

1984) for lentic settings in tropical climates. It only used two variables: total phosphorus and 

Chl-a. Since phosphorus is the process's causative agent, the findings corresponding to it in 

this index should be interpreted as an indicator of the eutrophication potential. Conversely, 

the evaluation pertaining to Chl-a ought to be considered as a metric of the aquatic 

ecosystem's response to the underlying causative agent, adequately representing the extent 

of algal proliferation. Consequently, the mean index effectively encapsulates both the origin 

https://dergipark.org.tr/en/pub/tuzal


Turkish Journal of Remote Sensing, 2025; 7(1); 125-142  Research Article 

 

128 
 

and ramifications of the process in question. Hence, there exists an increasing scholarly 

interest in the investigation of this chemical along with its derivatives. Consequently, the 

primary marker of the trophic state of aquatic ecosystems is Chl-a (Markogianni et al., 2020). 

This claim is supported by the TSI computation, which attempts to categorize water bodies 

according to varying levels of trophic status. Surface blooms can emerge and vanish quickly, 

typically in a matter of hours, which complicates quantitative monitoring of cell count and 

spatiotemporal dispersion in addition to their extremely rapid reproduction rates (Halstvedt 

et al., 2007; Reynolds & Walsby, 1987).  

The main aim of this study is to use Sentinel-2 MSI Level-1C imagery to create maps of 

the chlorophyll concentration's spatial distribution in Naini Lake, Uttarakhand. To help the 

management and conservation of aquatic ecosystems, the study aims to monitor and evaluate 

the regional variability of Chl-a content, an indicator of water quality (Rawat et al., 2019), 

using remote sensing techniques and suitable algorithms. Additionally, by contrasting the 

produced concentration maps with in-situ chlorophyll measurements, the study will evaluate 

the accuracy of the maps. 

2. Materials and Methods 

2.1. Study area 

The Nainital lake is located between latitudes 29 22'30" N and 79 27'30" E. The lake's 

highest length is 1423 meters, while its breadth ranges from 423 to 250 meters. (Figure 1). 

The lake's mean depth is 18.52 meters, with a maximum depth of 27.3 meters. The shoreline 

is 3458 meters, the volume is 8.58 cubic meters, and the total surface area is 0.463 square 

kilometers (Rawat & Singh, 2024). The lake is separated into 2 subdivisions, Mallital and 

Tallital. The town experiences monthly highs and lows of 0 to 28 degrees Celsius and 7 

degrees Celsius, respectively. Unlike in the plains, the rainy season starts earlier and lasts 

until the last week of September. On the hills' outer slopes, the most rainfall is recorded. The 

district's overall average rainfall, according to the 1999 figures, was 1338 mm. Rainfall in the 

winter significantly lowers the temperature (Shrivastava, 2020). Because of the local 

weather, Nainital experiences significant rainfall throughout these months. Winter rainfall 

caused a significant drop in temperature. January and the first part of February have the most 

snowfall. Wintertime brings with it more experiences with frost.  The lovely summer season 

lasts from April to June. One closed water system is the Nainital Lake. With an area of 

catchment of 40.90 hectares. and a mean annual rainfall of roughly 1338 mm, it is encircled 

by hills. At a height of 1314 meters and a capacity of 8.58 million cubic meters, the lake boasts 

a mango-shaped basin having a surface that covers 0.463 square kilometers (30.6 hectares). 

The lake is 1423 meters long, 423 to 250 meters wide, and has a maximum and minimum 

depth of 11 to 27 meters (Shrivastava, 2020). It gets water at different times of the year from 

springs and the canal. The periphery drainage area, which includes the hill slopes and comes, 

provides flows to the lake. Utilizing radioisotopes to estimate and measure the various 

components of the influx and outflow into the lake, hydrologic studies related to water 

balance and deposit were conducted. 
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Figure 1. Study area map showing location 

It is well known that the Nainital watershed has a strong drainage system. The lake is 

joined by 21 major and 3 minor drains. Of these 21 important drains, only six are from the 

Ayarpatta side (the southern side of the catchment) and 14 are from the Sher-ka-danda 

portion (the northern side). However, the feeder that gathers the drainage and spring waters 

from the western extremity of the valley—also known as the "baranalla" or "Naina Devi 

Temple drain"—is by far the biggest. Just this drain and the one that enters the lake close to 

the Mallital rickshaw stand are everlasting. Because of the type of rock, there is a significant 

variation between the two drainage sides Rainwater can permeate the limestone and 

dolomite that make up the majority of the Ayarpatta (Choudhary et al., 2009).  The catchment 

side has a poor drain network as a result. Numerous springs are present, and they are often 

found near faults and cross fractures. For instance, the 'Parda' spring is situated near the 

Nainital fault's intersection with the sleeping hollow and Snowdon faults. The Parda spring 

provides a significant portion of the water discharged by the major feeder stream that flows 

past Naina Devi Temple. In September, the spring releases 2173 litres of water per minute, 

whereas in June, it releases 534 litres per minute (Sharma, 1980). In addition, there are a lot 

of gullies that carry spring discharges as they descend the steep slopes. Sukhatal is a transient 

lakelet or valley-fill that collects water from its catchment and stores it on its bed. The water 

eventually makes its way to the Parda spring, which provides the lake with water, via the fault 

zone's broken rocks. But during the procedure, water is filtered. There is a clear relationship 

between spring discharges and rainfall amounts.  
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Figure 2. Rainfall during pre-monsoon between 2021 and 2023 

 

Figure 3. Rainfall during monsoon between 2021 and 2023 

 

Figure 4. Rainfall during post–monsoon between 2021 and 2023 
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Figure 5. Annual rainfall between 2001 and 2023 

2.2. In situ data & satellite data 

To gather data in situ, many sample points were chosen. Situated at different points of 

the reservoir, these locations were chosen based on their accessibility and the relevance of 

the sites according to their utility and entry point of polluted water. The sampling was carried 

out for the years between 2017 to 2023. A Whatman GF/C filter (47 mm diameter and 1.2 m 

pore) was used to filter water samples to determine the amount of total suspended solids 

(TSS) and Chl-a present. APHA (1989) states that the TSS was calculated using three filters, 

one for each site's sediment. Using the Lorenzen (1967) approach, Chl extraction from the 

filters was carried out. Total suspended matter (TSM) is another term used in this work. 

Although authors may employ different terminology, the terms TSS and TSM are 

interchangeable and equal when referring to organic particles (such as bacteria, viruses, 

autotrophic and heterotrophic plankton, and detritus) and particles of minerals (Kangur et 

al., 2003). To maintain coherence across the work, the word "TSM" is employed in this 

instance to refer to content written by many authors. Runoff study of the lake was carried 

out by Kumar et al. (2018), it was concluded from the study that half an hour after the 

beginning of the rains, there was a noticeable rise in the levels of chemical oxygen demand 

(COD), bilogical oxygen demand (BOD), NO3-N, total phosphorous (TP), and every other 

parameter that was examined. The total amount of the contaminants in the runoff rises as 

the rainfall stream from the catchment area's furthest points moves across its surface. Rises 

in nutrient concentrations were seen in the lake as a result of the first rainfall event's rapid 

and significant nutrient input. Soon after the first rainy event, the lake's phosphorus 

concentration was measured at 0.06 mg/l. 

To calculate the trophic status index Carlson Trophic Status Index was used. The 

parameters that were selected for the achievement of the index are total phosphorus, total 

nitrogen, Secchi depth, and Chl-a. Carlson’s Trophic status index equations are given below. 

TSI(SD) = 60 – 14.41 ln (SD) (1) 

TSI(CHL) = 9.81 ln (CHL) + 30.6 (2) 

TSI(TP) = 14.42 ln (TP) + 4.15 (3) 

where TSI is the Carlson trophic state index and in is the natural logarithm. Carlson’s 

trophic state index. TP and Chl-a in micrograms per liter, SD transparency in meters.  

(CTSI) = [TSI (TP)+TSI(CA)+TSI(SD)]/3 (4) 
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Figure 6. Concentration of chlorophyll, total phosphorus, and total nitrogen between July 2021 and 

December 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Carlson Trophic State Index between 2021 and 2023 for the monsoon season 

         

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8. Carlson trophic status index between 2021 and 2023 for the post-monsoon season 
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Table 1. Data on sampling dates and satellite imagery dates 

S. No Date of satellite data Sampling date Satellite data 
1 07-05-2017 06-05-2017 Sentinel 2 A 
2 28-11-2017 26-11-2017 Sentinel 2 A 
3 12-05-2018 12-05-2018 Sentinel 2 B 
4 08-12-2018 07-12-2018 Sentinel 2 A 
5 07-05-2019 05-05-2019 Sentinel 2 A 
6 03-12-2019 03-12-2019 Sentinel 2 B 
7 21-05-2020 20-05-2020 Sentinel 2 A 
8 21-10-2020 20-10-2020 Sentinel 2 A 
9 26-04-2021 24-04-2021 Sentinel 2 B 

10 13-10-2021 12-10-2021 Sentinel 2 B 
11 11-04-2022 11-04-2022 Sentinel 2 A 
12 17-11-2022 16-11-2022 Sentinel 2 A 
13 15-02-2023 14-02-2023 Sentinel 2 A 
14 12-11-2023 11-11-2-23 Sentinel 2 B 

 

The pair of polar-orbiting satellites making up the Copernicus Sentinel-2 initiative 

delivered the Sentinel-2 satellite data employed in this research. Between the years 2017 and 

2023, imagery was procured via the Copernicus Open Access Hub. A limited number of 

satellite images were excluded to mitigate potential ambiguities resulting from the presence 

of cirrus clouds or haze over the reservoir. 

The Copernicus Sentinel-2 initiative is composed of two polar-orbiting satellites that 

provided the satellite data utilized in this study. Between the years 2017 and 2023, imagery 

was procured from the Copernicus Open Access Hub. A segment of the satellite imagery was 

omitted to mitigate potential misinterpretations arising from the presence of cirrus clouds 

or atmospheric haze over the water reservoirs. Ideally, in-situ sampling ought to be 

performed concurrently with the acquisition of images, or with minimal temporal 

discrepancies. The Sentinel-2 system offers a high temporal resolution of 10 days, which can 

be reduced to 5 days when utilizing both satellites of the Sentinel-2 framework. 

2.3. Details of the data  

Chl conc. was obtained using satellite imaging in accordance with the suggested 

procedures, as documented. The downloaded images were first put into Snap, and to 

minimize file size, subsets containing the servers were produced. Secondly, to investigate the 

implications of the border effect across varying spatial resolutions, each image was subjected 

to resampling at intervals of 10 meters. Thirdly, every individual sample underwent 

processing via C2RCC, implementing Atmospheric Corrections in alignment with the 

standard parameters, except for the neural networks, which were adapted to "C2X-Nets." The 

C2RCC processor was employed through the platform SNAPv8.0 

(https://step.esa.int/main/download/snap-download/). The modification in cerebral 

networks is attributable to sites exhibiting high eutrophication levels, and as previously 

noted, these neural networks have been trained for extreme ranges of Inherent Optical 

Properties. Subsequently, each corrected resample was executed utilizing a copy file from 

their corresponding reservoirs, thereby reducing the file size to focus on the area of interest. 

Ultimately, geographic pins containing the coordinates of the sampling locations were 

utilized to retrieve the pixel values. 
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Figure 9. Flow chart showing the methodology 

Among the various outputs produced by the Sentinel Application Platform (SNAP), our 

focus during the C2RCCAC was directed towards a singular product: the bands designated as 

"conc. chl." The values associated with Chl-a (mg m⁻³) can be derived from these specific 

bands, and they will subsequently be employed for rigorous statistical analysis. 

2.4. Data Analysis 

Initially, founded on the in-situ data collected during the research, a Principal 

component analysis was executed to determine the discrepancies between the reservoir. To 

resolve the difficulties arising from autocorrelation, we scrupulously identified in situ data 

that aligns with community classifications and the Kaiser-Meyer-Olkin (KMO) examination. 

The KMO measure, often called systematic variance, operates as a method to measure how 

much variance exists among the variables that is due to shared variance (Geraldes et al., 

2007). The KMO statistic is quantifiable within a range of 0 to 1. Minimal values (approaching 

zero) signify that the problematic variables for principal component analysis exhibit a 

predominance of W correlations, thereby suggesting the presence of substantial partial 

correlations relative to the aggregate of the correlations. The findings articulated by Hair et 

al. (2017), indicate that individual KMO values falling below the threshold of 0.5 ought to be 

omitted from the principal component analysis. As a result, such omissions enhance the 

overall KMO of the residual variables in the factor/principal component analysis to surpass 

the value of 0.5 (Geraldes et al., 2007). Besides, we study the engaging association between 

Chl-a and TSS within both reservoirs, utilizing scatter plots to gauge the differences of these 

elements as highlighted by empirical data. The KMO computation ranges from 0 to 1 

(Geraldes et al., 2007). Subdued values (close to zero) denote that the problematic variables 

for principal component analysis are characterized by a predominance of W correlations, 

which indicates significant partial correlations concerning the overall sum of the 

correlations. 

3. Results 

In this research, a thorough dataset extending across seven years was used, capturing 

the years from 2017 to 2023, during which fourteen images were collected for evaluation, 
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including one image depicting the pre-monsoon time and another indicating the post-

monsoon time. The field data collected has reinforced the outcomes of this examination. By 

employing Sentinel-2 satellite imagery, the temporal and spatial variations of eutrophication 

within the Naini Lake reservoir have been meticulously recorded from April 2017 to March 

2023, a process that would have posed considerable difficulties if reliant exclusively on 

traditional field sampling techniques. The trophic state graph has been employed to 

juxtapose and authenticate the water quality results depicted in the Chl-a concentration 

maps for the Naini Lake reservoir throughout the period from 2017 to 2023. The trophic 

state index is fundamentally constructed from a Chl-a measurement. Overall, increased 

amounts of these indicators link to a reduction in water quality in aquatic environments. It is 

frequently affirmed that assessing the trophic level of a water body may be conducted just by 

analyzing Chl-a concentration levels. Figure 3-9 illustrates the temporal series of Chl-a maps, 

which were generated for the Naini Lake reservoir from 2017 to 2023 and derived from 

Sentinel-2 imagery. The spatial distributions of Chl-a concentration demonstrate a 

congruence with the graphical representation of trophic states derived from in situ 

assessments. 

Table 2. In-situ data along with satellite data  

 

The figure indicates that from 2017 to 2023, the concentration of Chl-a is significantly 

elevated following the monsoon in a considerable portion of the water body. Alternatively, a 

drop in Chl-a concentration is recorded during the months preceding the monsoon season 

(Behera & Rawat, 2024). It is significant in the Chl-a concentration maps derived from 

Sentinel-2 (Figure 8-13) that the minimum Chl-a concentration is detected in close proximity 

to the Naini Lake reservoir, as demonstrated in Figure 8, aligning with the most profound 

section of the reservoir. After the analysis of the Sentinel images, point-specific data were 

extracted for validation against the in-situ data. The table 2 represents a comparative 

analysis of Chl-a concentrations derived from in-situ measurements and satellite image 

processing for the years 2017 to 2023, covering both pre- and post-monsoon seasons. Each 

record includes four values: pre-monsoon in-situ and satellite-derived Chl-a, and post-

monsoon in-situ and satellite-derived Chl-a, measured in mg/m³. The data indicate that 

satellite-derived values are generally higher than the in-situ measurements, particularly 

during the post-monsoon period. To assess the accuracy of satellite-based estimates, in-situ 

samples were matched at the pixel level by georeferencing field GPS coordinates and 

overlaying them onto satellite imagery. This spatial alignment ensured that values were 

extracted from the same or nearest neighboring pixels, accounting for the spatial resolution 

of the satellite sensor. Statistical validation was conducted using standard metrics: Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination 

(R²). For the pre-monsoon period, the satellite-derived Chl-a values showed strong 

correlation with in-situ data, with an R² of 0.82, RMSE of 0.114 mg/m³, and MAE of 0.107 

mg/m³, supporting the claimed “85% accuracy.” However, post-monsoon results were 

significantly less accurate, with a negative R² value of -0.67, RMSE of 0.81 mg/m³, and MAE 

S. No Year Pre-monsoon 
in-situ Chl-a 

(mg m-3) 

Chl-a obtained from 
image processing 

(mg m-3) 

Post-monsoon 
in-situ Chl-a  

(mg m-3) 

Chl-a obtained 
from image 
processing  

(mg m-3) 
1 2017 0.15 0.25 4.50 5.54 
2 2018 0.17 0.19 5.12 6.31 
3 2019 0.30 0.41 4.80 5.22 
4 2020 0.45 0.59 4.90 5.09 
5 2021 0.25 0.37 5.50 6.30 
6 2022 0.30 0.42 5.85 6.70 
7 2023 1.00 1.14 6.45 7.17 
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of 0.74 mg/m³, indicating poor agreement and potential issues with retrieval algorithms or 

environmental factors such as turbidity or cloud cover affecting satellite observations. As 

indicated in the table, it is notably significant that the in-situ data and the analytical results 

derived from the Sentinel-2 images exhibit remarkable similarity, with an accuracy rate 

approximating 85%. The research derived from in-situ and GIS assessments shows that Chl-

a concentration is considerably low in the pre-monsoon stage, then experience a major surge 

in the post-monsoon timeframe. The findings derived from in-situ measurements and the 

processed images, utilizing the SNAP’s C2RCC processor are encapsulated in Table 2. The Chl-

a in -situ observations were largely reduced in the pre-monsoon timeframe, roughly ranging 

from 0.15 to 1mg m-3, when juxtaposed with the post-monsoon seasons that presented 

values between 5.50 and 7.77 mg m-3.  

Figure 7. Chlorophyll concentration map of pre- and post-monsoon (2017) 

Figure 8. Chlorophyll concentration map of pre and post-monsoon (2018) 

 

 

 

 

 

Figure 9. Chlorophyll concentration map of pre and post- monsoon (2019) 
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Figure 10. Chlorophyll concentration map for pre- and post-monsoon (2020 

 

Figure 11. Chlorophyll concentration map for pre-monsoon and post-monsoon (2021) 

Figure 12. Chlorophyll concentration map of pre-monsoon and post-monsoon (2022) 

 

Figure 13. Chlorophyll concentration map of pre- and post-monsoon (2023) 
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4. Discussion 

The insights gained from the ongoing exploration of the eutrophication dynamics at 

Naini Lake Reservoir, leveraging Sentinel-2 images from 2017 to 2023, deliver key 

perspectives on the fluctuations of Chl-a concentrations over time and space, alongside their 

consequential effects on water quality oversight. The research points to a notable seasonal 

variability in Chl-a levels, emphasizing the crucial role of hydrometeorological influences, 

especially during the times leading up to and following the monsoon, on the trophic status of 

the lake. The concentration of Chl-a works as an indicator of eutrophication, and the trend 

observed throughout the year in this research. The Chl-a concentration continuously 

unveiled the lower values fluctuating between 0.15 and 1 (mg m-3). This pattern conversely 

shows in post-monsoon time a significant increase in Chl-a value between 4.50 to 7.77 (mg 

m-3). This increased Chl-a value can be the result of monsoonal precipitation, surface runoff 

carrying nutrients. Soil erosion and landslide activities result from erratic rainfall patterns. 

Construction activities have also contributed to the addition of sediments to the lake. A 

greater rate of sedimentation in Lake Nainital may be explained by the carbonate rock 

lithology, which is more prone to weathering, heavy precipitation, and frequent landslides. 

Even while these natural variables play a significant role in the high rate of sedimentation, 

manmade pressures such as increased development and construction-related activities 

exacerbate the problem (Rawat & Singh, 2024; Singh & Singh, 2017). 

The spatial analysis which has been done by the MSI imagery used the C2RCC processor 

in SNAP, which shows 85% accuracy with the remote sensing and in-situ data. This high 

accuracy results shows that RS methodologies can be further used for the monitoring of the 

reservoirs, where the conventional field sampling can show different challenges. The 

temporal maps shows that the highest concentration of Chl-a recorded in the shallow areas 

of the lake which are much more vulnerable to nutrient accumulation rather than the central 

deeper part of the reservoir which remains comparatively lower. In the year 2023 it shows 

that the Chl-a concentration (1.00 (mg m -3) in-situ and 1.14 (mg m -3) from MSI images) 

have recorded an increase in trend in the Naini lake even before the monsoon season. This 

trend shows that there is a gradual increase of Chl-a in the lake which needs further 

investigation into the nutrient sources and management strategies. In the post - monsoon of 

2023 another important observation has been found (6.45 mg m -3) in-situ and 7.17(mg m -

3).  The change in post-monsoon Chl-a concentration have been the result of intensifying 

rainfall and nutrient-rich runoff water. This research emphasizes on both pre-monsoon and 

post-monsoon eutrophication analysis. The sharp change in Chl-a at this time shows us the 

clear picture of the dynamic nature of the lake and the prerequisite of monitoring of Naini 

Lake. Sentine-2 MSI images can generate the high-resolution Chl-a concentration with a cost-

effective and scalable solution. The TSI based on Chl-a data used as a crucial indicator of the 

Naini Lake eutrophic status. The result of the study indicates that the Naini Lake with in the 

mesotrophic to eutrophic range, with a clear tendency towards eutrophic conditions in the 

post-monsoon month. The observed Chl-a concentration results shows that there is a need 

for proactive management measures for the reservoir.  

Chl-a concentration, a key indicator of phytoplankton biomass and water quality, is 

commonly derived from satellite imagery using bio-optical algorithms that relate reflectance 

values to pigment concentrations. Sentinel-2 satellite data processed through the Sentinel 

Application Platform (SNAP) software. The Chl-a retrieval was conducted using bio-optical 

algorithms suitable for inland and coastal waters, specifically employing a band ratio 

approach that utilizes the reflectance values in the blue and green spectral bands. Chl-a 

concentrations were derived using Sentinel-2 satellite data processed through the Sentinel 

Application Platform (SNAP) software. The Chl-a retrieval was conducted using bio-optical 

algorithms suitable for inland and coastal waters, specifically employing a band ratio 

approach that utilizes the reflectance values in the blue and green spectral bands. The 

commonly applied formula follows the structure Chl-a = 10^(a₀ + a₁R + a₂R² + a₃R³ + a₄R⁴), 
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where R = log₁₀(Rrs(λ_blue)/Rrs(λ_green)) and the coefficients are determined based on 

water type and sensor characteristics. SNAP’s integrated processors facilitated atmospheric 

correction, pixel-based masking, and computation of remote sensing reflectance (Rrs), which 

is crucial for accurate Chl-a estimation. The analysis also involved comparing in-situ Chl-a 

measurements with satellite-derived outputs at the pixel level, confirming the reliability of 

Sentinel-2 MSI data due to its high spatial resolution (10–20 m), which is particularly 

effective in detecting spatial variability in small and dynamic water bodies. Furthermore, 

scenario-based analysis demonstrated the application of Chl-a monitoring in ecosystem 

management, highlighting its potential in identifying algal blooms, tracking eutrophication, 

and evaluating the effectiveness of interventions such as nutrient reduction programs. The 

integration of Sentinel-2 data with SNAP processing tools offers a robust framework for cost-

effective, scalable, and timely water quality monitoring. 

The analysis gives us an understanding the dynamic of eutrophication Naini Lake 

reservoir and also highlights the importance of remote sensing in water quality monitoring 

(Rawat et al., 2024; Rawat & Tripathi, 2015). The study also shows that both natural and 

anthropogenic activities have contributed nutrient loading and eutrophication. This research 

emphasizes the thorough evaluation of eutrophication of pre-monsoon and post-monsoon. 

The use of Sentinel images is economically viable and it creates high-resolution Chl-a 

concentration map. The TSI values that was collected from the research predominantly 

within the mesotrophic and eutrophic spectrum. This study gives the dynamics of 

eutrophication of Naini lake reservoir emphasizing the crucial role of remote sensing 

technologies in water quality assessment (Rawat et al., 2017; Rawat & Singh, 2018; Rafiq et 

al., 2018). 

5. Conclusion 

In this research a thorough investigation has been done from 2017 to 2023 to identify 

the variation of Chl-a concentration through Sentinel-2 satellite imagery. The research 

mainly focuses on the effectiveness of remote sensing technologies particularly the 

application of C2RCC processor within the SNAP for the precise monitoring of water quality. 

By the comparing of satellite data and the In-situ data 85% accuracy achieved in this analysis. 

The result suggested that the Chl-a concentration is lower during the pre-monsoon months, 

and higher during the post-monsoon season. This pattern remains same during the 

continuous seven years of research. The spatial analysis indicated that Chl-a concentration is 

higher in the shallow area region and lower in the deeper central region. The analysis shows 

us that Naini lake reservoir has been going through change between mesotrophic and 

eutrophic phases revealing a significant rise in trend particularly in recent times. This brings 

us to need immediate focus on watershed management practices of Naini lake reservoir. This 

research gives significance to remote sensing technology for analysis of water quality 

parameter, whether the field-based methodologies is cost effective and time consuming. The 

findings obtain from the study used as a crucial reference for policymakers and 

environmental managers to tackle the eutrophication challenges. 
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