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Abstract  

In this paper, a three parameter model which can be used in modeling survival data, reliability problems and 

fatigue life studies has been studied. We derived explicit expressions for some of its statistical and 

mathematical identifying properties such as ordinary moments, generating function, incomplete moments 

and order statistics. The maximum likelihood estimations of model parameters were also obtained -being 

based on complete sample. We assessed the performance of the maximum likelihood estimators in terms of 

standard deviations, bias and mean squared errors by means of a simulation study. The usefulness of the 

model was illustrated by using a real data set. The proposed distribution provides better fits than some well-

known generalized distributions under the same criteria of comparison.  

Keywords: Topp-Leone distribution; Nadarajah-Haghighi distribution; maximum likelihood estimation; 

extended distributions.  

Öz 

Topp-Leone Nadarajah Haghighi Dağılımı 

Bu çalışmada yaşam verileri, güvenirlik problemleri ve yorulma ömrü çalışmalarında kullanılabilecek üç 

parametreli bir model üzerinde çalışılmıştır. Bu modele ait momentler, üreten fonksiyonlar, tamamlanmamış 

momentler ve sıra istatistikleri gibi istatistiksel ve matematiksel özellikler türetilmiştir. Tam örneklem 

durumuna dayalı olarak, model parametrelerinin sıradan en çok olabilirlik tahminleri elde edilmiştir. Bir 

simülasyon çalışması ile model parametrelerinin en çok olabilirlik tahmin edicilerinin performansları, 

standart sapma, yan ve hata kareler ortalamaları ile değerlendirilmiştir. Modelin kullanışlılığı, bir gerçek 

veri setine dayalı olarak gösterilmiştir. Önerilen dağılım bazı karşılaştırma kriterleri altında, literatürde iyi 

iyi bilinen birtakım dağılımlardan daha iyi uyum sağlamıştır.   

Anahtar sözcükler: Topp-Leone dağılımı; Nadarajah-Haghighi dağılımı; en çok olabilirlik tahmini; 

genişletilmiş dağılımlar. 
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1. Introduction 

Recently, a new generalization of the exponential distribution, named Nadarajah-Haghighi (NH) 

distribution, as an alternative distribution to the gamma, Weibull and exponentiated-exponential 

distributions was proposed by [11]. The cumulative distribution function (cdf) of the NH distribution is 

given by 

    1 1
, , 1 , 0,

x
G x e x




 
 

                                                       (1) 

and the corresponding probability density function (pdf) is 

      1 1 1
, , 1 , 0,

x
g x x e x

 
   

  
                                                      (2) 

where the parameter 0   controls the shape of the distribution and 0   is the scale parameter. [11] 

pointed out that the density function (2) has the attractive feature of always having the zero mode. They 

also showed that larger values of   in (2) will lead to faster decay of the upper tail. 

We shall refer to the new distribution using (1) and (2) as the Topp Leone Nadarajah-Haghighi (TLNH) 

model using the Topp-Leone generated (TLG) family of distributions which was introduced by [14]. 

The pdf and cdf of the TLG family of distributions are given by 

            
11

; , 2 ; ; 1 ; 2 ;f x f x g x G x G x G x


 


          ξ ξ ξ ξ ξ                                     (3) 

and  

            ; , ; 2 ;F x F x G x G x


      ξ ξ ξ ,                                                                                       (4) 

where 0   is the shape parameter and ξ  is the parameter vector of the baseline distribution G. 

By inserting (1) and (2) into (3) and (4), we can write the pdf and cdf of the TLNH model as    

      
   

1
2 1 1 2 1 11

; , , 2 1 1
x x

f x f x x e e
  

 
    


              

    
 

                                    (5) 

and 

    
 2 1 1

; , , 1
x

F x F x e
 



  
     

   
 

,                                                                           (6) 

respectively, and where 0, , 0x    .  

 
The model in (5) and (6) is a special case of the exponentiated generalized Nadarajah-Haghighi 

distribution in [15]. Below we provide some plots of the pdf and hazard rate function (hrf), defined 

by
 

 1

f x

F x
 of the TLNH model, to show its flexibility. Figure 1(a) displays some density plots of the TLNH 
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for some parameter values. Plots of the hrf of the TLNH model for selected parameter values are given in 

Figure 1(b). The cdf in (6) can be expressed as 

       , ,0 k kk
F x t H x  




 ,                                                                                                                  (7) 

where  1 2
k k

kt
k




  
   

 
 and      1 1

, , ; , 1
k

k x

kH x G x e
 

 

    


  


         

is the cdf of the 

exponentiated Nadarajah-Haghighi (ENH) distribution in [8] with power parameter k  . 

 
Figure 1. Plots of the TLNH pdf and hrf for some parameter values.  

 

The corresponding TLNH density function is obtained by differentiating (7), to get 

       , ,0 k kk
f x t h x  




 ,                                                                                                                  (8) 

where          
1

1 1 1 1 1

, , 1 1
k

x x

kh x k x e e
 

  

     
 

    


    
  

 is the density of ENH density with 

power parameter k  . Thus, several of its structural properties can be obtained from Equation (8) and 

properties of the ENH distribution.  

 
The new additional positive shape parameter   is sought to provide a more flexible distribution, and this 

is clearly shown in Figure 1. Several extensions of the NH model can be cited -such as the ENH or 

Lehmann Type 1-NH model by [1] and [8], transmuted Nadarajah-Haghighi model by [2],  gamma 

Nadarajah-Haghighi model by [3] and [13], Kumaraswamy-Nadarajah-Haghighi model by [16], modified 

Nadarajah-Haghighi model by [6], exponentiated generalized Nadarajah-Haghighi model by [15], 

Marshall-Olkin Nadarajah-Haghighi model by [9] and beta Nadarajah-Haghighi model by [5] among 

others. 

 

The rest of the paper can be outlined as follows. In Section 2, we derive some mathematical properties of 

the new distribution. In Section 3, the model parameter is estimated by using maximum likelihood 

method. We assess the performance of the maximum likelihood estimators in terms of standard 

deviations, biases and mean squared errors by means of a simulation study as well as a real data 

application, which is given at the end of Section 3 to illustrate the flexibility of the new model. Some 

concluding remarks are presented in Section 4. 

2.  Statistical properties  

Some statistical properties of the mentioned distribution are obtained in this Section.  
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2.1. Moments  

The 
thr  ordinary moment of X is given by 

     , ,0 0
( ) ,r r

r k kk
E X t x h x dx  




                                                                                            

Then we obtain 

       ,
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E X j
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 

 
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                                                                                 (9) 

where    
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, ,

1
1

1
i

r j ik r j

k j i k
r

kk
t e

jj 

 




  
  

   
  

, and   1, a w

z
a z w e dw


     is the incomplete 

gamma function. For 0k    integer, the moments in (8) will be reduced to 

       ,

, ,0 0 0
1, 1 .

k r k r i
r k j ik j i

j
 


 

  
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                                                                                            (10) 

When r=1 in (9) and (10), we obtain the mean of X. The skewness and kurtosis measures can be 

calculated from the ordinary moments using well-known relationships. The rth central moment of X, say 

r , is 

         1 10
1 .

rr h r h

r rh

r
E X

h
   





 
       

 
                                                                            

2.2. Generating function and incomplete moments  

The moment generating function (mgf),    tX

XM t E e , of X can be derived from (9) or (10) as 

!0 0
( ) .

rt
X k rrk r

M t t 
 

 
   The main applications of the first incomplete moment refer to the mean 

deviations and the functions of Bonferroni and Lorenz curves. These curves are very useful in economics, 

reliability studies, demography, insurance and medicine. The 
ths  incomplete moment, say ( )sc t , of X can 

be expressed from(9) as           ,

, , , ,

0 , 0 0

( ) 1, 1 1 .

t s
k ss i

s k k k j i

k k j i

c t t x h x dx j t


   
 

 




  

               

The mean deviations about the arithmetic mean,  1 1E X   , and about the median, 

 2 E X M   , of X are given by    1 1 1 1 12 2F c        and  2 1 12c M   , respectively, where 

M is the median,  1F  is calculated from (6), and  1c t is the first incomplete moment given by the last 

equation with s=1.    

2.3. Moments of the residual life 



H. M. Yousof, M. Ç. Korkmaz / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2017, 2, 119-128 

 
123 

 The 
thn  moment of residual life,   ( ) | , 1,2,n

nm t E X t X t n       , uniquely determines ( ).F x  

The thn  moment of residual life of X is given by    1
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k j i k k j it
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 
 

  and 
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0

n n r

k k r

n
t t t

r





 
  

 
 . The mean residual life function or the life expectation at age t can be defined 

by  1m t , which represents the expected additional life length for a unit which is alive at age t.  

 

 

2.4. Moments of the reversed residual life 

The thn  moment of residual life,   ( ) | , 0, 1,2,n

nM t E t X X t t n        , uniquely determines 

( ).F x  The 
thn  moment of reversed residual life of X is given by    1

( )
( ).

n

n F t t
M t t x dF x



   

Therefore,      
**

,1
, ,( )
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( ) 1, 1 1 ,
n

k s i
n k j iF t
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M t j t
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      where 
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, , , ,
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 
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 **

0
1

n r n r

k k r

n
t t t

r





 
   

 
 . The mean waiting time or mean inactivity time -being also called the mean 

reversed residual life function- is given by  1M t , and it represents the waiting time elapsed ever since 

the failure of an item on the condition that this failure had occurred in (0,t).  

2.5. Stress-strength modelling 

The measure of reliability of industrial components has many applications especially in the area of 

lifetime testing and engineering -to name just a few. In stress-strength modeling, R = Pr(X2 < X1) is a 

measure of dependability of the system, when it is subjected to random stress X2 and has strength X1 (e.g. 

see Kotz et al., 2003). The system fails if and only if the applied stress is greater than its strength, and the 

component will function satisfactorily whenever X1 > X2. Herewith let X1 and X2 be two independent 

random variables with 1( , , )TLNH    and 2( , , )TLNH    distributions. Thus R can be expressed as 

    
 

  

1 2

1 2

1 2 , 0
2 2 1

1 2
Pr( ) .

k j k j

k j
X X

j jj k j

   

  

   




   
     

      
R      

2.6. Order Statistics 

Let 1 2, , , nX X X be a random sample from the TLNH distribution and let      1 2
, , ,

n
X X X be the 

corresponding order statistics. The pdf of i’th order statistic, say :i nX , can be written as 

     
 

 
   

1

: 0
1 ,

, 1

n i j j i

i n j

n if x
f x F x

ji n i

  



 
   
    

                                                                         (11) 

where  ,    is the beta function. Substituting (5) and (6) into equation (11) the pdf of :i nX  can be 

expressed as  
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         : , ,, ,0 , 0
,

n i

i n w dj w dj w d
f x t h x 

 

 
       

where        
1

1,, ,
1 , 1

j

w j i dj w d
t wt w d i n i



           and  1,j i d    can be obtained recursively from 

 
0

11
1, 1, 1,00

1 for 1 and .
d j i

j i d m j i d m j id t m
t m j d d t    

      
        Then, the pdf of the TLNH 

order statistics is a mixture of ENH density. Hence, by following Lemonte (2013), the moments of :i nX  

can be written as 

         ,

: , , , ,0 , , 0 0
1, 1 ,

n i q k qq s
i n j w d p sj w d p s

E X p
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


  

  
                                                                              (12) 

where 
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, , , , , , , .
k q k q

j w d p s j w d p st
 

 
 

  For 0w d   integer, (12) can be reduced to 

         ,

: , , , ,0 , , 0 0 0
1, 1 .
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                                                      

3.  Maximum likelihood estimations of the model parameters  

In this section, we estimate the parameters of the TLNH distribution by the method of maximum 

likelihood estimation (MLE). Let 1 2, , , nX X X be a random sample from the TLNH distribution with 

observed values 1 2, , , nx x x , and  , ,
T

  Ψ  be the vector of the model parameters. The log-

likelihood function of  Ψ may be expressed as 

    

     

   

1 1 1

1 1

log 2 log log log 1 log(1 ) (1 1 ) 1 log
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n n n

i i i

i i i

n n

i i

i i

n n n n x x q

q q


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

  

 
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    

  

 
 (13) 

where   1 exp 1 1i iq x


    . By following the normal routine of parameter estimations for the MLE 

of , ,   , we differentiate equation (13) with respect , ,   , in order to obtain the score vector 

 , , .
T

U U U    
  
  

    The elements of the score vector are given by 

     
1 1

log log 2 ,
n n

i i

i i

n
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  

      
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where          1 1 1 1
1 log 1 and 1 .i ix x

i i i i i im x x e v x x e
   

  
   

      By setting the non-linear 

system of equations 0U U U      and solving them simultaneously, the MLE of parameters are 

obtained. These equations cannot be solved analytically, However, statistical software can be used to 

solve them numerically by using iterative methods such as the Newton-Raphson type algorithms. For 

interval estimation of the model parameters, we require the observed information matrix 

      .

U U U

J U U U

U U U

  

  

  

 
 

  
 
 

ψ  

Under standard regularity conditions when n , the distribution of ψ̂ can be approximated by a 

multivariate normal   1

3
ˆ0,N J


ψ  distribution to construct approximate confidence intervals for the 

parameters. Here,  ˆJ ψ is the total observed information matrix evaluated at ψ̂ . 

3.1. Simulation Study 

In this Section, we perform the simulation study to see the performance of MLEs of TLNH distribution. 

The random number generation is obtained with its quantile function (qf). We note that the u’th qf of the 

TLNH is given by   
1/

1/1 1 0.5log 1 1 , 0 1.ux u u





      
 

 Hence, if U has uniform random 

variable on (0, 1), then XU has the TLNH random variable. 

 

We generated N=1000 samples of sizes 20, 50 and 100 from TLNH distribution with its qf. Then we 

computed the empirical means, standard deviations (SD), biases and, mean squared errors (MSE) of the 

MLEs with    
2

1 1
ˆ ˆ1 1

ˆ ˆand ,
N N

i iN Nh hi i
Bias h h MSE h h

 
       where , , .h     All results were 

obtained by using optim’s CG routine in the R programme. The results of this simulation are reported in 

Table 1. Table 1 lists the empirical mean, standard deviations, biases by increasing sample size. MSEs 

decrease, as expected, when the sample size increases. 

 

Table 1. The empirical means, Biases, MSEs and, SDs for the selected TLNH distribution’s parameters. 
Parameters n=20 n=50 n=100 

 , ,    ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

(0.5, 0.5, 0.5) 

SD 

Bias 

MSE 

0.5671 

0.1985 

0.0671 

0.0439 

0.8111 

0.4802 

0.3111 

0.3271 

0.6742 

0.7290 

0.1742 

0.5612 

0.5216 

0.1090 

0.0216 

0.0123 

0.6599 

0.3223 

0.1599 

0.1293 

0.5710 

0.4383 

0.0710 

0.1970 

0.5155 

0.0798 

0.0155 

0.0066 

0.5931 

0.2294 

0.0931 

0.0612 

0.5438 

0.3270 

0.0438 

0.1087 

(1, 1, 1) 

SD 

Bias 

MSE 

1.1601 

0.4496 

0.1601 

0.2275 

1.4038 

0.6770 

0.4038 

0.6210 

1.1003 

0.8947 

0.1003 

0.8097 

1.0647 

0.2322 

0.0647 

0.0580 

1.2311 

0.5222 

0.2311 

0.3258 

1.1255 

0.7319 

0.1255 

0.5509 

1.0221 

0.1429 

0.0221 

0.0209 

1.1325 

0.3390 

0.1325 

0.1323 

1.0060 

0.4349 

0.0060 

0.1890 

(0.5, 2, 1) 

SD 

Bias 

MSE 

0.5587 

0.1624 

0.0588 

0.0298 

2.2562 

0.7386 

0.2562 

0.6107 

1.2077 

0.7295 

0.2077 

0.5748 

0.5275 

0.0931 

0.0210 

0.0098 

2.1585 

0.5968 

0.1114 

0.3681 

1.1231 

0.6408 

0.1511 

0.3977 

0.5116 

0.0602 

0.0165 

0.0037 

2.0408 

0.3166 

0.0408 

0.1018 

1.0489 

0.2976 

0.0489 

0.0909 

(2, 2, 2) 

SD 

Bias 

MSE 

2.3427 

0.8543 

0.3427 

0.8467 

2.4780 

1.0058 

0.4780 

1.2391 

2.1038 

1.2183 

0.1038 

1.4937 

2.1113 

0.4397 

0.1123 

0.2055 

2.0616 

0.4549 

0.0616 

0.2105 

2.0957 

0.6493 

0.0957 

0.4304 

2.0674 

0.3098 

0.0674 

0.1004 

2.1471 

0.5663 

0.1471 

0.3421 

2.0645 

0.7216 

0.0645 

0.5244 
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(0.5, 5, 50) 

SD 

Bias 

MSE 

0.5527 

0.1566 

0.0527 

0.0273 

5.4948 

1.3000 

0.4948 

1.9331 

50.0517 

0.2251 

0.0517 

0.0533 

0.5236 

0.0869 

0.0236 

0.0081 

5.2312 

0.8361 

0.2312 

0.7518 

50.0325 

0.4462 

0.0325 

0.1999 

0.5087 

0.0577 

0.0087 

0.0034 

5.0813 

0.5218 

0.0813 

0.2786 

50.0121 

0.0941 

0.0121 

0.0090 

3.2. A real data application 

We furthermore present an application based on the real data set to show the flexibility of the TLNH 

distribution. We compare TLNH with generalized exponential (GE) by [7], beta exponential (BE) by [12], 

Kumaraswamy exponential (KwE) by [4] and, NH distributions under the estimated log-likelihood ˆ  

value, Kolmogorov-Smirnov (K-S) statistics, Akaike information criterion (AIC), Consistent Akaike 

information criterion (CAIC), Bayesian information criterion (BIC), and Hannan-Quinn information 

criterion (HQIC). The pdfs of KwE, BE, GE distributions are given as follows (for 0 and , , 0x     ): 

   
1

1

( ; , , ) 1 1 1 ,x x x

KwEf x e e e
 

     



      

  
    

1
1( ; , , ) 1 ,x x

BEf x e e
      


      

and  
1

( ; , ) 1 ,x x

GEf x e e
   


    where  ,    is the beta function. 

 

The real data set represents the remission times (in months) of a random sample of 128 bladder cancer 

patients [10] as: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 

0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 

3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 

7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 

10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 

79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 

8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. This data is known as unimodal hrf shaped 

in the literature. We also analyzied this data set for the ENH model. By using the data set, we obtained K-

S statistics and its p-value as 0.0442 and 0.9636 respectively. These results are compatible with [8]. 

 

The results of this application are listed in Table 2. These results show that the TLNH distribution has the 

lowest AIC, CAIC, BIC, HQIC and K-S values and has the biggest estimated log-likelihood and p-value 

of the K-S statistics among all the fitted models. Hence, it could be chosen as the best model under these 

criteria. We also plot the estimated pdf and cdf of the TLNH for the data set in Figure 2. Clearly, the 

TLNH distribution provides a closer fit to the empirical pdf and cdf. 

 

Table 2. The MLEs (standard errors within the parentheses), ˆ , AIC, CAIC, BIC, HQIC and K-S 

statistics [p-value] for remission data. 

Model ̂  ̂  ̂  ˆ  AIC CAIC BIC HQIC 
K-S 

[p-value] 

TLNH 
1.6528 

(0.3310) 

0.5524 

(0.1201) 

0.1864 

(0.0913) 
410.3979 826.7957 826.9893 835.3518 830.2721 

0.0429 

[0.9722] 

GE 
1.2179 

(0.1488) 
 

0.1211 

(0.0135) 
413.0776 830.1552 832.3487 840.7113 835.6316 

0.0725 

[0.5113] 

BE 
1.1726 

(0.1312) 

26.8142 

(0.6327) 

0.0046 

(0.0006) 
413.3671 832.7342 835.0594 846.1423 839.3693 

0.0733 

[0.4973] 

KwE 
1.4512 

(0.0240) 

0.2816 

(0.0274) 

0.4105 

(0.0154) 
412.4602 830.9204 831.1139 839.4765 834.3968 

0.0713 

[0.5330] 

NH  
0.9227 

(0.1515) 

0.1216 

(0.0344) 
414.2255 832.4510 832.5470 838.1550 834.7686 

0.0919 

[0.2296] 

 

 



H. M. Yousof, M. Ç. Korkmaz / İstatistikçiler Dergisi: İstatistik&Aktüerya, 2017, 2, 119-128 

 
127 

4.  Conclusions  

In this paper, a three parameter model which can be used in modeling survival data, reliability problems 

and fatigue life studies has been studied. We derived explicit expressions for some of its statistical and 

mathematical quantities including the ordinary moments, generating function, incomplete moments, 

moment of residual life and reversed residual life. The model parameters were estimated by using 

maximum likelihood method based on complete sample. We assessed the performance of the maximum 

likelihood estimators in terms of standard deviations, bias and mean squared errors by means of a 

simulation study. We observed that the TLNH distribution provides better fits than generalized 

exponential, beta exponential, Kumaraswamy exponential and Nadarajah-Haghighi distributions on the 

real data set. We hope that the TLNH model will attract wider applications in areas such as survival tests 

and lifetime data, hydrology, meteorology, engineering and others. As a future work we plan to consider 

the bivariate and the multivariate extensions of the TLNH distribution in particular with the copula based 

construction method, trivariate reduction etc. 

 

 
Figure 2. The estimated pdfs (left) and cdfs (right) for the remission data.  
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