
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

Abstract—The K-Nearest Neighbor classifier is a well-known

and widely applied method in data mining applications.

Nevertheless, its high computation and memory usage cost makes

the classical K-NN not feasible for today’s Big Data analysis

applications. To overcome the cost drawbacks of the known data

mining methods, several distributed environment alternatives

have emerged. Among these alternatives, Hadoop MapReduce

distributed ecosystem attracted significant attention. Recently,

several K-NN based classification algorithms have been proposed

which are distributed methods tested in Hadoop environment

and suitable for emerging data analysis needs. In this work, a

new distributed Z-KNN algorithm is proposed, which improves

the classification accuracy performance of the well-known K-

Nearest Neighbor (K-NN) algorithm by benefiting from the

representativeness relationship of the instances belonging to

different data classes. The proposed algorithm relies on the data

class representations derived from the Z data instances from

each class, which are the closest to the test instance. The Z-KNN

algorithm was tested in a physical Hadoop Cluster using several

real-datasets belonging to different application areas. The

performance results acquired after extensive experiments are

presented in this paper and they prove that the proposed Z-KNN

algorithm is a competitive alternative to other studies recently

proposed in the literature

Index Terms—Big Data Classification, Hadoop, K-Nearest

Neighbor, MapReduce.

I. INTRODUCTION

n the age of the fourth industrial revolution, business’s

decision-making is highly based on the data retrieved by the

internet-connected devices that are capable of collecting and

processing ever-growing amounts of information [1].

A. T. TULGAR, is with Department of Computer Engineering, Girne
American University, Girne, TRNC via Mersin 10 Turkey,
(e-mail: tamertulgar@gau.edu.tr).

B. A. HAYDAR, is with Department of Computer Engineering, Girne
American University, Girne, TRNC via Mersin 10 Turkey,
(e-mail: ahaydar@gau.edu.tr).

C. İ. ERŞAN, is with Department of Computer Engineering, Girne American
University, Girne, TRNC via Mersin 10 Turkey,
(e-mail: ibrahimersan@gau.edu.tr).

Manuscript received August 29, 2017; accepted Nov 16, 2017.
DOI: 10.17694/bajece.419551

To achieve precise forecasts, data coming from different

environments (e.g. different social media tools, data

warehouses, cloud storages etc.) need to be intelligently

analyzed by businesses.

Analyzing data retrieved from numerous data sources

results in tackling with vast amounts of unstructured raw data,

which are big in terms of volume, variety and velocity of

acquisition. The process of analyzing such data is recently a

popular research area, known as the Big Data Analysis [2].

One of the most important data mining tasks is

classification. Classification, which is the task of assigning

objects to one of several predefined categories, is a pervasive

problem that encompasses many diverse applications [3].

To classify data in the big data age, centralized techniques

lack the low classification delay performance, which is vital to

cope with the high velocity data streams of big data.

 To deal with this timing requirement of the modern data

classification, several distributed ecosystems have been tested

and used by different researches. One of these distributed

ecosystems is popularly known as the Apache Hadoop and the

Google’s MapReduce Framework [4].

 K Nearest Neighbor Classification (K-NN) has been one of

the most popular classification algorithms [5]. The classical K-

NN algorithm is based on calculating the distances between

the test data instance to be classified and all of the instances in

the training data set and finding the closest K number of

training instances. After detecting the K number of closest

training instances, the K-NN algorithm applies majority voting

which is the process of detecting the data class with the

maximum number of instances among the K selected

instances.

Since the classical K-NN algorithm is completely based on

individual instance proximities, it heavily suffers from high

computation costs. In addition, since the algorithm’s decision-

making strategy is relying on the individual instance

proximities rather than stronger class representations, the

algorithm’s classification accuracy is also not adequate for

modern big data analysis that requires rapid and accurate

classification results.

 On the other hand, K-NN’s individual instance distances

strategy makes K-NN a strong candidate for distributed data

classification, which is the basis of achieving acceptably low

classification delays while classifying big data.

 Taking into account the K-NN’s suitability to distributed

environments, many K-NN based studies which try to improve

the K-NN algorithms performance, and working on Hadoop

A Distributed K Nearest Neighbor Classifier

for Big Data

T. Tulgar, A. Haydar and İ. Erşan

 I

105

http://www.bajece.com/
https://www.bernardmarr.com/default.asp?contentID=966

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

and MapReduce environment have been recently proposed in

the literature [6-16].

 In this paper, a new K-NN and MapReduce based

algorithm is proposed named as the Z-KNN algorithm. The Z-

KNN algorithm tries to remedy the classification accuracy

performance of the classical K-NN classifier.

 The main idea of the Z-KNN algorithm is to base the

classification decision of the classical K-NN algorithm on the

class representations by calculating the centroids of the closest

Z training instances belonging to the classes of the K closest

instances detected by the K-NN algorithm. In other words, the

classical majority voting approach is replaced by a stronger

classification decision, which is also computationally not

expensive.

 The rest of this paper is organized as follows: Section II

presents the proposed Z-KNN algorithm in detail. The

experimental setup and the achieved performance results are

presented in section III. Finally, the section IV concludes the

paper and states the future works.

II. THE PROPOSED Z-KNN ALGORITHM

 In this section, the proposed Z-KNN algorithm and its

MapReduce application will be explained.

A. The Classical K-NN Algorithm

In a classification task, if a data instance is considered as a

vector of feature values, then a data instance i can be denoted as

vi which corresponds to a vector containing p features <feat1,

feat2,...,featp>. Hence, a classification task can be defined as

detecting the correct data classes of n test data instances

tsv1,..tsvn by using m training data instances trv1,…trvm.

The classical K-NN algorithm is based on the simple idea of

calculating the distances between a test data to be classified and

all of the m number of data instances in the training set. After

calculating all of the distances, the classical K-NN sorts the

measured distances and uses the first K number of training

Neighbors of the tested data.

The classification decision is then given by detecting which

data class has the most number of instances among the selected

K nearest neighbors, which is known as the majority voting.

As it can be deduced from the summary of the classical K-NN

algorithm given above, the whole decision is based on the

individual instance distances between all tsvi and trvj’s.

Since the calculation of the instance distances is an

independent task, being able to distribute the distance

calculations to several processes makes the K-NN strategy

suitable for distributed environments.

On the other hand, especially when a data set with high

number of instances and high number of features per instance

needs to be classified, the classical K-NN algorithm’s

classification accuracy performance becomes lower than its other

well-known competitors, like K-Means classification [17].

Hence, it can be deduced that to become a classification

algorithm suitable for modern data analysis needs, the K-NN’s

classification accuracy performance should be improved on a

distributed environment.

Taking into account these needs, the Z-KNN algorithm is

proposed and explained in sub-section B

B. The Z-KNN Algorithm

 The proposed Z-KNN algorithm is a distributed K-NN based

classification algorithm, which is designed to work on

MapReduce environment.

Hadoop MapReduce is a software framework for easily

writing applications that process vast amounts of data in-parallel

on large clusters of commodity hardware in a reliable, fault-

tolerant manner [18].

A MapReduce job usually splits the input data-set into

independent chunks which are processed by the map tasks in a

completely parallel manner. The framework sorts the outputs of

the maps, which are then input to the reduce tasks. Typically

both the input and the output of the job are stored in a file-

system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks [18].

 In the MapReduce framework, any distributed task is

designed as a combination of at least three functions: The Driver,

Mapper and Reducer functions, which are inherited from the

corresponding MapReduce classes [18].

 The MapReduce framework of the Z-KNN algorithm for m

Dataset
To be

Classified

Mapper0

Mapperx

1: Training
Data Split 0

2: Test Data Set

1: Training
Data Split x

2: Test Data Set

Reducer1

Reducern

<Ts1,<Tr1,dist11,class1>>
<Ts1,<Tr2,dist12,class2>>
<Ts1,<Tr3,dist13,class3>>

<Ts1,<Trm,dist0m,classc>>

<Tsn,<Tr1,distn1,class1>>
<Tsn,<Tr2,distn2,class2>>
<Tsn,<Tr3,distn3,class3>>

<Tsn,<Trm,distnm,classc>>

Output

<Ts1, Decided_Class>

<Tsn, Decided_Class>

Figure 1. MapReduce Flow of the Z-KNN algorithm

106

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

number of instances in the training data set and n number of

instances in the testing data set is presented in Figure 1.

 As it can be seen in Figure 1, the Z-KNN algorithm’s sub

tasks are composed of the Mapper and the Reducer functions of

the well-known MapReduce Framework.

 The Mapper function is responsible of receiving the training

data set splits from the MapReduce Driver, which is the main

function for configuring the environment and managing the

distributed processing running on top of the Hadoop framework,

and calculating the distances between the testing instance to be

processed and the training instances found in the received

training data split.

 According to the MapReduce Framework, the output of the

Mapper function should be a <Key, Value> vector [18]. In the Z-

KNN algorithm, the output Key of the Mapper is the testing

instance id and the value is an object, which contains the used

training instance, the distance between the testing and the

training instances and the class id that the training instance

belongs to.

 Afterwards, the MapReduce framework shuffles the output

<Key, Value> pairs emitted by the mapper functions so that the

pairs with common keys are submitted to the same reducer

function. In other words, a single reducer will process all of the

calculated distances belonging to the same testing instance.

1) The Mapper Function:

 As explained above the mapper function is responsible of

calculating the distances between the training and testing

instances. The complete algorithm of the Z-KNN mapper

function can be found in Algorithm 1.

 As an example to distance calculation, if a single testing

instance tsi and a single training instance trj are considered, than

the distance between these two instances is calculated by

Equation (1).

 (1)

If we assume that the class id of the training instance trj is class

A, then the output of a Z-KNN mapper becomes;

 <tsi , <trj, distij, class A>> .

2) The Reducer Function:

 The reducer function contains the classification decision

phase for the test instances, where the main contribution of the

proposed Z-KNN algorithm can be seen.

 The input of the reducer function is a list of all of the <key1,

value1> pairs emitted by the mapper function of the MapReduce

framework. It is worth to mention again that a single reducer

receives the list of pairs belonging to a common key value. In

other words, a single reducer receives the distances of a single

test instance to all of the training instances calculated by the

mappers.

 Upon receiving the input, the reducer function finds the K

closest neighbors from all of the training instances by examining

the minimum K distances among all the values in the list. Next,

the Z-KNN reducer detects to which classes these K neighbors

belong (e.g. class A, class B and class C).

 The main contribution in Z-KNN classifier depends on

Algorithm 1: Z-KNN Mapper Function()

Input: <key, value>

key : the record id of the training instance

value: the set of feature values of the training instance

Output to MapReduce Env. : <key1, value1>

key1: the record id of the test instance

value1: a vector containing the training instance id, distance

and the class id of the training instance

1: class_tr = readClassId(value)

2: for i=1 to n

3: //the loop to iterate each test instance

4: distij = DistanceFunction(trj, tsi)

5: Context.write(i, object <trj , distij , class_tr>)

6: end for

7: return

Algorithm 2: Z-KNN Reducer Function()

Input: <key1, <List value1’s> distances>

key1 : the record id of the test instance

value1: an object which contains <trj , distij , class_trj>

distances: List of all value1s

Output to MapReduce Env. : <key2, value2>

key2: the record id of the test instance

value2: the decided class id for test instance i

1: Sort_ascending(distances)

2: new LinkedList K_distances

3: new LinkedList Classes

4: new LinkedList Z_instances

4: for i=1 to K

5: K_distances.add(distances.get(i))

6: end for

7: for all dist K_distances

8: if dist.getclass() classes

9: classes.add(dist.getclass())

10: end if

11: end for

12: for all class_id classes

13: Z_instances.clear()

14: for i=1 to Z

15: if distances.get(i).getclass() = class_id

16: Z_distances.add(distances.get(i))

17: end if

18: end for

19:

20: if DistanceFunction(µ,key1) < min

21: min = DistanceFunction(µ,key1)

22: decided_class_id = class_id

23: end if

24: end for

25: key2 = key1

26: value2 = decided_class_id

27: Context.write(key2, value2)

28: return

107

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

correctly representing the detected classes A, B and C rather than

relying only on the distances to the individual training data

instances. The main motivation of this strategy is fueled by the

fact that, when the size of the data is big and especially when the

data is represented by multiple number of classes and large

number of features, some data may have similar proximity to

different classes instances. In such cases, the minimum distance

from the individual instances may not correctly mean that the

test instance will belong to that same class. Please consider the

following example as a sample case:

 Let assume that K is 5 and the following values are emitted to

the reducer for test instance 9. Also, for the sake of example, let

us assume that the test instance 9 should be classified to class B:

<ts9, <tr3, 0.11, A>

<ts9, <tr11, 0.14, B>

<ts9, <tr27, 0.15, B>

<ts9, <tr23, 0.12, C>

<ts9, <tr42, 0.12, A>

 In this case, because of majority voting, the classical K-NN

algorithm will conclude that the test instance 9 belongs to class

A. The majority voting strategy of the classical K-NN will end

up at this decision since class A and class B has equal number of

instances among the K nearest neighbors, and the class A

contains an instance, which has the closest proximity to the

testing instance.

 Nevertheless, the same class A has an instance, which is

further away from the class B instances to the test instance 9.

 To give equal chances to classes in the classification

decision, Z-KNN proposes to represent the classes A, B and C

among the K nearest neighbors by centroids and base the

classification decision on the distance of the test instance to the

centroids of the classes rather than relying on the individual data

members’ proximities.

 To decrease the computation overhead of the proposed

proximity to the centroid representation strategy, in the Z-KNN

algorithm, a parameter Z is introduced.

 The parameter Z in the Z-KNN classifier is the number of

instances from each of the classes A, B and C that have the

closest distances to the test instance.

 As it was explained earlier in the Mapper function of the

algorithm, for each test instance, the distances to every training

instance is calculated and emitted to the Reducer function.

 Also it is worth to mention that, benefiting from the

MapReduce Framework’s shuffling/sorting functionality, the

coded Reducer Function and the Value class, which defines the

value objects in the <Key, Value> pairs, are coded to have an

sorted list of the values according to the ascending order of the

distances.

 That is to say, each reducer receives a list that is already

sorted so that the reducers can directly take the first Z number of

elements from each class. Hence, with no extra cost, the Reducer

is able to use the already available proximity information.

 Repeating the centroid calculation for each class, the Z-KNN

Reducer calculates the class centroids using the first Z elements,

in other words closest Z training instances to the test instance to

be classified, the reducer ends up with a number of centroids as

many as the number of classes found among the K nearest

neighbors.

 The Z parameter contribution simply proposes that, instead of

using the complete class population to calculate a class center,

using only Z number of instances of a class, the reducer

calculates the centroid for that class with a much lower

computation cost and still maintaining a strong class

representation compared to relying on individual instance

proximities.

 Then, the classification decision will be given by the Z-KNN

reducer function, according to which centroid the test instance

have the minimum distance.

 In this way, the outliers in the class data will have less

significance and the decision will be based on a stronger

representation of the classes.

 The complete Z-KNN reducer function’s algorithm can be

seen in Algorithm 2.

III. THE EXPERIMENTAL SETUP AND THE RESULTS

A. The Experimental Setup

The MapReduce functions of the Z-KNN are coded in Sun

JAVA JDK 1.8 [19]. Z-KNN classification experiments are

conducted on a small cluster of HP Workstations installed with

Ubuntu Linux 16.04 and Apache Hadoop 2.7.4.

 To validate the classification scheme, for each dataset used

in the experiments, 10-fold cross validation is used, where

each test is repeated 10 times and the averages of the 10 tests

are considered so that the reliable results can be achieved.

 In the experiments, real datasets downloaded from UCI

Machine Learning Repository [20] are used. The 5 real datasets

that are used in the experiments are summarized in Table I.

TABLE I

THE REAL DATASETS USED IN THE EXPERIMENTS

Dataset Instances Features Classes

ionosphere 351 34 2

wdbc 569 32 2

wine 178 13 3

seeds 210 7 3

satimage 6435 36 7

pendigits 10992 16 10

B. Datasets Used In The Experiments

1) Ionosphere: Ionosphere data set is the data coming from the

classification of radar returns from the ionosphere. The dataset

contains 351 instances belonging to 2 classes. Each instance

contains values belonging to 34 features. This dataset is also

used in [14].

2) WDBC: The Wisconsin Diagnostic Breast Cancer WDBC)

was first used in [21]. The dataset contains 569 instances

belonging to 2 classes. Each instance contains values belonging

to 32 features. WDBC dataset is also used in [14].

108

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

3) Wine: Wine dataset contains data from chemical analysis

to determine the origin of wines. The dataset is composed of

178 instances in 3 classes containing 13 features. Wine dataset

is also used in the experiments of [14].

4) Seeds: The seeds dataset contains the measurements of

geometrical properties of kernels belonging to three different

varieties of wheat. The dataset contains 210 instances in 3

classes. Each instance is defined by the values of 7 features.

Seeds data set is first used in [22] and also investigated in [14].

5) Satimage: The Satimage dataset was generated from Landsat

Multi-Spectral Scanner image data. The dataset contains 6435

instances belonging to 7 classes. Each instance contains the data

of 36 features. Satimage dataset is also used by [12]–[14].

6) Pendigits: Pen-Based Recognition of Handwritten Digits Data

Set (pendigits) is a digit database of 250 samples from 44 writers

[23]. This dataset contains 10992 instances belonging to 10

classes. Each instance contains the data of 16 features. Pendigits

is also used by [12]–[14].

C. The Results

 In this section, the results acquired after extensive

experiments are presented. The performance of the Z-KNN

algorithm is measured in terms of classification accuracy, which

represents the ratio of the number of correct classifications to the

number of all classifications. The classification accuracy results

are given in Fig. 2.

 As the overall classification accuracy performance, it can be

seen in Fig. 2 that the Z-KNN managed to correctly detect the

class of more than 92% of the tested data in all of the data sets.

 Also, looking at the accuracy performance of the Z-KNN it

can be seen that, for the majority of the datasets, the Z-KNN

algorithm manages to detect the correct class of the test instances

with K values 5 or 7, without needing to analyze more number of

nearest neighbors and hence attaining a reasonable computation

cost.

As for the Z parameter, it can be observed that the Z-KNN

algorithm manages to achieve a high classification accuracy with

5 to 7 nearest neighbors in the class representation, which also

shows that the addition of the Z parameter does not increase the

computation cost significantly.

 Especially on Pendigits and Satimage datasets, which contain

higher number of instances, features and classes compared to

other datasets, it is worth to mention that by attaining Z values

smaller or equal to 7, Z-KNN shows realistic applicability also to

real big data applications.

 The accuracy performance of the proposed Z-KNN algorithm

and its comparison against the classical K-NN’s accuracy is

given in Table II.

TABLE II

CLASSICAL K-NN VS Z-KNN CLASSIFICATION ACCURACIES

Dataset Classical K-NN Z-KNN

Wine 0.8295 0.8320

Wdbc 0.6548 0.9507

Seeds 0.8424 0.9714

Ionosphere 0.6286 0.9203

Pendigits 0.978 0.9814

Satimage 0.9065 0.9285

 As it can be seen in Table II, The Z-KNN significantly

improves the accuracy performance of the Classical K-NN

algorithm in all data sets. In addition, the performance of the Z-

KNN algorithm is compared against two algorithms recently

proposed in [13-14]. The comparative results are presented in

Table III.
TABLE III

PERFORMANCE COMPARISONS

Dataset LC-KNN [13] SR-KNN [14] Z-KNN

Wine - 0.9707 0.8320

Wdbc - 0.965 0.9507

Seeds - 0.9019 0.9714

Ionosphere - 0.8971 0.9203

Pendigits 0.9721 0.9452 0.9814

Satimage 0.8883 0.8806 0.9285

Figure 2. The classification Accuracy Results for (a) Wdbc, (b) Seeds, (c) Ionosphere, (d) Pendigits , (e) Satimage and (f) Wine datasets

Z

K 3 5 7 9

5 0.9507 0.9443 0.9474 0.9443

7 0.9474 0.9443 0.9474 0.9443

9 0.9474 0.9443 0.9474 0.9443

11 0.9474 0.9478 0.9474 0.9443

(a) Wdbc Dataset

 Z

K 3 5 7 9

5 0.9524 0.9714 0.9714 0.9714

7 0.9524 0.9714 0.9714 0.9714

9 0.9524 0.9714 0.9714 0.9714

11 0.9524 0.9714 0.9714 0.9714

(b) Seeds Dataset

 Z

K 3 5 7 9

5 0.9199 0.9141 0.9147 0.9147

7 0.9196 0.9144 0.9203 0.9144

9 0.9196 0.9144 0.9203 0.9144

11 0.9196 0.9144 0.9203 0.9144

(c) Ionosphere Dataset

 Z

K 3 5 7 9

5 0.9220 0.9245 0.9245 0.9220

7 0.9235 0.9265 0.9270 0.9245

9 0.9250 0.9280 0.9285 0.9255

11 0.9240 0.9275 0.9285 0.9255

(e) Satimage Dataset

 Z

K 3 5 7 9

5 0.9797 0.9803 0.9803 0.9803

7 0.9803 0.9808 0.9808 0.9808

9 0.9803 0.9808 0.9811 0.9811

11 0.9806 0.9811 0.9814 0.9814

(d) Pendigits Dataset

 Z

K 3 5 7 9

5 0.7993 0.7974 0.8320 0.8203

7 0.7917 0.7974 0.8209 0.8092

9 0.7882 0.7973 0.8209 0.8092

11 0.7271 0.7379 0.7611 0.7608

(f) Wine Dataset

109

http://www.bajece.com/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

 As it can be seen in the performance comparisons, Z-KNN

performs better almost in all of the datasets compared to other

KNN based proposals, which is demonstrating that the proposed

Z instance representation significantly improves the accuracy

performance of the classical K-NN and some of its variations.

 The only dataset where the proposed Z-KNN algorithm is not

performing better than the competitors is the Wine dataset. From

the results, which were observed in [17], it can be deduced that

the low performance of the Z-KNN can be explained by the data

distribution features of the Wine dataset that can be remedied by

introducing the variance effect contribution to the similarity

analysis.

IV. THE CONCLUSION AND THE FUTURE WORKS

 In this paper a new K-NN based algorithm, named Z-KNN is

presented and the performance results are presented after

extensive experiments conducted on Hadoop MapReduce

environment.

 The performance results show that, the main contribution,

which proposes to use centroid representation of the data classes

instead of relying on individual instance distances, proves to

improve the classification accuracy over classical K-NN

algorithm.

 In the experiments, it was observed that the proposed Z-KNN

algorithm proves to be a strong competitor with its high

classification accuracy achieved for several different real

datasets.

 As the future works, it is planned to introduce the effect of

the variance to the distance calculation, from the study proposed

in [17]. It is expected that, especially the weakness that can be

seen in the wine data set can be significantly improved when

variance effect is introduced to the distance calculations.

 In addition, instead of the classical distance measure, a new

similarity measure will be introduced to the Z-KNN algorithm so

that the algorithm becomes applicable to any kind of

quantitative/categorical features containing datasets.

 As an immediate improvement, it is planned to improve the

Z instances usage during centroid calculations by introducing a

weighted contribution of the Z instances to the centroids. With

this improvement, it is expected that, especially if the weights of

the Z instances can be set or calculated effectively, the overall

classification accuracy of the Z-KNN algorithm can be improved

significantly.

 Lastly, after the planned future works, the Z-KNN algorithm

will be applied to other datasets containing number of instances

in the measure of 106 and above to further prove the algorithms

applicability to Big Data applications.

REFERENCES

[1] Klaus Schwab, "The Fourth Industrial Revolution", Crown Business, 2017.

[2] D. Singh and .K. Reddy, ”A survey on platforms for big data analytics”,

Journal of Big Data vol. 1, no. 8, 2014.

[3] P. Tan, M. Steinbach and V. Kumar, ”Introduction to Data Mining”, 1st ed.,

Reading, MA: Addison-Wesley, 2005.

[4] J. Dean, S. Ghemawat , ”MapReduce: A Flexible Data Processing Tool”,

Communications of the ACM, vol. 53 no. 1, pp.72-77, 2010.

[5] X. Wu et. Al., ”Top 10 algorithms in data mining”, Knowledge and

Information Systems,vol. 14, no. 1, pp 137, 2008.

[6] Fahad et. AL., ”A Survey of Clustering Algorithms for Big Data:

Taxonomy and Empirical Analysis”, IEEE Trans.on Emerging Topics in

Computing, vol. 2, no.3, pp. 267-279, 2014.

[7] S. Zhang, M. Zong and D. Cheng, ”Learning k for KNN Classification”,

ACM Transactions on Intelligent Systems and Technology, vol. 8, no. 3, pp.

43:1-19, 2017.

[8] K. Niu, F. Zhao and S. Zhang, ”A Fast Classification Algorithm for Big

Data Based on KNN”, Journal of Applied Sciences, vol. 13,no. 12, pp.

2208-2212, 2013.

[9] Bifet, J. Read, B. Pfahringer and G. Holmes, ”Efficient Data Stream

Classification via Probabilistic Adaptive Windows”, in Proc. 28th Annual

ACM Symposium on Applied Computing, 2013, pp. 801-806.

[10] S. S. Labib, ”A Comparative Study to Classify Big Data Using fuzzy

Techniques”, in Proc. 5th International Conference on Electronic Devices,

Systems and Applications (ICEDSA), 2016.

[11] M. El Bakry, S. Safwat and O. Hegazy, ”A Mapreduce Fuzzy technique of

Big Data Classification, in Proc. SAI Computing Conference 2016, pp. 118-

128.

[12] B. Quost and T. Denoeux, ”Clustering and Classification of fuzzy data

using the fuzzy EM algorithm”, Fuzzy Sets and Systems, vol. 286, pp. 134-

156, 2016.

[13] Z. Deng, X. Zhu, D. Cheng, M. Zong and S. Zhang, ”Efficient kNN

classification algorithm for big data”, Neurocomputing, vol.195, pp. 143-

148, 2016.

[14] S. Zhang, D. Cheng, M. Zong and L. Gao, ”Self representation nearest

neighbour search for classification”, Neurocomputing, vol.195, pp. 137-142,

2016

[15] G. Song, J. Rochas, L. El Beze, F. Huet and F. Magoules, ”K Nearest

Neighbour Joins for Big Data on MapReduce:A Theoretical and

Experimental Analysis”, IEEE Trans. on Knowledge and Data Engineering,

vol. 28, no. 9, pp. 2376-2392, 2016.

[16] J. Maillo, S. Ramirez, I. Triguero and F. Herrera, ”kNN-IS: An Iterative

Spark-based design of the k-Nearest Neighbours classifier for big data”,

Knowledge-Based Systems, vol. 117, pp. 3-15, 2017.

[17] T.Tulgar, A.haydar and İ.Erşan, "Data Distribution Aware Classification

Algorithm based on K-Means", International Journal of Advanced

Computer Science and Applications, Article in Press, 2017.

[18] T. White, "Hadoop: A Definitive Guide", 4th ed., O'Reilly, 2015.

[19] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, (2017,AUG 01). The

Java Language Specification-Java SE 8 Edition Online. Available:

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

[20] UCI Center for Machine Learning and Intelligent Systems, (2017, AUG

01). UC Irvine Machine Learning RepositoryOnline.Available:

https://archive.ics.uci.edu/ml/

[21] O.L. Mangasarian, W.N. Street and W.H. Wolberg, “Breast cancer

diagnosis and prognosis via linear programming”, Operations Research,

vol. 43, no. 4, pp. 570-577, July-August 1995.

[22] M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik,

S. Zak, “A Complete Gradient Clustering Algorithm for Features Analysis

of X-ray Images”, Information Technologies in Biomedicine, Springer-

Verlag, Berlin-Heidelberg, pp. 15-24, 2010.

[23] F. Alimoglu, E. Alpaydin, “Methods of Combining Multiple Classifiers

Based on Different Representations for Pen-based Handwriting

Recognition”, in Proc. Fifth Turkish Artificial Intelligence and Artificial

Neural Networks Symposium (TAINN 96), June 1996.

110

http://www.bajece.com/
https://archive.ics.uci.edu/ml/

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 6, No. 2, April 2018

Copyright © BAJECE ISSN: 2147-284X http://www.bajece.com

BIOGRAPHIES

Tamer Tulgar received his B.Sc. degree

in Computer Engineering and the M.Sc.

degree in Computer Engineering from

the Eastern Mediterranean University in

1999 and 2001, respectively. He has a

Ph.D. degree in Computer Engineering

from the Eastern Mediterranean

University (2008) in the area of Cellular

Wireless Communication. Tamer Tulgar

worked as a Research Assistant in Eastern Mediterranean

University during his Graduate Studies. Upon receiving his

Ph.D. degree, he joined the the Girne Ameircan University,

Department of Computer Engineering staff, where he

currently works as Associate Professor. His research interests

include Wireless Communication, Computer Networks, Data

Mining, Machine Learning and currently Big Data Analysis.

Ali Haydar received the B.Sc. degree in

Electrical and Electronics Engineering

and the M.Sc. degree in Electrical and

Electronics Engineering from the Middle

East Technical University in 1991 and

1994, respectively. He has a Ph.D. degree

in Electrical and Electronics Engineering

from the Eastern Mediterranen University

(1999). He has worked in the research labs of TÜBİTAK

during his graduate studies in a project in the field of speech

recognition. His research interests include Artificial Neural

Networks, Speech Recognition, Optimization, Fuzzy Logic

and Data Analysis.

İbrahim Erşan, was born in Nicosia,

North Cyprus, in 1974. He received the

B.Sc. and M.Sc. degrees in electrical and

electronic engineering from Eastern

Mediterranean University (EMU),

Famagusta, in 2000 and the Ph.D. degree

in computer engineering from Girne

American University (GAU), Kyrenia, in

2012. In 1997, he was an assistant lecturer in EMU, Electrical

and Electronics Engineering Department. From 1998 to 2001,

he was a research assistant in EMU, Information Technologies

Research and Development laboratory. From 2001 to 2005, he

was working in construction industry as electrical engineer

and project manager. Since 2006, he is working in GAU and

since 2017, he is an Associated Professor in Computer

Engineering Department. He is currently the head of

Computer Engineering Department. He is the author of more

than 15 articles. His research interests include decision support

systems, machine learning, neural networks and big data.

111

http://www.bajece.com/

