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ABSTRACT

Spectrum auctions are very important for the strategic allocation of frequency bands in the
telecommunications industry, ensuring efficient and fair access to this valuable resource.
However, the complexity of auction environments—characterized by vast state spaces and
multidimensional bid attributes—renders manual bid verification infeasible. This study
introduces an innovative, data-driven approach by utilizing machine learning models, including
k-nearest neighbors, support vector machines, decision trees, and stochastic gradient descent
classifiers, to automate the verification process. Through hyperparameter tuning and rigorous
k-fold cross-validation, the decision tree model emerged as the most effective, achieving an F1-
score of 96% and a G-Mean of 97%. These results demonstrate the practical viability of Al-
enhanced verification systems in spectrum auctions and suggest broader applicability across
various high-stakes auction platforms where real-time, reliable validation is essential.

Keywords:  Classification, Machine learning, Spectrum auctions.

1 INTRODUCTION

Spectrum auctions play a crucial role in frequency allocations, especially in the
telecommunications sector, ensuring the efficient and fair allocation of frequency bands.
However, these processes are quite complex and require processing large amounts of data to
verify bids from bidders. Traditional spectrum auction methods are computationally expensive
and time-consuming, and errors in these processes can negatively impact auction outcomes.
Therefore, optimizing verification of spectrum auctions for speed and reliability is essential to

improving the overall efficiency and fairness of the auction process.
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Numerous studies have explored spectrum auction in literature. Bailey investigated
price prediction in art auctions and its impact on the art market [1]. The study compared image-
based models, such as Convolutional Neural Networks (CNNs), with text-based and numerical
data analysis models. Results showed that image-based models had lower performance.
Rodriguez et al. examined collusion in public sector auctions, where companies secretly agree
on bid prices for future auctions [2]. Using datasets from five countries—Brazil, Italy, Japan,
Switzerland, and the United States—the study applied eleven machine learning algorithms. The
top-performing models were Extra Trees (83%—86% precision), Random Forest (RF) (80%—
84%), and AdaBoost (78%—82%). Imhof et al. focused on detecting cartel involvement in
auctions by developing an algorithm to identify bid manipulation [3]. Datasets from Japan,
Italy, and Switzerland were analyzed using four machine learning algorithms. The Super
Learner algorithm achieved the highest classification accuracy at 90.5%. Abidi et al. studied
shill bidding—fraudulent participation in auctions to drive up prices [4]. They developed the
Dynamic Fused Machine Learning for Shill Bidding (DFM-SB) model, which combines
multiple algorithms, including Artificial Neural Network (ANN), Support Vector Machines
(SVM), Decision Tree (DT), and RF. The DFM-SB model achieved an accuracy of 99.8%.
Zhang et al. addressed low participation and irrational bidding in IoT auctions by introducing a
multi-round bidding mechanism based on a second-price sealed bid auction [5]. They
implemented five machine learning algorithms: Ordered Value (OV) regression, OV neural
networks, an auction screening model, a difference-of-convex algorithm, and a double deep Q-
network. OV regression performed best on linear datasets (mean deviation: 35.3 + 0.4), while
the auction screening model excelled on non-linear datasets (mean deviation: 39.1 £+ 0.7).
Prathuri et al. applied machine learning to estimate the cost of selling players in sports leagues
[6]. Their framework incorporated six regression models: DT regressor, k-Nearest Neighbors
(kNN), Linear Regression, Stochastic Gradient Descent (SGD), RF regressor, and Support
Vector Regression (SVR). SVR and Linear Regression provided the best results. Kusonkhum
et al. used classification techniques to predict over-budget prices in Thai government
construction projects [7]. The study applied kNN, ANN, and DT algorithms, achieving
accuracies of 75%, 77.6%, and 77.3%, respectively.

As evident from the detailed literature review, while there are studies related to the
Spectrum Auction dataset, most have focused on auction duration. Some studies focus on
prediction of outcomes as well, e.g. [8] applied Fuzzy Neural Networks to the same dataset with

mentionable accuracy, but their work did not particularize on analyzing model behaviors under
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class imbalances. Similarly, [9] addressed spectrum auctions by swarm learning method,
however their work did not analyze general machine learning algorithms such as SVM. Apart
from these studies, our study, aims to predict verification results in spectrum auctions (i.e.,
verification.result), with efficient machine learning algorithms. To achieve this, four machine
learning algorithms— SGDClassifier, DT, kNN, and SVM—were applied. Algorithm-specific
hyperparameter optimization was performed to enhance performance. The model's
effectiveness was evaluated using F1-Score and G-Mean metrics since those metrics are more

compatible with imbalanced data.

The structure of this article is as follows: Section 2, a literature review of the dataset
used in this study is given. Section 3 provides a detailed explanation of the dataset. Section 4
introduces the benchmarked machine learning algorithms. Section 5 discusses performance
metrics, feature importance, and experimental results. Finally, Section 6 presents conclusions

and recommendations for future research.

2 LITERATURE REVIEW

Similar studies have been conducted in literature using the dataset employed in this
research. In spectrum auction, two key applications can be performed: estimating the auction

duration and predicting the auction outcome.

Ordoni et al. conducted a study focusing on dataset explanation and the prediction of
both auction duration and auction outcomes [10]. The performance of the RF method was
evaluated using the Matthews Correlation Coefficient (MCC) metric. In another study, Ordoni
et al. proposed an algorithm for validating process models that support data value changes [11].
This algorithm addresses the state space explosion problem by utilizing binary coding and
Binary Decision Diagrams (BDD) to transform data value functions into Petri Nets. Fischer et
al. analyzed auction duration in their OpenML-CTR23 benchmark package [12]. They
evaluated five machine learning models—XGBoost, RF, a generalized additive model, ridge
regression, and a regression tree—using root mean square error (RMSE) values, which were
0.394, 2.972, 6.140, 6.301, and 3.155, respectively. Tan proposed a method to enhance
regression tree performance by introducing outlier detection [13]. Initially, a regression tree
model was built using training data, and predictions significantly deviating from the terminal
node’s mean were labeled as outliers. These outliers were used in an outlier detection algorithm,
and during testing, their predictions were discarded, improving the model’s performance. The

Mean Absolute Error (MAE) decreased from 1508 + 105 to 1157 + 189 after removing outliers.
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Tajabadi et al. introduced a framework that enables nodes to obtain personalized models based
on their contribution rates, serving as a fair reward mechanism in Swarm Learning (SL) systems
[9]. Two machine learning methods—Deep Learning (DL) and RF—were used. DL models,
including VGGS8 and EfficientNetV2S, were trained on datasets such as CIFAR-10, CIFAR-
100, Fashion-MNIST, and Reuters Newsletter using transfer learning. RF performance was
assessed using the MCC metric, showing a 23% increase in MCC values as contribution rates
rose in the spectrum auction dataset. The study demonstrated that higher contributions led to
better model performance and encouraged collaboration. Campos Souza et al. investigated
spectrum auction and the use of Fuzzy Neural Networks (FNNs) for improved fraud detection
and expertise extraction [8]. They implemented a three-layer FNN integrating Gaussian
neurons, fuzzy rules, and Leaky-ReLU activation functions. Comparative analysis with
conventional machine learning methods—Naive Bayes, Neural Networks, SVM, kNN, and
DT—showed that FNN achieved superior performance, with an accuracy of 96.21%, specificity

0f 90.4%, and an area under the curve (AUC) of 93.7%.

3 DATASET

This study utilizes the Spectrum Auction dataset from the UCI Machine Learning
Repository [10], which contains extensive data on the German 4G spectrum auction. While the
dataset includes approximately 130,000 validation records defining specific targets and
features, it comprises only 2,043 unique feature-value combinations. Approximately 13% of

the samples had correct verification results, while the rest were incorrect.

The dataset captures various data objects and their values, representing different stages
of the auction process. Each object is described by a set of properties reflecting its state at a
given phase of the auction. For example, attributes such as the frequency band may be modified
or supplemented with additional attributes as the auction progresses. This dynamic structure

enables the dataset to reflect the evolving nature of auction objects.

The dataset includes two target variables: verification.time, representing the auction
duration, and verification.result, indicating the auction outcome. This study focuses on

predicting verification.result. Details of the dataset features are provided in Table 1.
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Table 1. Details of the dataset

Variable Name Description
process.bl.capacity Maximum number of bids Bidder 1 can win.
process.b2.capacity Maximum number of bids Bidder 2 can win.
process.b3.capacity Maximum number of bids Bidder 3 can win.
process.b4.capacity Maximum number of bids Bidder 4 can win.

property.price Verified price of the product.
property.product Verified product in the auction.
property.winner Winner of the bid.
verification.result Verification outcome whether the verified outcome is
possible or not.
verification.time Duration of the auction.

The pre-processing steps that are used in this study contain different approaches than
other studies. This study focuses on verification.result, rather than verification.time, which [10]
and [8] have been focused. This required special attention to the unbalanced class structure of
the dataset (around 13% correct validation results). To address this imbalance dataset,
traditional balancing methods (e.g., over-sampling or under-sampling) were not applied, instead
opting for metrics for model evaluation that are more compatible with imbalanced datasets,
such as F1-Score and G-Mean. The normalization steps applied to the dataset in other studies
were deliberately restricted to evaluate the performance of algorithms such as SGDClassifier,
DT, kNN and SVM on raw data, which is the main focus of this study. This approach aims to
better reflect the robustness of the selected algorithms in the face of unbalanced and large-scale
raw data and their applicability in real-world scenarios. Thus, unlike some studies in the
literature, no extensive preprocessing (e.g., outlier removal, feature scaling) was applied to the
dataset in this study, a methodological choice adopted to evaluate the ability of the models to

learn patterns directly from the raw data.

4 METHODS

This study investigates the performance of four machine learning algorithms—
SGDClassifier, kNN, DT, and Support Vector Machine (SVM)—for predicting verification
outcomes in spectrum auctions. To improve model accuracy, hyperparameter tuning was
conducted. The overall experimental design is presented schematically in Figure 1. The
following sections provide a detailed explanation of the machine learning techniques, offering

a structured insight into the analytical procedures employed throughout the study.
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Figure 1. The flowchart of the study.

4.1 Stochastic Gradient Descent-Based Classifier (SGDClassifier)

In this study SGDClassifier is used, which is a linear classifier provided by the scikit-
learn library. SGD Classifier is an algorithm that is trained using SGD, by taking the gradient
of the loss of each sample at a time and updating the model along the way. SGDClassifier is a
supervised machine learning algorithm commonly used for classification tasks, particularly in
large datasets. It is a variant of the gradient descent optimization algorithm, which minimizes
the loss function by updating model parameters iteratively. On the other hand, SGDClassifier
utilizes this algorithm to solve especially big and sparse datasets. Unlike the traditional gradient
descent, SGDClassifier updates parameters based on the whole dataset in each iteration. This
approach significantly reduces computational load, making the algorithm well-suited for real-
time systems and memory-efficient applications. Despite its advantages, SGD-based algorithms
have some limitations. The learning rate must be carefully tuned—if set too high, the algorithm
may overshoot the optimal solution, whereas a low learning rate can result in slow convergence.
Additionally, SGD-based algorithms are sensitive to the initial parameter values, which can
affect the outcome. To mitigate these challenges, several variants of SGD have been developed,
such as mini-batch gradient descent, which processes small batches of data points to balance
the benefits of both SGD and batch gradient descent [14]. A schematic diagram of SGD, which

underlies the training of the SGDClassifier is shown in Figure 2.
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Figure 2. Schematic Diagram of SGD, which underlies the training process in
SGDClassifier.

4.2 k-Nearest Neighbors (KNN)

kNN is a lazy learning algorithm that does not explicitly learn a model from training
data. Instead, it stores all data points and makes predictions based on their proximity to new
data points. The core principle of kNN is that closer data points tend to have similar

characteristics.

When a new data point is encountered, kNN identifies the & nearest neighbors from the
training data using a specified distance metric. In classification problems, the new data point is
assigned to the most common class label among its & nearest neighbors. In regression problems,

the predicted value is typically the average of the k nearest neighbors [15, 16].

The choice of distance metric significantly impacts kNN’s performance. The most used

distance metrics include:
e Euclidean distance
e Manhattan distance
e Minkowski distance
These metrics are formally defined as follows:

d(x,y) = (D
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k
d(x,y) = ) lx =il @
i=1

1/q

k
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where, x and y represent two data points, x; and y; are the i feature of the data points. & is the
number of the dimensions, and it can be said that in Minkowski distance metric, ¢ is a parameter
that determines the type of distance calculation. When ¢ is 2, it becomes the Euclidean distance,

and when ¢ is 1, it becomes the Manhattan distance [17].

In the kNN algorithm, k represents the number of nearest neighbors considered for
making a prediction. The optimal value of k should be adjusted based on the dataset and the
specific problem at hand. A schematic representation of KNN is shown in Figure 3. As illustrated
in the figure, when k = 3, the query sample is assigned to the class represented by the red
triangles. However, when k£ = 7, the query sample is assigned to the class represented by the

pink diamonds.
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Figure 3. Schematic Representation of kNN.

4.3 Decision Tree (DT)

DT algorithm is a supervised learning method commonly used for classification tasks.
It organizes data into a hierarchical structure of nodes and branches, which helps make decisions

by evaluating multiple conditions step by step [18, 19].
In a Decision Tree, there are three types of nodes:

1. Root Node (Decision Node): The topmost node representing the entire dataset.
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2. Internal Nodes: These nodes represent the points where the dataset is further split
based on additional features.

3. Leaf Nodes (Terminal Nodes): These nodes represent the outcome or final decision.

Branches in the tree connect nodes and indicate the relationship between decisions and
possible outcomes. A schematic representation of the Decision Tree structure is shown in Figure

4.

| Root Node I
/ e

Decision Node Decision Node

/\

Terminal Node Decision Node [Terminal NodeJ [Terminal NodeJ

/\ Branch/ Sub-tree

[Terminal NodeJ [Terminal NodeJ

Figure 4. Structural representation of Decision Tree.

There are several advantages to using the Decision Tree (DT) algorithm. It effectively
handles missing values and is robust against outliers. Additionally, DT is a non-parametric
algorithm, meaning it does not rely on predefined functional forms. However, despite its
advantages, DT also has some drawbacks. One key issue is that overfitting—the model can
become too complex, leading to poor generalization on unseen data. Moreover, DT is prone to

instability: a minor change in the dataset can result in a completely different model.

4.4 Support Vector Machine (SVM)

SVM is a machine learning algorithm used to assign labels to objects by learning from
examples. The primary goal of SVM is to find a maximum margin hyperplane that best divides
the dataset into distinct classes. The ideal hyperplane is the one with the maximum distance

from both classes [20].

In a two-dimensional space, this hyperplane is a line, but in higher dimensions, it
becomes a plane. Therefore, SVM is highly effective when working with multidimensional

datasets [21].
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A linear SVM assumes that the data is linearly separable, meaning it can be divided by
a straight line. However, in real-world scenarios, it is not always guaranteed that datasets are

linearly separable. In such cases, a linear SVM struggles to find an appropriate hyperplane.

To overcome this limitation, SVM maps the data into higher-dimensional spaces,
allowing for the separation of classes in a non-linear manner. This transformation is
accomplished using the kernel trick, which enables SVM to find non-linear decision

boundaries.
Several kernel functions are available for SVM, including:
e Radial Basis Function (RBF)
e Polynomial
e Sigmoid
Among these, RBF is one of the most widely used kernels. It has two hyperparameters:

1. Gamma: Determines how far the influence of a single training example reaches. A
low gamma results in a smoother decision boundary, while a high gamma gives each

training example a more localized area of influence.

2. C: Controls the trade-off between margin size and classification errors. It also acts
as a regularization parameter in RBF-SVM, balancing the complexity of the model

and overfitting.

A schematic representation of the optimal hyperplane in SVM is shown in Figure 5.

A L/ ' Optimal Hyperplane

. Support Vector

Figure 5. Optimal hyperplane of SVM.
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5 RESULTS AND DISCUSSION

5.1 Performance Criteria

Five different performance metrics have been used to evaluate the effectiveness of the
machine learning algorithms. The commonly used performance metrics for classification tasks

include:
e Accuracy
e Precision
e Recall
e FI-Score
e (G-Mean

Accuracy is a metric that measures how often a machine learning model correctly

predicts the outcome. Accuracy can be written as:

Number of correct predictions

A = 4
ceuracy Total number of predictions @
which also can be written as,
TP+TN
Accuracy = (5)

TP+TN+ FP +FN

where TP stands for true positive that is true prediction of an event. TN stands for true negative
that is an event which has not occurred in prediction. FP stands for false positive, and it
represents positive prediction for an event that has not occurred. FN stands for false negative

and represents negative prediction of an event that has not occurred.

Precision is the quality of a positive prediction made by the model and is represented

as:

Recall = — 7 6)
Y

F1-Score evaluates the performance of a model by observing recall and precision values.

F1-Score is given by:
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(7

Precision * Recall
F1—Sc0re=2*( — )
Precision + Recall

G-Mean measures the ability of the model to accurately predict both positive and
negative classes in a balanced manner. It is calculated by taking geometric means of sensitivity
and specificity. Sensitivity measures the proportion of data points with positive labels that are
correctly classified by the model whereas specificity measures the proportion of data points

with a negative label that are classified by the model. Sensitivity is defined as:

Sensitivity = e )
ensitivity = TN
Specificity is defined as:
TN
3 = 3 — 9
Specificity TN+ FP )
Finally, G-Mean is represented as:
G — Mean = \/Sensitivity * Specificity (10)

5.2 K-Fold Cross Validation

The k-fold cross-validation technique is a reliable and effective method for evaluating
the performance of machine learning algorithms. Its primary goal is to enhance the

generalization ability of the model by using the data efficiently.

The technique involves dividing the dataset into K parts. Each part is designated as a
test set, while the remaining parts are used as the training set. In each iteration, one part serves
as the validation data, and the other parts are used for training. The model is trained in the
training data and tested on the validation data. This process is repeated k times, with a different

validation set used in each iteration [22].

The performance metrics obtained in each iteration are recorded, and at the end of the
K iterations, the average of these metrics is calculated. This average value provides an overall
assessment of the model’s performance across different data splits. By testing the model on

different parts of the data, k-fold cross-validation helps reduce the risk of overfitting.
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Overall, k-fold cross-validation is a widely preferred method for model evaluation

because it makes efficient use of data and offers a more reliable performance assessment.

5.3 Feature Importance

Assessing feature importance is essential for interpreting machine learning models,
especially in fields that prioritize transparency and explainability. This process measures how
much each input variable contributes to the model’s predictive accuracy, allowing researchers
to pinpoint the key factors influencing results. By ranking these variables, one can improve
model interpretability and optimize performance through dimensionality reduction. To evaluate
the contribution of individual features toward the classification task, mutual information (MI)
is applied. MI quantifies the amount of information obtained about the target variable through
each input feature, capturing both linear and non-linear dependencies [23]. Figure 6
demonstrates the MI scores computed for each feature in the spectrum auction dataset. The
analysis reveals that property.winner and property.price are the most informative features,
contributing substantially more than the others. Specifically, property.winner exhibits the
highest mutual information score, indicating a strong dependency with the target variable. In
contrast, features related to process capacities, such as process.b1.capacity, process.b2.capacity,
and process.b4.capacity, show relatively lower MI scores, suggesting limited direct
informational value for the spectrum auction. The process.b4.capacity feature contributed the

least, which may indicate redundancy or weak association with the output variable.

0.030 4

0.025 4

0.020 4

0.015 4

0.010 4

0.005 4

0.000

process.bl.capacity
process.b2.capacity
process.b3.capacity
process.b4.capacity
property.price
property.product -
property.winner

Figure 6. Mutual information score of the features.
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5.4 Experimental Results

SGDClassifier, kNN, DT, and SVM were implemented to determine the verification of
auction outcomes. Each of these machine learning algorithms has hyperparameters that control
the structure of the model and the training process, and these hyperparameters need to be fine-

tuned to achieve optimal performance.

To ensure more consistent and reliable results, the number of folds (K) was set to 10,
and 10 iterations were performed for each algorithm. The dataset used in the study exhibits an
imbalanced class distribution, which can lead to misleading performance evaluations. For
example, the accuracy metric can be deceptive in imbalanced datasets, as it may show high
scores by predominantly favoring the majority class, while failing to capture the model's

performance on the minority class.

To address this issue and provide clearer insights, the F1-Score and G-Mean metrics
were selected and plotted for each benchmarked algorithm, as they are more sensitive to

imbalanced data [24].
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Figure 7. (a) Results of SGDClassifier F1-Score; (b) G-Mean.

SGDClassifier is an efficient and easily implemented machine learning algorithm. It
uses the a parameter to prevent overfitting. The a parameter applies a penalty to limit the size
of the model's weights, thus helping to avoid overfitting. For this study, the values of a ranged
from 2719 to 2#. The results for the F1-Score and G-Mean are shown in Figure 7(a) and Figure
7(b), respectively. Both model performances initially improved as a increased and peaked at
278, and then mostly gradually decreased. This indicates that moderate regularization is

optimal.
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The kNN algorithm uses the k parameter to determine the number of neighbors
considered when making decisions for the test sample. In kNN, models with small k values are
more sensitive to noise and are more prone to overfitting, whereas models with large k values
are more generalized but may be more prone to underfitting. To identify the best results, k was

analyzed within the range of 1 to 30, with values increased one by one.
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Figure 8. (a) Performance of kNN F1-Score; (b) G-Mean.

As shown in Figure 8(a) and Figure 8(b), the algorithm achieved the best F1-Score when
k was set to 5, while the best G-Mean result was obtained when k was set to 3. For both metrics,
the results gradually decreased as the k value increased further. This is convenient with the
behavior of kNN, since smaller k values can capture local class patterns. The higher G-Mean

score when k was set to 3 means that the sensitivity was improved in both classes.

DT uses the min_sample_split and max_depth hyperparameters to control the structure
of the tree and the model's generalization ability. The min_sample split parameter determines
the minimum number of samples required to split an internal node, while max_depth sets the
maximum depth of the tree. For this study, min_sample_split values ranged from 1 to 17, and

max_depth values ranged from 1 to 20.

The results for F1-Score and G-Mean metrics in the DT method are shown in Figure
9(a) and Figure 9(b), respectively. For both metrics, the best results were obtained with the same
hyperparameters: max _depth = 9 and min_sample split = 4. When the max_depth parameter
exceeded 9, the results remained nearly constant which indicates that increasing the tree depth
beyond 9 does not contribute to further improvements. This also indicates increasing the depth

may risk overfitting.
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Figure 9. (a) Results of DT F1-Score; (b) G-Mean.

SVM with an RBF kernel takes the C and y hyperparameters to balance the
generalization performance of the algorithm. C value is taken between the range of 23 to 214,
whereas y value is taken between the range of 27% to 2°. Figures 10(a) and 10(b) illustrate the
F1-Score and G-Mean results of the SVM method for the RBF kernel, respectively. As
illustrated in both figures, the performance improves with the increase of C, indicating that the
model benefits from placing higher penalties on misclassification. This is consistent with the
nature of the dataset, where correct instances are scarce and need to be captured decisively. On
the contrary, extreme values of y tends to degrade performance, suggesting that overly localized
or overly generalized decision boundaries are detrimental in this context. The highest F1-Score

and G-Mean values were obtained when C is 2'* and ¥ is 27! in both metrics.

(b). .

Cost (C) ’ ~ Cost (C) ¥
Figure 10. (a) Performance of SVM F1-Score; (b) G-Mean.
Table 2 presents the performance metrics—accuracy, precision, recall, G-Mean, and F1-
Score—for the benchmarked algorithms. The hyperparameters chosen for each algorithm were
based on the results that yielded the highest G-Mean for that specific algorithm. The choice to

prioritize the G-Mean metric is due to the imbalance in the dataset used in this study.
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Table 2. Performance results

Methods Accuracy Precision Recall G-Mean F1-Score
SGDClassifier 0.8821 0.7341 0.6123 0.6394 0.5844
a=0,00390625

kNN 0.9013 0.7537 0.6498 0.6661 0.6703
k=3
Decision Tree 0.9911 0.9609 0.9807 0.9757 0.9679
max_depth=9,
min_sample split=4
RBF-SVM 0.9619 0.8901 0.7925 0.8807 0.8385
C:214, ,Y:2—1

According to Table 2, the DT algorithm achieved the best overall performance among
the benchmarked algorithms. Given the characteristics of the dataset, G-Mean performance
results were used for evaluation. It can be observed that the highest G-Mean result (0.97) was
obtained with the Decision Tree. Similarly, for the F1-Score, the highest result (0.96) was also
achieved by the Decision Tree. On the other hand, the lowest results for all metrics were
observed with SGDClassifer, where the G-Mean performance was 0.63, and the F1-Score was
0.58. This result can be explained by its linear nature and sensitivity which makes

SGDClassifier less compatible for complex and imbalanced datasets.

The performance gap between the DT and SGDClassifier can be explained by the
models’ differences in their modeling capacities. While the DT algorithm is more suitable for
structure datasets such as Spectrum Auction dataset, as it can identify important features and
handle non-linear relationships. Furthermore, adjusting min_sample split and max_depth to

their optimal range allows the DT algorithm to generalize more efficiently without overfitting.

On the contrary, SGDClassifier assumes linear separability and is highly sensitive to the
learning rate o and other relevant parameters. Those features make the SGDClassifier less

suitable for this particular dataset.

The best performance result of DT can be explained by several reasons. Firstly, to
achieve a balance between model complexity and generalization, comprehensive
hyperparameter tuning was implemented with max_depth and min_samples_split. Conversely,
previous studies did not point out this kind of hyperparameter tuning nor utilize expanded
optimization techniques. Secondly, while the authors [8] employed 3-fold-cross-validation, we
employed 10-fold-cross-validation over 10 iterations which makes the model results more

reliable. Furthermore, even though RF and Fuzzy Neural Network (FNN) employed by [9] and
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[8] are powerful ML algorithms, those algorithms also can be prone to overfitting and require
more data to generalize to model effectively. The structure of DT can be especially convenient
for this dataset since Spectrum Auction dataset is relatively structured and interpretable, and

DT can capture discrete decision boundaries without the risk of excessive complexity.

6 CONCLUSION AND SUGGESTION

This study investigates the prediction of spectrum auction results using four distinct
machine learning algorithms: SGDClassifier, KNN, DT, and SVM. Each algorithm's specific
hyperparameters were optimized to achieve the best performance. To ensure the reliability of
the results, 10-fold cross-validation was employed, and a range of performance metrics—

accuracy, recall, precision, G-Mean, and F1-Score—were utilized for evaluation.

Among the benchmarked algorithms, the Decision Tree (DT) method with a max_depth
of 9 and min_samples_split of 4 provided the best overall results. The DT model achieved
approximately 99% accuracy, 96% precision, 98% recall, 97% G-Mean, and 96% F1-Score.
The second-best results were observed using the SVM with an RBF kernel. In contrast, the
SGDClassifier algorithm delivered the lowest performance across all metrics. Although the
accuracy metric was relatively high across all methods, significant disparities were observed in
other metrics. The gap between the best and worst results in terms of accuracy was around 11%,

but it widened to 34% in G-Mean and 39.62% in F1-Score.

Future studies could explore other machine learning algorithms to enhance classification
performance. Additionally, deep learning models have the potential to capture more complex
patterns within the dataset. Advanced approaches, such as transfer learning or fine-tuning pre-
trained models, hold promises for improving results by leveraging insights from similar

datasets, which warrants further exploration.
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