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Abstract—The K-Nearest Neighbor classifier is a well-known 

and widely applied method in data mining applications. 

Nevertheless, its high computation and memory usage cost makes 

the classical K-NN not feasible for today’s Big Data analysis 

applications. To overcome the cost drawbacks of the known data 

mining methods, several distributed environment alternatives 

have emerged. Among these alternatives, Hadoop MapReduce 

distributed ecosystem attracted significant attention. Recently, 

several K-NN based classification algorithms have been proposed 

which are distributed methods tested in Hadoop environment 

and suitable for emerging data analysis needs. In this work, a 

new distributed Z-KNN algorithm is proposed, which improves 

the classification accuracy performance of the well-known K-

Nearest Neighbor (K-NN) algorithm by benefiting from the 

representativeness relationship of the instances belonging to 

different data classes. The proposed algorithm relies on the data 

class representations derived from the Z data instances from 

each class, which are the closest to the test instance. The Z-KNN 

algorithm was tested in a physical Hadoop Cluster using several 

real-datasets belonging to different application areas. The 

performance results acquired after extensive experiments are 

presented in this paper and they prove that the proposed Z-KNN 

algorithm is a competitive alternative to other studies recently 

proposed in the literature 

 

Index Terms—Big Data Classification, Hadoop, K-Nearest 

Neighbor, MapReduce.  

 

 

I.    INTRODUCTION 

 

n the age of the fourth industrial revolution, business’s 

decision-making is highly based on the data retrieved by the 

internet-connected devices that are capable of collecting and 

processing ever-growing amounts of information [1]. 
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To achieve precise forecasts, data coming from different 

environments (e.g. different social media tools, data 

warehouses, cloud storages etc.) need to be intelligently 

analyzed by businesses.  

Analyzing data retrieved from numerous data sources 

results in tackling with vast amounts of unstructured raw data, 

which are big in terms of volume, variety and velocity of 

acquisition. The process of analyzing such data is recently a 

popular research area, known as the Big Data Analysis [2]. 

One of the most important data mining tasks is 

classification. Classification, which is the task of assigning 

objects to one of several predefined categories, is a pervasive 

problem that encompasses many diverse applications [3].  

To classify data in the big data age, centralized techniques 

lack the low classification delay performance, which is vital to 

cope with the high velocity data streams of big data. 

    To deal with this timing requirement of the modern data 

classification, several distributed ecosystems have been tested 

and used by different researches. One of these distributed 

ecosystems is popularly known as the Apache Hadoop and the 

Google’s MapReduce Framework [4]. 

    K Nearest Neighbor Classification (K-NN) has been one of 

the most popular classification algorithms [5]. The classical K-

NN algorithm is based on calculating the distances between 

the test data instance to be classified and all of the instances in 

the training data set and finding the closest K number of 

training instances. After detecting the K number of closest 

training instances, the K-NN algorithm applies majority voting 

which is the process of detecting the data class with the 

maximum number of instances among the K selected 

instances.  

Since the classical K-NN algorithm is completely based on 

individual instance proximities, it heavily suffers from high 

computation costs. In addition, since the algorithm’s decision-

making strategy is relying on the individual instance 

proximities rather than stronger class representations, the 

algorithm’s classification accuracy is also not adequate for 

modern big data analysis that requires rapid and accurate 

classification results. 

    On the other hand, K-NN’s individual instance distances 

strategy makes K-NN a strong candidate for distributed data 

classification, which is the basis of achieving acceptably low 

classification delays while classifying big data. 

     Taking into account the K-NN’s suitability to distributed 

environments, many K-NN based studies which try to improve 

the K-NN algorithms performance, and working on Hadoop 
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and MapReduce environment have been recently proposed in 

the literature [6-16]. 

     In this paper, a new K-NN and MapReduce based 

algorithm is proposed named as the Z-KNN algorithm. The Z-

KNN algorithm tries to remedy the classification accuracy 

performance of the classical K-NN classifier.  

     The main idea of the Z-KNN algorithm is to base the 

classification decision of the classical K-NN algorithm on the 

class representations by calculating the centroids of the closest 

Z training instances belonging to the classes of the K closest 

instances detected by the K-NN algorithm. In other words, the 

classical majority voting approach is replaced by a stronger 

classification decision, which is also computationally not 

expensive. 

      The rest of this paper is organized as follows: Section II 

presents the proposed Z-KNN algorithm in detail. The 

experimental setup and the achieved performance results are 

presented in section III. Finally, the section IV concludes the 

paper and states the future works. 

 

 

II.    THE PROPOSED Z-KNN ALGORITHM  

 

    In this section, the proposed Z-KNN algorithm and its 

MapReduce application will be explained. 

 

A.    The Classical K-NN Algorithm 

In a classification task, if a data instance is considered as a 

vector of feature values, then a data instance i can be denoted as 

vi which corresponds to a vector containing p features <feat1, 

feat2,...,featp>. Hence, a classification task can be defined as 

detecting the correct data classes of n test data instances 

tsv1,..tsvn by using m training data instances trv1,…trvm. 

The classical K-NN algorithm is based on the simple idea of 

calculating the distances between a test data to be classified and 

all of the m number of data instances in the training set. After 

calculating all of the distances, the classical K-NN sorts the 

measured distances and uses the first K number of training 

Neighbors of the tested data. 

The classification decision is then given by detecting which 

data class has the most number of instances among the selected 

K nearest neighbors, which is known as the majority voting.  

As it can be deduced from the summary of the classical K-NN 

algorithm given above, the whole decision is based on the 

individual instance distances between all tsvi and trvj’s. 

Since the calculation of the instance distances is an 

independent task, being able to distribute the distance 

calculations to several processes makes the K-NN strategy 

suitable for distributed environments.  

On the other hand, especially when a data set with high 

number of instances and high number of features per instance 

needs to be classified, the classical K-NN algorithm’s 

classification accuracy performance becomes lower than its other 

well-known competitors, like K-Means classification [17]. 

Hence, it can be deduced that to become a classification 

algorithm suitable for modern data analysis needs, the K-NN’s 

classification accuracy performance should be improved on a 

distributed environment. 

Taking into account these needs, the Z-KNN algorithm is 

proposed and explained in sub-section B 

 

B.     The Z-KNN Algorithm 

     The proposed Z-KNN algorithm is a distributed K-NN based 

classification algorithm, which is designed to work on  

MapReduce environment. 

Hadoop MapReduce is a software framework for easily 

writing applications that process vast amounts of data in-parallel 

on large clusters of commodity hardware in a reliable, fault-

tolerant manner [18]. 

A MapReduce job usually splits the input data-set into 

independent chunks which are processed by the map tasks in a 

completely parallel manner. The framework sorts the outputs of 

the maps, which are then input to the reduce tasks. Typically 

both the input and the output of the job are stored in a file-

system. The framework takes care of scheduling tasks, 

monitoring them and re-executes the failed tasks [18]. 

      In the MapReduce framework, any distributed task is 

designed as a combination of at least three functions: The Driver, 

Mapper and Reducer functions, which are inherited from the 

corresponding MapReduce classes [18]. 

 

     The MapReduce framework of the Z-KNN algorithm for m 
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Figure 1. MapReduce Flow of the Z-KNN algorithm 

106

http://www.bajece.com/


BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 6, No. 2, April 2018                                               

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                                http://www.bajece.com        

 

number of instances in the training data set and n number of 

instances in the testing data set is presented in Figure 1. 

      As it can be seen in Figure 1, the Z-KNN algorithm’s sub 

tasks are composed of the Mapper and the Reducer functions of 

the well-known MapReduce Framework. 

     The Mapper function is responsible of receiving the training 

data set splits from the MapReduce Driver, which is the main 

function for configuring the environment and managing the 

distributed processing running on top of the Hadoop framework, 

and calculating the distances between the testing instance to be 

processed and the training instances found in the received 

training data split. 

     According to the MapReduce Framework, the output of the 

Mapper function should be a <Key, Value> vector [18]. In the Z-

KNN algorithm, the output Key of the Mapper is the testing 

instance id and the value is an object, which contains the used 

training instance, the distance between the testing and the 

training instances and the class id that the training instance 

belongs to.  

     Afterwards, the MapReduce framework shuffles the output 

<Key, Value> pairs emitted by the mapper functions so that the 

pairs with common keys are submitted to the same reducer 

function. In other words, a single reducer will process all of the 

calculated distances belonging to the same testing instance. 

 

1)   The Mapper Function:  

     As explained above the mapper function is responsible of 

calculating the distances between the training and testing 

instances. The complete algorithm of the Z-KNN mapper 

function can be found in Algorithm 1. 

         As an example to distance calculation, if a single testing 

instance tsi and a single training instance trj are considered, than 

the distance between these two instances is calculated by 

Equation (1). 

 

                       (1) 

         

       

If we assume that the class id of the training instance trj is class 

A, then the output of a Z-KNN mapper becomes; 

 <tsi , <trj,  distij,  class A>> . 

 

 

2)  The Reducer Function:  

     The reducer function contains the classification decision 

phase for the test instances, where the main contribution of the 

proposed Z-KNN algorithm can be seen. 

      The input of the reducer function is a list of all of the <key1, 

value1> pairs emitted by the mapper function of the MapReduce 

framework. It is worth to mention again that a single reducer 

receives the list of pairs belonging to a common key value. In 

other words, a single reducer receives the distances of a single 

test instance to all of the training instances calculated by the 

mappers. 

      Upon receiving the input, the reducer function finds the K 

closest neighbors from all of the training instances by examining 

the minimum K distances among all the values in the list. Next, 

the Z-KNN reducer detects to which classes these K neighbors 

belong (e.g. class A, class B and class C).  

      

     The main contribution in Z-KNN classifier depends on 

Algorithm 1: Z-KNN Mapper Function()   

Input: <key, value> 

key : the record id of the training instance 

value: the set of feature values of the training instance 

 

Output to MapReduce Env. : <key1, value1> 

key1: the record id of the test instance 

value1: a vector containing the training instance id, distance 

and the class id of the training instance 

 

1: class_tr = readClassId(value) 

2: for i=1 to n 

3:      //the loop to iterate each test instance 

4:      distij = DistanceFunction(trj, tsi) 

5:      Context.write(i, object <trj , distij , class_tr>) 

6: end for 

7: return   

 

Algorithm 2: Z-KNN Reducer Function()   

Input: <key1, <List value1’s> distances> 

key1 : the record id of the test instance 

value1: an object which contains <trj , distij , class_trj> 

distances: List of all value1s  

 

Output to MapReduce Env. : <key2, value2> 

key2: the record id of the test instance 

value2: the decided class id for test instance i 

 

1: Sort_ascending(distances)  

2: new LinkedList K_distances 

3: new LinkedList Classes 

4: new LinkedList Z_instances 

4: for i=1 to K 

5:      K_distances.add(distances.get(i)) 

6: end for 

7: for all dist  K_distances 

8:      if dist.getclass() classes 

9:             classes.add(dist.getclass()) 

10:    end if 

11: end for 

12: for all class_id classes 

13:      Z_instances.clear() 

14:      for i=1 to Z 

15:             if distances.get(i).getclass() = class_id  

16:                   Z_distances.add(distances.get(i)) 

17:             end if 

18:       end for 

19:                                                       

20:      if DistanceFunction(µ,key1) < min 

21:            min = DistanceFunction(µ,key1) 

22:            decided_class_id = class_id 

23:      end if 

24: end for 

25: key2 = key1 

26: value2 = decided_class_id 

27: Context.write(key2, value2) 

28: return   
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correctly representing the detected classes A, B and C rather than 

relying only on the distances to the individual training data 

instances. The main motivation of this strategy is fueled by the 

fact that, when the size of the data is big and especially when the 

data is represented by multiple number of classes and large 

number of features, some data may have similar proximity to 

different classes instances. In such cases, the minimum distance 

from the individual instances may not correctly mean that the 

test instance will belong to that same class. Please consider the 

following example as a sample case: 

      

     Let assume that K is 5 and the following values are emitted to 

the reducer for test instance 9. Also, for the sake of example, let 

us assume that the test instance 9 should be classified to class B: 

 

<ts9, <tr3, 0.11, A> 

<ts9, <tr11, 0.14, B> 

<ts9, <tr27, 0.15, B> 

<ts9, <tr23, 0.12, C> 

<ts9, <tr42, 0.12, A> 

 

     In this case, because of majority voting, the classical K-NN 

algorithm will conclude that the test instance 9 belongs to class 

A. The majority voting strategy of the classical K-NN will end 

up at this decision since class A and class B has equal number of 

instances among the K nearest neighbors, and the class A 

contains an instance, which has the closest proximity to the 

testing instance. 

      Nevertheless, the same class A has an instance, which is 

further away from the class B instances to the test instance 9. 

      To give equal chances to classes in the classification 

decision, Z-KNN proposes to represent the classes A, B and C 

among the K nearest neighbors by centroids and base the 

classification decision on the distance of the test instance to the 

centroids of the classes rather than relying on the individual data 

members’ proximities. 

          To decrease the computation overhead of the proposed 

proximity to the centroid representation strategy, in the Z-KNN 

algorithm, a parameter Z is introduced.  

     The parameter Z in the Z-KNN classifier is the number of 

instances from each of the classes A, B and C that have the 

closest distances to the test instance. 

     As it was explained earlier in the Mapper function of the 

algorithm, for each test instance, the distances to every training 

instance is calculated and emitted to the Reducer function.  

     Also it is worth to mention that, benefiting from the 

MapReduce Framework’s shuffling/sorting functionality, the 

coded Reducer Function and the Value class, which defines the 

value objects in the <Key, Value> pairs, are coded to have an 

sorted list of the values according to the ascending order of the 

distances.  

     That is to say, each reducer receives a list that is already 

sorted so that the reducers can directly take the first Z number of 

elements from each class. Hence, with no extra cost, the Reducer 

is able to use the already available proximity information.  

      Repeating the centroid calculation for each class, the Z-KNN 

Reducer calculates the class centroids using the first Z elements, 

in other words closest Z training instances to the test instance to 

be classified, the reducer ends up with a number of centroids as 

many as the number of classes found among the K nearest 

neighbors. 

     The Z parameter contribution simply proposes that, instead of 

using the complete class population to calculate a class center, 

using only Z number of instances of a class, the reducer 

calculates the centroid for that class with a much lower 

computation cost and still maintaining a strong class 

representation compared to relying on individual instance 

proximities.    

      Then, the classification decision will be given by the Z-KNN 

reducer function, according to which centroid the test instance 

have the minimum distance.  

      In this way, the outliers in the class data will have less 

significance and the decision will be based on a stronger 

representation of the classes. 

     The complete Z-KNN reducer function’s algorithm can be 

seen in Algorithm 2. 

 

 

III.    THE EXPERIMENTAL SETUP AND THE RESULTS 

 

A.    The Experimental Setup 

The MapReduce functions of the Z-KNN are coded in Sun 

JAVA JDK 1.8 [19]. Z-KNN classification experiments are 

conducted on a small cluster of HP Workstations installed with 

Ubuntu Linux 16.04 and Apache Hadoop 2.7.4.  

      To validate the classification scheme, for each dataset used 

in the experiments, 10-fold cross validation is used, where 

each test is repeated 10 times and the averages of the 10 tests 

are considered so that the reliable results can be achieved.  

  In the experiments, real datasets downloaded from UCI 

Machine Learning Repository [20] are used. The 5 real datasets 

that are used in the experiments are summarized in Table I. 
 

TABLE I 

THE REAL DATASETS USED IN THE EXPERIMENTS 

 

Dataset Instances Features Classes 

ionosphere 351 34 2 

wdbc 569 32 2 

wine 178 13 3 

seeds 210 7 3 

satimage 6435 36 7 

pendigits 10992 16 10 

 

B.    Datasets Used In The Experiments 

1) Ionosphere: Ionosphere data set is the data coming from the 

classification of radar returns from the ionosphere. The dataset 

contains 351 instances belonging to 2 classes. Each instance 

contains values belonging to 34 features. This dataset is also 

used in [14]. 

 

2) WDBC: The Wisconsin Diagnostic Breast Cancer WDBC) 

was first used in [21]. The dataset contains 569 instances 

belonging to 2 classes. Each instance contains values belonging 

to 32 features. WDBC dataset is also used in [14]. 
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3) Wine: Wine dataset contains data from chemical analysis 

to determine the origin of wines. The dataset is composed of 

178 instances in 3 classes containing 13 features. Wine dataset 

is also used in the experiments of [14]. 

 

4) Seeds: The seeds dataset contains the measurements of 

geometrical properties of kernels belonging to three different 

varieties of wheat. The dataset contains 210 instances in 3 

classes. Each instance is defined by the values of 7 features. 

Seeds data set is first used in [22] and also investigated in [14]. 

 

5) Satimage: The Satimage dataset was generated from Landsat 

Multi-Spectral Scanner image data. The dataset contains 6435 

instances belonging to 7 classes. Each instance contains the data 

of 36 features. Satimage dataset is also used by [12]–[14]. 

 

6) Pendigits: Pen-Based Recognition of Handwritten Digits Data 

Set (pendigits) is a digit database of 250 samples from 44 writers 

[23]. This dataset contains 10992 instances belonging to 10 

classes. Each instance contains the data of 16 features. Pendigits 

is also used by [12]–[14]. 

 

C.    The Results 

     In this section, the results acquired after extensive 

experiments are presented. The performance of the Z-KNN 

algorithm is measured in terms of classification accuracy, which 

represents the ratio of the number of correct classifications to the 

number of all classifications. The classification accuracy results 

are given in Fig. 2.       

      As the overall classification accuracy performance, it can be 

seen in Fig. 2 that the Z-KNN managed to correctly detect the 

class of more than 92% of the tested data in all of the data sets. 

     Also, looking at the accuracy performance of the Z-KNN it 

can be seen that, for the majority of the datasets, the Z-KNN 

algorithm manages to detect the correct class of the test instances 

with K values 5 or 7, without needing to analyze more number of 

nearest neighbors and hence attaining a reasonable computation 

cost.  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As for the Z parameter, it can be observed that the Z-KNN 

algorithm manages to achieve a high classification accuracy with 

5 to 7 nearest neighbors in the class representation, which also 

shows that the addition of the Z parameter does not increase the 

computation cost significantly. 

     Especially on Pendigits and Satimage datasets, which contain 

higher number of instances, features and classes compared to 

other datasets, it is worth to mention that by attaining Z values 

smaller or equal to 7, Z-KNN shows realistic applicability also to 

real big data applications.   

      The accuracy performance of the proposed Z-KNN algorithm 

and its comparison against the classical K-NN’s accuracy is 

given in Table II. 

 
TABLE II 

CLASSICAL K-NN VS Z-KNN CLASSIFICATION ACCURACIES 

 

Dataset Classical K-NN Z-KNN 

Wine 0.8295 0.8320 

Wdbc 0.6548 0.9507 

Seeds 0.8424 0.9714 

Ionosphere 0.6286 0.9203 

Pendigits 0.978 0.9814 

Satimage 0.9065 0.9285 

 

      As it can be seen in Table II, The Z-KNN significantly 

improves the accuracy performance of the Classical K-NN 

algorithm in all data sets. In addition, the performance of the Z-

KNN algorithm is compared against two algorithms recently 

proposed in [13-14]. The comparative results are presented in 

Table III. 
TABLE III 

PERFORMANCE COMPARISONS 

 

        

Dataset LC-KNN [13] SR-KNN [14] Z-KNN 

Wine - 0.9707 0.8320 

Wdbc - 0.965 0.9507 

Seeds - 0.9019 0.9714 

Ionosphere - 0.8971 0.9203 

Pendigits 0.9721 0.9452 0.9814 

Satimage 0.8883 0.8806 0.9285 

Figure 2. The classification Accuracy Results for (a) Wdbc, (b) Seeds, (c) Ionosphere, (d) Pendigits , (e) Satimage and (f) Wine datasets 

 

Z 

K 3 5 7 9 

5 0.9507 0.9443 0.9474 0.9443 

7 0.9474 0.9443 0.9474 0.9443 

9 0.9474 0.9443 0.9474 0.9443 

11 0.9474 0.9478 0.9474 0.9443 

( a ) Wdbc Dataset 

 

  Z 

K 3 5 7 9 

5 0.9524 0.9714 0.9714 0.9714 

7 0.9524 0.9714 0.9714 0.9714 

9 0.9524 0.9714 0.9714 0.9714 

11 0.9524 0.9714 0.9714 0.9714 

( b ) Seeds Dataset 

 

  Z 

K 3 5 7 9 

5 0.9199 0.9141 0.9147 0.9147 

7 0.9196 0.9144 0.9203 0.9144 

9 0.9196 0.9144 0.9203 0.9144 

11 0.9196 0.9144 0.9203 0.9144 

( c ) Ionosphere Dataset 

 
  Z 

K 3 5 7 9 

5 0.9220 0.9245 0.9245 0.9220 

7 0.9235 0.9265 0.9270 0.9245 

9 0.9250 0.9280 0.9285 0.9255 

11 0.9240 0.9275 0.9285 0.9255 

( e ) Satimage Dataset 

 

  Z 

K 3 5 7 9 

5 0.9797 0.9803 0.9803 0.9803 

7 0.9803 0.9808 0.9808 0.9808 

9 0.9803 0.9808 0.9811 0.9811 

11 0.9806 0.9811 0.9814 0.9814 

( d ) Pendigits Dataset 

 

  Z 

K 3 5 7 9 

5 0.7993 0.7974 0.8320 0.8203 

7 0.7917 0.7974 0.8209 0.8092 

9 0.7882 0.7973 0.8209 0.8092 

11 0.7271 0.7379 0.7611 0.7608 

( f ) Wine Dataset 
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      As it can be seen in the performance comparisons, Z-KNN 

performs better almost in all of the datasets compared to other 

KNN based proposals, which is demonstrating that the proposed 

Z instance representation significantly improves the accuracy 

performance of the classical K-NN and some of its variations. 

     The only dataset where the proposed Z-KNN algorithm is not 

performing better than the competitors is the Wine dataset. From 

the results, which were observed in [17], it can be deduced that 

the low performance of the Z-KNN can be explained by the data 

distribution features of the Wine dataset that can be remedied by 

introducing the variance effect contribution to the similarity 

analysis. 

 

 

IV.    THE CONCLUSION AND THE FUTURE WORKS 
 

     In this paper a new K-NN based algorithm, named Z-KNN is 

presented and the performance results are presented after 

extensive experiments conducted on Hadoop MapReduce 

environment. 

     The performance results show that, the main contribution, 

which proposes to use centroid representation of the data classes 

instead of relying on individual instance distances, proves to 

improve the classification accuracy over classical K-NN 

algorithm. 

     In the experiments, it was observed that the proposed Z-KNN 

algorithm proves to be a strong competitor with its high 

classification accuracy achieved for several different real 

datasets. 

      As the future works, it is planned to introduce the effect of 

the variance to the distance calculation, from the study proposed 

in [17]. It is expected that, especially the weakness that can be 

seen in the wine data set can be significantly improved when 

variance effect is introduced to the distance calculations. 

      In addition, instead of the classical distance measure, a new 

similarity measure will be introduced to the Z-KNN algorithm so 

that the algorithm becomes applicable to any kind of 

quantitative/categorical features containing datasets. 

      As an immediate improvement, it is planned to improve the 

Z instances usage during centroid calculations by introducing a 

weighted contribution of the Z instances to the centroids. With 

this improvement, it is expected that, especially if the weights of 

the Z instances can be set or calculated effectively, the overall 

classification accuracy of the Z-KNN algorithm can be improved 

significantly. 

     Lastly, after the planned future works, the Z-KNN algorithm 

will be applied to other datasets containing number of instances 

in the measure of 106 and above to further prove the algorithms 

applicability to Big Data applications. 
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