
 

 

1371 

 

 
 

 

Research Article          

 

Removing Noise from Noisy Signal Data within Principal Component 

Analysis Framework 

 

 Mehmet CEVRİa, * 

 
a Department of Mathematics, Faculty of Science, Istanbul University, Istanbul, TURKEY 

* Corresponding author’s e-mail address: mcevri@istanbul.edu.tr 

DOI: 10.29130/dubited.1649830 

 

ABSTRACT 
The separation of noise from data represents one of the fundamental problems in signal processing. Principal 

component analysis (PCA) is a multivariate statistical technique that is employed in all scientific disciplines for 

the identification of patterns in data and the compression of data by reducing the size without significant loss of 

information. This paper concerns the removal of noise from noisy sinusoidal data using PCA. The aim is to achieve 

this by focusing on the separation of noise from signal data without estimating the parameters of sinusoidal signals. 

To this end, a code was developed in the Mathematica programming language, with modifications of its algorithm 

then being assessed on data derived from a number of noisy signals. The effectiveness of PCA was assessed by 

using the mean square error (MSE) values in relation to the variation in signal-to-noise ratio (SNR). The simulation 

results obtained demonstrate the effectiveness of PCA in removing noise from noisy sinusoidal signals. 

 

Keywords: Principal component analysis, sinusoidal, dimension reduction, optimization 

 

 

Temel Bileşenler Analizi Çerçevesinde Gürültülü Sinyal Verilerinden 

Gürültünün Giderilmesi 
 

ÖZ 
Gürültünün verilerden ayrılması, sinyal işlemenin temel problemlerinden birini temsil etmektedir. Temel bileşen 

analizi (PCA), verilerdeki örüntülerin tanımlanması ve önemli bilgi kaybı olmadan boyutun küçültülerek verilerin 

sıkıştırılması için tüm bilimsel disiplinlerde kullanılan çok değişkenli bir istatistiksel tekniktir. Bu makale, PCA 

kullanarak gürültülüsinüzoidal verilerden gürültünün giderilmesi ile ilgilenmektedir. Amaç, sinüzoidal sinyallerin 

parametrelerini tahmin etmeden sinyal verilerinden gürültünün ayrılmasına odaklanarak bunu başarmaktır. Bunun 

için, Mathematica programlama dilinde bir kod geliştirilmiş ve algoritmasının modifikasyonları daha sonra bir dizi 

gürültülü sinyalden elde edilen veriler üzerinde değerlendirilmiştir. PCA'nın etkinliği, sinyal-gürültü oranındaki 

(SNR) değişime bağlı olarak ortalama kare hata (MSE) değerleri kullanılarak değerlendirilmiştir. Elde edilen 

simülasyon sonuçları, PCA'nın gürültülü sinüzoidal sinyallerdeki gürültüyü gidermedeki etkinliğini 

göstermektedir. 

 
Anahtar Kelimeler: Temel bileşenler analizi, sinüzoidal, boyut azaltma, optimizasyon 
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I. INTRODUCTION 
 

Noisy sinusoidal signal modeling is of great importance due to its extensive applicability in numerous 

scientific and engineering fields. These fields encompass, but are not limited to, time series models and 

applications ranging from sound to radar, and nuclear magnetic resonance, and underwater acoustics 

[1]. The problem of removing noise from noisy sinusoids within principal component analysis (PCA) is 

therefore addressed here. A variety of algorithms have been employed in the literature to estimate the 

parameters of sinusoidal signals from noisy data and to analyze spectral data. The most commonly used 

of these are the least squares fitting [2], maximum likelihood (ML) [3], discrete Fourier transform (DFT) 

[4, 5], and periodogram [6]. Following the contributions of Jaynes [7], researchers in various scientific 

disciplines have paid considerable attention to parameter estimation within the framework of Bayesian 

inference. In this area, Bretthorst and colleagues [8-14] have produced seminal works. 
 

PCA is the most frequently employed multivariate statistical technique across the full spectrum of 

scientific disciplines. It is a highly effective technique that can be utilized to address a multitude of 

issues within the fields of behavioral and social sciences, engineering [15], genetics [16, 17], 

neuroscience [18], and geography [19]. The advent of computing technology has facilitated the 

application of PCA in a multitude of fields. The initial formulation of PCA is attributed to Pearson [20], 

and its subsequent development is credited to Hotelling [21], who also coined the term "principal 

component." Currently, PCA stands as a preeminent instrument in the domains of exploratory data 

analysis and the construction of predictive models, as evidenced by its extensive utilization across a vast 

array of studies and applications, as referenced in [22-24]. 

 

Principal component analysis is a technique that can be used to clean up noisy datasets. In recent years, 

it has been recognized as a highly efficient tool for the analysis of high-dimensional data derived from 

high-spectral-resolution observational studies, as well as for the compression of redundant data [25-27]. 

It is evident that PCA has been applied in numerous areas of research and development, including noise 

filtering and data compression, as well as for the independent assessment of sensor noise [27]. The 

problem of noise filtering and the application of PCA to solve it are introduced in [26]. 

 

In the context of signal processing applications, PCA is typically performed on a sequence of time 

samples as opposed to a data set of variables. When the signal exhibits recurrent characteristics, as is 

the case with the automatic electrocardiogram (ECG) signal, PCA plays a pivotal role in ECG signal 

processing [28]. The frequency estimation of sinusoids, also known as line spectral estimation, has been 

the focus of research for a considerable duration. A substantial volume of research has been dedicated 

to this subject [29].  

 

The present paper focuses on the question of how to detect sinusoids from noisy data in a shorter time 

without parameter estimation. The estimation of sinusoid parameters is known to impose a considerable 

computational burden and demands a significant time investment. Therefore, the impact of principal 

components analysis on cleaning up sinusoids from noisy data is investigated. There are many different 

methods for eliminating harmonic noise [30, 31]. However, certain methodologies are deemed 

impractical, while others encounter difficulties in the simultaneous elimination of frequency 

components that are in close proximity to the signal. Consequently, an approach termed random 

principal component analysis is proposed to address this issue [32]. 

 

The primary goal of this work was to facilitate PCA analysis of noisy sinusoids, with illustrative 

examples drawn from this context. It is noteworthy to emphasize, however, that the methods outlined 

herein find broader application in any context involving PCA analysis with noisy and/or missing data. 

In other words, the underlying methodology is not specific to noisy sinusoids. 
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II. MATERIAL AND METHOD 
 

A. HARMONIC SIGNAL MODEL 

 
A signal may be defined as a physical quantity that depends on time and one or more independent 

variables. Mathematically, a signal may be formulated as a function of one or more independent 

variables. In many experimental setups, the discrete data set  is denoted as the 

output of a physical system whose model is to be developed. is sampled from an unknown function 

 at discrete times : 

 

        (1) 

 

where denotes a vector of unknown parameters that determine the behavior of the signal . The 

term  is generated from a known random process and is frequently referred to as 'noise.' When sine 

waves are applied to static nonlinear functions, harmonic tones are produced. The selection of the model 

function  is contingent on the application in question. In this study, the term will be 

considered as the superposition of  sinusoids, as formulated in the following equation:  

,        (2)  

where . In the context of sinusoidal signals, the variables  are used to 

denote the amplitudes, frequencies, and phases, respectively, of the  sinusoidal signal.  

 

B. PRINCIPAL COMPONENT ANALYSIS 

 
Principal component analysis is the most effective multivariate analysis technique for determining 

patterns in data and expressing them in a way that highlights similarities and differences. It is an 

invaluable tool for data analysis, especially in the context of large data sets that are difficult to represent 

graphically. PCA is a widely used technique for extracting the maximum variance from a data set, which 

ultimately leads to minimizing the number of variables [33, 34]. The primary objective of PCA is to 

determine a new set of uncorrelated variables, also termed 'principal components,' which have the 

capacity to explain the largest possible proportion of the total variation. PCA is a data analysis technique 

that can be used to extract the original signal from a set of noisy data. This process involves a series of 

calculations, including the singular value decomposition (SVD) and the eigenvalue decomposition of 

the covariance matrix. These calculations help to remove the noise from the data and reveal the 

underlying signal. It is employed to address the decorrelation of the signal by performing an orthogonal 

projection. Typically, the number of dimensions of the data is reduced from N to (p<N) to eliminate 

undesirable components in the signal. PCA has been demonstrated to be an optimal linear dimensionality 

reduction technique in the mean-square sense [25]. A significant application of this technique is noise 

reduction, in which it is hypothesized that the data in the final components is predominantly noise. A 

notable strength of PCA lies in its ability to visualize multidimensional or higher-order data, where 

conventional methods are unable to project into a low-dimensional space, such as twoor 

threedimensions. PCA involves the creation of a specialized set of 'principal component' eigenvectors, 

which are optimized to describe the maximum variance with a minimal number of components [20, 21, 

35]. For a comprehensive overview of PCA's dimensionality reduction process, refer to [36, 37]. 
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Assume that is a set of random variables . In order to scale these variables, we subtract 

the mean of each dataset from each observation. This produces a dataset with a mean of zero, which 

allows us to identify the directions of maximum variance with greater ease. Thus, 

 

         (3) 

 

The random vector  is characterized by a specific -covariance matrix. Consider 

forming new variables as a linear combination of -variables 

.        (4) 

PCA is a technique for dimensionality reduction from  dimensions to  dimensions. It tries to 

find the most informative  linear combinations of a set of variables ,in sequential order. 

 

Having defined PCs, we need to know how to find them. In the first instance, we consider the vector of 

random variables, , to have a known covariance matrix, . However, in a more realistic scenario, 

where  is unknown, this can be substituted for a sample covariance matrix, S. In order to ascertain the 

form of the PCs, it is necessary to consider first where the vector maximizes 

 subject to . In this case, the conventional approach is to utilize the Lagrange 

multiplier ( ) technique a method frequently employed when maximizing functions subject to some 

constraints. To maximize , Lagrange function , 

 

        (5) 

 

where  represents a Lagrange multiplier. Upon differentiation with respect to , the result is: 

          (6) 

where  is the  identity matrix. Hence,  is an eigenvalue of  and  is the corresponding 

eigenvector or the weight. The objective is to maximize the given quantity: 

 

         (7) 

 

Therefore, the value of  must be maximized. In this case  represents the eigenvector associated 

with the largest eigenvalue of , whereas  denotes the largest eigenvalue itself. It can therefore be 

stated that  represents the initial principal component (PC1). 

In order to obtain the second PC, we want to subject it to  and . Thus, the 

Lagrange function is 

      (8) 

where  and  denote Lagrange multipliers. If the Lagrange function, as defined in Equation (6), 

differentiated with respect to , it gives 

 

D p 1 2, ,..., pD DD

, 1,2,...,j j jD j pd D  

 1 2, ,...,T
pd ddd Σ

1 2, ,..., ( )kZ Z Z k p d

1

,( 1,2,.. )
p

T

i i ij j

j

Z d i k


  α d

p k p

k 1 2, ,..., kZ Z Z

d Σ

Σ

1 1
TZ α d 1α

 1 1 1Var TZ α Σα
1 1 1T α α

1

 1Var Z  1 1,L α

   1 1 1 1 1 1 1 1, ,T TL    α α Σα α α

1 1α

 1 1 ,0p Σ Ι α

pΙ  p p 1 Σ 1α

 1 1 1 1 1Var T  Z α α

1 1α

Σ
1

1α

 2Var Z 2 1 0T α α 2 2 1T α α

     2 2 2 2 11 2 2 2 2 1, , , T TTL       α α α αα α α Σα

2 

2α



 

 

1375 

         (9) 

 

If we multiply Equation (9) by from the left and use the equations  and , the value 

of  becomes zero. Thus Eq. (9) becomes 

 

          (10) 

 

Hence, once more eigenvalue of  and the corresponding eigenvector. Again, 

 so  must be maximized. Similarly, the second principal component (PC2) 

is designated as . 

 

In general, the principal component of  is  and  where  

is the largest eigenvalue of ,and  is the corresponding eigenvector. Therefore,the condition 

 holds for the eigenvalues. Namely, the obtained principal components are in 

decreasing order of variance, In this case,  explains as much 

variance as possible, and  explains as much of the remaining variance as possible. The  PC, 

maximizes  subject to   and . 

 

Evidence has been presented that indicates that for the third, fourth, ...,  PCs, the vectors of 

coefficients are the eigenvectors of  according to ,the third and fourth 

largest,...,and the smallest eigenvalue, respectively. It can thus be concluded that the eigenvalues 

represent the amount of variance explained by each principal component. A component with a low 

eigenvalue contributes only a minimal amount of variance explanation to the variables, and as such may 

be disregarded. 

 

It is crucial to highlight that, on certain occasions, the vectors are correctly identified as principal 

components and employed to represent the directions (principal components) of the maximum variance 

of the data. Although this usage is occasionally defended, it is nonetheless confusing. It is therefore 

preferable to reserve the term ‘principal components score P’ for the derived variables. The principal 

component scores can be obtained by multiplying the centered data matrix  by the matrix of principal 

components , as demonstrated in the subsequent equation:   

 

,           (11) 

 

where  refers to the eigenvectors and represents the loadingsmatrix or principal components. In 

order to ascertain the new data values, it is necessary to multiply both sides of Equation (11) by  

and to consider the equation . This can be attributed to the fact that the fundamental 

components are all of a unit length. Moreover, it is essential to incorporate the mean value. In this case 

predictions for each of the original data points  have the following form: 

 

.           (12) 
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III. SIMULATION RESULTS 
 

This section presents the findings of experimental research that demonstrates the efficacy of PCA in the 

removal of noise from noisy sinusoidal data. In order to comprehend the research findings, two examples 

are considered here. The first example involves the generation of data in accordance with the following 

set of guidelines: 

         (13) 

where  Throughout the experiment,  runs in time interval 0 and 1 

by 1/2000 and . We obtained noisy data samples ( ) and the noisy signal stack 

of 20 signals is demonstrated in Figure 1. To reduce the noise, PCA is utilized to identify the principal 

components of the data. These components are responsible for capturing the most significant variance 

(patterns) while filtering out the components with less variance (which often correspond to noise). 

 

 

 

 

 

 

 

 

 

Figure 1. Single noisy signal stack with 20 signals 

 

Given the 100 samples, the data matrix is 20 x 100. All mathematical applications introduced in the 

paper are coded in Mathematica software. The objective is to eliminate a subset of critical components 

from the signal while preserving the integrity of the remaining components by performing PCA analysis. 

In this context, the mean value of the noise-adjusted signal is first computed. The signal is then 

normalized [38]. This is done by taking the mean value of each measurement in the signal and then 

subtracting it from the original value. Then, the covariance matrix of the signal values that have been 

normalized is calculated. The subsequent step in the methodology involves the determination of the 

eigenvalues and eigenvectors of the covariance matrix. The primary step in the denoising process entails 

zeroing out the basis vectors that are deemed to correspond to noise. The eigenvalue can be considered 

as a quantitative measure of the proportion of variation in the data that can be attributed to the principal 

component. A scree plot [39] can be constructed to estimate the number of eigenvalues and 

corresponding eigenvectors, i.e., the number of principal components, that will be utilized to obtain the 

denoised signal [40]. As demonstrated in Figure 2, the ordered eigenvalues are plotted against the 

number of components. 
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Figure 2. Scree plotand bar charts of the covariance matrix for data that most likely have 2 underlying 

components (a) All eigenvalues sorted descending (b) Top 20 eigenvalues sorted descending 

 

The eigenvalues presented in Figure 2 are used to detect eigenvectors, also called principal components, 

which in turn are evaluated to create a representation of the original signal. As demonstrated in Figure 

2(a), the decreasing order of all eigenvalues is exhibited, while Figure 2(b) presents the decreasing order 

of the first 20 eigenvalues. As demonstrated by the figures presented, there are a number of eigenvalues 

that can be designated as principal components, given that their eigenvalues are considerably higher 

than the rest. Each component demonstrates the capacity to represent the data. As is evident from these 

figures, the first two eigenvalues manifest a pronounced curvature, followed by a kink and then a linear 

trend with a relatively shallow slope. A notable feature is the separation of the first two eigenvalues 

from the rest, indicating their significance in the analysis. It can thus be concluded that the eigenvectors 

associated with the first two eigenvalues, in order from the largest to the smallest, play a pivotal role in 

the noise removal process. Given the objective of removing noise from the signal and the established 

reliability of the first two components in representing the signal, these components were utilized to 

obtain the results. The remaining eigenvectors were then zeroed out, after which the modified data 

matrix and the sinusoidal signals were reconstructed.  

 

PCA is a data analysis technique that identifies the components in the data (signal) that explain the 

biggest variance and separates them from components with lower variance (usually corresponding to 

noise). The reconstruction of the signal involves the following steps. Firstly, the noisy data is subjected 

to PCA in order to isolate the main components. Secondly, the data is then reconstructed using only the 

most important components (those representing the signal). The efficacy of PCA in removing noise from 

(b) 

(a) 
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a signal can be illustrated by comparing the noisy signal (green) in Figure 3 and the real signal (blue) 

and the reconstructed signal (orange) in Figure 4. These figures demonstrate the effectiveness of PCA 

in smoothing out noise and restoring a signal that more closely resembles the true signal. 

 

 
 

Figure 3. Sinusoidal signal with white noise σ=1 forthe first example, 

 

 

Figure 4. The initial signal and the signal after the PCA-based noise reduction process for the first signal model 

 

As illustrated in Figure 4, the image obtained through PCA demonstrates a higher degree of similarity 

to the original image. These findings demonstrate that PCA can be utilized not only in the process of 

noise separation from noisy signal data but also in dimensionality reduction. 

In the second experiment, multiple types of noisy data, D, were represented.A simple sine wave was 

generated with a frequency of 0.5 Hz, an amplitude of 1, and a phase of 0. Three distinct types of noise 

were added, generated as follows: 
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         (14) 

where . It is evident that both  and  are 

characterized by a Gaussian distribution. These were simulated by employing random values from a 

normal distribution. The third noise  is generated from a Poisson distribution. It was simulated 

utilizing the Poisson distribution, with subsequent adjustment to ensure centering around zero. 

Throughout the experiment,  runs in time intervals 0 and 10 by 2/100. We obtained a noisy data 

sample (N=500) and the noisy signal stack of 20 signals is shown in Figure 5. 

 

 

 
Figure 5. Multiple noisy signal stack with 20 signals 

 

The ordered eigenvalues versus component number are plotted sequentially and demonstrated in Fig. 6. 

 

 

Figure 6. Scree graph for the covariance matrix for multiple noise data 

As demonstrated in Figure 6, it is evident that the preponderance of components is deemed to be of 

significance in the reconstruction of the signal. Utilizing these components, the reconstructed signal is 

presented in Figure 7. The estimated(reconstructed) signal is then visualized alongside the noisy signal 
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and the original(true) signal to compare the effectiveness of the noise removal. In this step, the noisy 

signal (in red), the original signal (in blue), and the estimated signal (in green) are plotted in Figure 7 

together for comparison. The plot thus provides a visual demonstration of the effectiveness of PCA in 

removing noise from the original signal, thereby producing a smoother curve that more closely 

resembles the true signal. 

 

 

Figure 7. Noise removal using PCA with multiple noise types 

 

The effectiveness of the method is assessed by calculating the mean squared error (MSE) between the 

true signal and the reconstructed signal. The MSE provides a quantitative measure of how well the 

reconstructed signal matches the true signal. A lower MSE indicates that the reconstruction is more 

accurate and that the noise has been effectively removed. In order to assess the impact of the de-noising 

method based on the PCA for sinusoidal signals, the signal- to-noise ratio (SNR) and the mean square 

error (MSE) must be delineated. Let  be the  amplitude of signal and in this problem, we fixed   to 

1 and properly scaled  to yield various SNRs, denoted as: 

 

,          (15) 

 

and mean square error is 

 

,         (16) 

 

where  represents the original signal, and is the de-noising signal. A total of n=500 data samples 

were generated from a single real-tone frequency signal model (see Eq. 14) with a variety of noise levels. 

MSEs of the signal were obtained. The logarithmic values were plotted in relation to the signal-to-noise 

ratio (SNR), which ranged from (-20) dB to (-2) dB. This is demonstrated in Figure 8. They indicate the 

MSE performances for different estimators.  As illustrated in Figure 8, as the SNR values increase, so 

too do the MSE values. The minimum MSE value is 0.13, and the maximum MSE value is around 1.4, 

which means that the noise reduction signal has values close to the original signal. 
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Figure 8. MSE values with respect to SNR values for a single real- tone frequency signal model 

 

The MSE value for the multiple types of noisy data in Equation (14) is 0.391, indicating a slight 

discrepancy between the actual sine wave and the reconstructed signal. It is acknowledged that PCA-

based reconstruction may not be capable of fully capturing the original sine wave; however, as the graphs 

presented above demonstrate, it provides a satisfactory approximation. 

 

 

IV. CONCLUSION 
 

In this paper, the PCA is utilized for the purpose of removing the noise from white, noisy, sinusoidal 

data. The integration of principal component analysis provides an effective strategy for reducing the 

dimensions of the denoised data set, resulting in the generation of a smaller number of continuous 

variables. The present study investigated the applicability of PCA to noisy data. The investigation 

focused on the ability of PCA to detect components with small variance, and this was tested on two 

different samples. The PCA identifies the components that explain the greatest amount of variance in 

the data (i.e., the signal) and separates them from the components with lower variance (often 

corresponding to noise). 

 

In addition, the performance of the PCA was evaluated by examining the MSE values as a function of 

the change in SNR. In the instance of the SNR varying between (–20) and (–2) decibels, the MSE values 

are found to be relatively moderate, ranging from 0.1 to 1.4. This observation signifies the presence of 

a certain degree of deviation between the actual sine wave and the reconstructed signal. The results of 

the computer experiments demonstrate that, while PCA-based reconstruction of the sinusoidal signal 

may not perfectly capture the original sine wave, it does provide a reasonable approximation. A further 

advantage of PCA for noise removal and signal reconstruction is that it effectively cleans the data by 

selecting exclusively the components that capture the maximum variance (i.e., signal) and eliminating 

the components with minimal variance (i.e., noise). A further advantage of PCA is that it reduces the 

dimensionality of the data while preserving its most significant features. This process simplifies the 

analysis and facilitates the interpretation of the signal. Furthermore, following reconstruction, the signal 

approximates the true signal more closely, as a significant proportion of random noise is removed. 

Therefore, we may infer that PCA is employed for the purposes of noise elimination and reduction of 

dimensionality. While it does not inherently eliminate noise, it has the capacity to mitigate its effects. 
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In forthcoming studies, a comparison will be made between the performance of PCA in obtaining the 

original signal by separating the noise from noisy sinusoidal signals and that of other frequently used 

signal estimation methods in the literature. 
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