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 ABSTRACT  

 

Spectrum auctions are very important for the strategic allocation of frequency bands in the 

telecommunications industry, ensuring efficient and fair access to this valuable resource. 

However, the complexity of auction environments—characterized by vast state spaces and 

multidimensional bid attributes—renders manual bid verification infeasible. This study 

introduces an innovative, data-driven approach by utilizing machine learning models, including 

k-nearest neighbors, support vector machines, decision trees, and stochastic gradient descent 

classifiers, to automate the verification process. Through hyperparameter tuning and rigorous 

k-fold cross-validation, the decision tree model emerged as the most effective, achieving an F1-

score of 96% and a G-Mean of 97%. These results demonstrate the practical viability of AI-

enhanced verification systems in spectrum auctions and suggest broader applicability across 

various high-stakes auction platforms where real-time, reliable validation is essential. 

 

 Keywords: Classification, Machine learning, Spectrum auctions.  

 

1 INTRODUCTION 

Spectrum auctions play a crucial role in frequency allocations, especially in the 

telecommunications sector, ensuring the efficient and fair allocation of frequency bands. 

However, these processes are quite complex and require processing large amounts of data to 

verify bids from bidders. Traditional spectrum auction methods are computationally expensive 

and time-consuming, and errors in these processes can negatively impact auction outcomes. 

Therefore, optimizing verification of spectrum auctions for speed and reliability is essential to 

improving the overall efficiency and fairness of the auction process. 
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Numerous studies have explored spectrum auction in literature. Bailey investigated 

price prediction in art auctions and its impact on the art market [1]. The study compared image-

based models, such as Convolutional Neural Networks (CNNs), with text-based and numerical 

data analysis models. Results showed that image-based models had lower performance. 

Rodríguez et al. examined collusion in public sector auctions, where companies secretly agree 

on bid prices for future auctions [2]. Using datasets from five countries—Brazil, Italy, Japan, 

Switzerland, and the United States—the study applied eleven machine learning algorithms. The 

top-performing models were Extra Trees (83%–86% precision), Random Forest (RF) (80%–

84%), and AdaBoost (78%–82%). Imhof et al. focused on detecting cartel involvement in 

auctions by developing an algorithm to identify bid manipulation [3]. Datasets from Japan, 

Italy, and Switzerland were analyzed using four machine learning algorithms. The Super 

Learner algorithm achieved the highest classification accuracy at 90.5%. Abidi et al. studied 

shill bidding—fraudulent participation in auctions to drive up prices [4]. They developed the 

Dynamic Fused Machine Learning for Shill Bidding (DFM-SB) model, which combines 

multiple algorithms, including Artificial Neural Network (ANN), Support Vector Machines 

(SVM), Decision Tree (DT), and RF. The DFM-SB model achieved an accuracy of 99.8%. 

Zhang et al. addressed low participation and irrational bidding in IoT auctions by introducing a 

multi-round bidding mechanism based on a second-price sealed bid auction [5]. They 

implemented five machine learning algorithms: Ordered Value (OV) regression, OV neural 

networks, an auction screening model, a difference-of-convex algorithm, and a double deep Q-

network. OV regression performed best on linear datasets (mean deviation: 35.3 ± 0.4), while 

the auction screening model excelled on non-linear datasets (mean deviation: 39.1 ± 0.7). 

Prathuri et al. applied machine learning to estimate the cost of selling players in sports leagues 

[6]. Their framework incorporated six regression models: DT regressor, k-Nearest Neighbors 

(kNN), Linear Regression, Stochastic Gradient Descent (SGD), RF regressor, and Support 

Vector Regression (SVR). SVR and Linear Regression provided the best results. Kusonkhum 

et al. used classification techniques to predict over-budget prices in Thai government 

construction projects [7]. The study applied kNN, ANN, and DT algorithms, achieving 

accuracies of 75%, 77.6%, and 77.3%, respectively. 

As evident from the detailed literature review, while there are studies related to the 

Spectrum Auction dataset, most have focused on auction duration. Some studies focus on 

prediction of outcomes as well, e.g. [8] applied Fuzzy Neural Networks to the same dataset with 

mentionable accuracy, but their work did not particularize on analyzing model behaviors under 
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class imbalances. Similarly, [9] addressed spectrum auctions by swarm learning method, 

however their work did not analyze general machine learning algorithms such as SVM.  Apart 

from these studies, our study, aims to predict verification results in spectrum auctions (i.e., 

verification.result), with efficient machine learning algorithms. To achieve this, four machine 

learning algorithms— SGDClassifier, DT, kNN, and SVM—were applied. Algorithm-specific 

hyperparameter optimization was performed to enhance performance. The model's 

effectiveness was evaluated using F1-Score and G-Mean metrics since those metrics are more 

compatible with imbalanced data. 

The structure of this article is as follows: Section 2, a literature review of the dataset 

used in this study is given. Section 3 provides a detailed explanation of the dataset. Section 4 

introduces the benchmarked machine learning algorithms. Section 5 discusses performance 

metrics, feature importance, and experimental results. Finally, Section 6 presents conclusions 

and recommendations for future research. 

2 LITERATURE REVIEW 

Similar studies have been conducted in literature using the dataset employed in this 

research. In spectrum auction, two key applications can be performed: estimating the auction 

duration and predicting the auction outcome. 

Ordoni et al. conducted a study focusing on dataset explanation and the prediction of 

both auction duration and auction outcomes [10]. The performance of the RF method was 

evaluated using the Matthews Correlation Coefficient (MCC) metric. In another study, Ordoni 

et al. proposed an algorithm for validating process models that support data value changes [11]. 

This algorithm addresses the state space explosion problem by utilizing binary coding and 

Binary Decision Diagrams (BDD) to transform data value functions into Petri Nets. Fischer et 

al. analyzed auction duration in their OpenML-CTR23 benchmark package [12]. They 

evaluated five machine learning models—XGBoost, RF, a generalized additive model, ridge 

regression, and a regression tree—using root mean square error (RMSE) values, which were 

0.394, 2.972, 6.140, 6.301, and 3.155, respectively. Tan proposed a method to enhance 

regression tree performance by introducing outlier detection [13]. Initially, a regression tree 

model was built using training data, and predictions significantly deviating from the terminal 

node’s mean were labeled as outliers. These outliers were used in an outlier detection algorithm, 

and during testing, their predictions were discarded, improving the model’s performance. The 

Mean Absolute Error (MAE) decreased from 1508 ± 105 to 1157 ± 189 after removing outliers. 
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Tajabadi et al. introduced a framework that enables nodes to obtain personalized models based 

on their contribution rates, serving as a fair reward mechanism in Swarm Learning (SL) systems 

[9]. Two machine learning methods—Deep Learning (DL) and RF—were used. DL models, 

including VGG8 and EfficientNetV2S, were trained on datasets such as CIFAR-10, CIFAR-

100, Fashion-MNIST, and Reuters Newsletter using transfer learning. RF performance was 

assessed using the MCC metric, showing a 23% increase in MCC values as contribution rates 

rose in the spectrum auction dataset. The study demonstrated that higher contributions led to 

better model performance and encouraged collaboration. Campos Souza et al. investigated 

spectrum auction and the use of Fuzzy Neural Networks (FNNs) for improved fraud detection 

and expertise extraction [8]. They implemented a three-layer FNN integrating Gaussian 

neurons, fuzzy rules, and Leaky-ReLU activation functions. Comparative analysis with 

conventional machine learning methods—Naive Bayes, Neural Networks, SVM, kNN, and 

DT—showed that FNN achieved superior performance, with an accuracy of 96.21%, specificity 

of 90.4%, and an area under the curve (AUC) of 93.7%. 

3 DATASET 

This study utilizes the Spectrum Auction dataset from the UCI Machine Learning 

Repository [10], which contains extensive data on the German 4G spectrum auction. While the 

dataset includes approximately 130,000 validation records defining specific targets and 

features, it comprises only 2,043 unique feature-value combinations. Approximately 13% of 

the samples had correct verification results, while the rest were incorrect. 

 The dataset captures various data objects and their values, representing different stages 

of the auction process. Each object is described by a set of properties reflecting its state at a 

given phase of the auction. For example, attributes such as the frequency band may be modified 

or supplemented with additional attributes as the auction progresses. This dynamic structure 

enables the dataset to reflect the evolving nature of auction objects. 

 The dataset includes two target variables: verification.time, representing the auction 

duration, and verification.result, indicating the auction outcome. This study focuses on 

predicting verification.result. Details of the dataset features are provided in Table 1. 
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Table 1. Details of the dataset 

Variable Name Description 

process.b1.capacity Maximum number of bids Bidder 1 can win. 

process.b2.capacity Maximum number of bids Bidder 2 can win. 

process.b3.capacity Maximum number of bids Bidder 3 can win. 

process.b4.capacity Maximum number of bids Bidder 4 can win. 

property.price Verified price of the product. 

property.product Verified product in the auction. 

property.winner Winner of the bid. 

verification.result Verification outcome whether the verified outcome is 

possible or not. 

verification.time Duration of the auction. 

 

The pre-processing steps that are used in this study contain different approaches than 

other studies. This study focuses on verification.result, rather than verification.time, which [10] 

and [8] have been focused. This required special attention to the unbalanced class structure of 

the dataset (around 13% correct validation results). To address this imbalance dataset, 

traditional balancing methods (e.g., over-sampling or under-sampling) were not applied, instead 

opting for metrics for model evaluation that are more compatible with imbalanced datasets, 

such as F1-Score and G-Mean. The normalization steps applied to the dataset in other studies 

were deliberately restricted to evaluate the performance of algorithms such as SGDClassifier, 

DT, kNN and SVM on raw data, which is the main focus of this study. This approach aims to 

better reflect the robustness of the selected algorithms in the face of unbalanced and large-scale 

raw data and their applicability in real-world scenarios. Thus, unlike some studies in the 

literature, no extensive preprocessing (e.g., outlier removal, feature scaling) was applied to the 

dataset in this study, a methodological choice adopted to evaluate the ability of the models to 

learn patterns directly from the raw data. 

4 METHODS 

This study investigates the performance of four machine learning algorithms—

SGDClassifier, kNN, DT, and Support Vector Machine (SVM)—for predicting verification 

outcomes in spectrum auctions. To improve model accuracy, hyperparameter tuning was 

conducted. The overall experimental design is presented schematically in Figure 1. The 

following sections provide a detailed explanation of the machine learning techniques, offering 

a structured insight into the analytical procedures employed throughout the study. 
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Figure 1. The flowchart of the study. 

4.1 Stochastic Gradient Descent-Based Classifier (SGDClassifier) 

In this study SGDClassifier is used, which is a linear classifier provided by the scikit-

learn library. SGD Classifier is an algorithm that is trained using SGD, by taking the gradient 

of the loss of each sample at a time and updating the model along the way. SGDClassifier is a 

supervised machine learning algorithm commonly used for classification tasks, particularly in 

large datasets. It is a variant of the gradient descent optimization algorithm, which minimizes 

the loss function by updating model parameters iteratively. On the other hand, SGDClassifier 

utilizes this algorithm to solve especially big and sparse datasets. Unlike the traditional gradient 

descent, SGDClassifier updates parameters based on the whole dataset in each iteration. This 

approach significantly reduces computational load, making the algorithm well-suited for real-

time systems and memory-efficient applications. Despite its advantages, SGD-based algorithms 

have some limitations. The learning rate must be carefully tuned—if set too high, the algorithm 

may overshoot the optimal solution, whereas a low learning rate can result in slow convergence. 

Additionally, SGD-based algorithms are sensitive to the initial parameter values, which can 

affect the outcome. To mitigate these challenges, several variants of SGD have been developed, 

such as mini-batch gradient descent, which processes small batches of data points to balance 

the benefits of both SGD and batch gradient descent [14]. A schematic diagram of SGD, which 

underlies the training of the SGDClassifier is shown in Figure 2. 
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Figure 2. Schematic Diagram of SGD, which underlies the training process in 

SGDClassifier. 

 

4.2 k-Nearest Neighbors (kNN) 

kNN is a lazy learning algorithm that does not explicitly learn a model from training 

data. Instead, it stores all data points and makes predictions based on their proximity to new 

data points. The core principle of kNN is that closer data points tend to have similar 

characteristics. 

 When a new data point is encountered, kNN identifies the k nearest neighbors from the 

training data using a specified distance metric. In classification problems, the new data point is 

assigned to the most common class label among its k nearest neighbors. In regression problems, 

the predicted value is typically the average of the k nearest neighbors [15, 16]. 

 The choice of distance metric significantly impacts kNN’s performance. The most used 

distance metrics include: 

• Euclidean distance 

• Manhattan distance 

• Minkowski distance 

These metrics are formally defined as follows: 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

 (1) 



C. N. Avcu, A. Değirmenci, Ö. Karal / BEU Fen Bilimleri Dergisi 14 (3), 1420-1439, 2025 

 

 1427 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑘

𝑖=1

 (2) 

𝑑(𝑥, 𝑦) = (∑(|𝑥𝑖 − 𝑦𝑖|)𝑞

𝑘

𝑖=1

)

1/𝑞

 (3) 

where, x and y represent two data points, 𝑥𝑖 and 𝑦𝑖 are the 𝑖𝑡ℎ feature of the data points. k is the 

number of the dimensions, and it can be said that in Minkowski distance metric, q is a parameter 

that determines the type of distance calculation. When q is 2, it becomes the Euclidean distance, 

and when q is 1, it becomes the Manhattan distance [17]. 

 In the kNN algorithm, k represents the number of nearest neighbors considered for 

making a prediction. The optimal value of k should be adjusted based on the dataset and the 

specific problem at hand. A schematic representation of kNN is shown in Figure 3. As illustrated 

in the figure, when k = 3, the query sample is assigned to the class represented by the red 

triangles. However, when k = 7, the query sample is assigned to the class represented by the 

pink diamonds. 

 
Figure 3. Schematic Representation of kNN.   

4.3 Decision Tree (DT)  

DT algorithm is a supervised learning method commonly used for classification tasks. 

It organizes data into a hierarchical structure of nodes and branches, which helps make decisions 

by evaluating multiple conditions step by step [18, 19]. 

 In a Decision Tree, there are three types of nodes: 

1. Root Node (Decision Node): The topmost node representing the entire dataset. 
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2. Internal Nodes: These nodes represent the points where the dataset is further split 

based on additional features. 

3. Leaf Nodes (Terminal Nodes): These nodes represent the outcome or final decision. 

 Branches in the tree connect nodes and indicate the relationship between decisions and 

possible outcomes. A schematic representation of the Decision Tree structure is shown in Figure 

4. 

 

Figure 4. Structural representation of Decision Tree. 

There are several advantages to using the Decision Tree (DT) algorithm. It effectively 

handles missing values and is robust against outliers. Additionally, DT is a non-parametric 

algorithm, meaning it does not rely on predefined functional forms. However, despite its 

advantages, DT also has some drawbacks. One key issue is that overfitting—the model can 

become too complex, leading to poor generalization on unseen data. Moreover, DT is prone to 

instability: a minor change in the dataset can result in a completely different model. 

4.4 Support Vector Machine (SVM) 

SVM is a machine learning algorithm used to assign labels to objects by learning from 

examples. The primary goal of SVM is to find a maximum margin hyperplane that best divides 

the dataset into distinct classes. The ideal hyperplane is the one with the maximum distance 

from both classes [20]. 

 In a two-dimensional space, this hyperplane is a line, but in higher dimensions, it 

becomes a plane. Therefore, SVM is highly effective when working with multidimensional 

datasets [21]. 
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 A linear SVM assumes that the data is linearly separable, meaning it can be divided by 

a straight line. However, in real-world scenarios, it is not always guaranteed that datasets are 

linearly separable. In such cases, a linear SVM struggles to find an appropriate hyperplane. 

 To overcome this limitation, SVM maps the data into higher-dimensional spaces, 

allowing for the separation of classes in a non-linear manner. This transformation is 

accomplished using the kernel trick, which enables SVM to find non-linear decision 

boundaries. 

 Several kernel functions are available for SVM, including: 

• Radial Basis Function (RBF) 

• Polynomial 

• Sigmoid 

 Among these, RBF is one of the most widely used kernels. It has two hyperparameters: 

1. Gamma: Determines how far the influence of a single training example reaches. A 

low gamma results in a smoother decision boundary, while a high gamma gives each 

training example a more localized area of influence. 

2. C: Controls the trade-off between margin size and classification errors. It also acts 

as a regularization parameter in RBF-SVM, balancing the complexity of the model 

and overfitting. 

 A schematic representation of the optimal hyperplane in SVM is shown in Figure 5. 

 

Figure 5. Optimal hyperplane of SVM. 
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5 RESULTS AND DISCUSSION 

5.1 Performance Criteria 

Five different performance metrics have been used to evaluate the effectiveness of the 

machine learning algorithms. The commonly used performance metrics for classification tasks 

include: 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

• G-Mean 

 Accuracy is a metric that measures how often a machine learning model correctly 

predicts the outcome. Accuracy can be written as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (4) 

which also can be written as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

where TP stands for true positive that is true prediction of an event. TN stands for true negative 

that is an event which has not occurred in prediction. FP stands for false positive, and it 

represents positive prediction for an event that has not occurred. FN stands for false negative 

and represents negative prediction of an event that has not occurred. 

 Precision is the quality of a positive prediction made by the model and is represented 

as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

F1-Score evaluates the performance of a model by observing recall and precision values. 

F1-Score is given by: 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (7) 

G-Mean measures the ability of the model to accurately predict both positive and 

negative classes in a balanced manner. It is calculated by taking geometric means of sensitivity 

and specificity. Sensitivity measures the proportion of data points with positive labels that are 

correctly classified by the model whereas specificity measures the proportion of data points 

with a negative label that are classified by the model. Sensitivity is defined as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

Specificity is defined as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (9) 

 

Finally, G-Mean is represented as: 

𝐺 − 𝑀𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (10) 

5.2 K-Fold Cross Validation 

The k-fold cross-validation technique is a reliable and effective method for evaluating 

the performance of machine learning algorithms. Its primary goal is to enhance the 

generalization ability of the model by using the data efficiently. 

The technique involves dividing the dataset into K parts. Each part is designated as a 

test set, while the remaining parts are used as the training set. In each iteration, one part serves 

as the validation data, and the other parts are used for training. The model is trained in the 

training data and tested on the validation data. This process is repeated k times, with a different 

validation set used in each iteration [22]. 

The performance metrics obtained in each iteration are recorded, and at the end of the 

K iterations, the average of these metrics is calculated. This average value provides an overall 

assessment of the model’s performance across different data splits. By testing the model on 

different parts of the data, k-fold cross-validation helps reduce the risk of overfitting. 
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Overall, k-fold cross-validation is a widely preferred method for model evaluation 

because it makes efficient use of data and offers a more reliable performance assessment. 

5.3 Feature Importance 

Assessing feature importance is essential for interpreting machine learning models, 

especially in fields that prioritize transparency and explainability. This process measures how 

much each input variable contributes to the model’s predictive accuracy, allowing researchers 

to pinpoint the key factors influencing results. By ranking these variables, one can improve 

model interpretability and optimize performance through dimensionality reduction. To evaluate 

the contribution of individual features toward the classification task, mutual information (MI) 

is applied. MI quantifies the amount of information obtained about the target variable through 

each input feature, capturing both linear and non-linear dependencies [23]. Figure 6 

demonstrates the MI scores computed for each feature in the spectrum auction dataset. The 

analysis reveals that property.winner and property.price are the most informative features, 

contributing substantially more than the others. Specifically, property.winner exhibits the 

highest mutual information score, indicating a strong dependency with the target variable. In 

contrast, features related to process capacities, such as process.b1.capacity, process.b2.capacity, 

and process.b4.capacity, show relatively lower MI scores, suggesting limited direct 

informational value for the spectrum auction. The process.b4.capacity feature contributed the 

least, which may indicate redundancy or weak association with the output variable. 

 

Figure 6. Mutual information score of the features. 
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5.4 Experimental Results 

SGDClassifier, kNN, DT, and SVM were implemented to determine the verification of 

auction outcomes. Each of these machine learning algorithms has hyperparameters that control 

the structure of the model and the training process, and these hyperparameters need to be fine-

tuned to achieve optimal performance. 

To ensure more consistent and reliable results, the number of folds (K) was set to 10, 

and 10 iterations were performed for each algorithm. The dataset used in the study exhibits an 

imbalanced class distribution, which can lead to misleading performance evaluations. For 

example, the accuracy metric can be deceptive in imbalanced datasets, as it may show high 

scores by predominantly favoring the majority class, while failing to capture the model's 

performance on the minority class. 

To address this issue and provide clearer insights, the F1-Score and G-Mean metrics 

were selected and plotted for each benchmarked algorithm, as they are more sensitive to 

imbalanced data [24]. 

  

Figure 7. (a) Results of SGDClassifier F1-Score; (b) G-Mean. 

SGDClassifier is an efficient and easily implemented machine learning algorithm. It 

uses the 𝛼 parameter to prevent overfitting. The 𝛼 parameter applies a penalty to limit the size 

of the model's weights, thus helping to avoid overfitting. For this study, the values of 𝛼 ranged 

from 2−10 to 24. The results for the F1-Score and G-Mean are shown in Figure 7(a) and Figure 

7(b), respectively. Both model performances initially improved as 𝛼 increased and peaked at 

2−8, and then mostly gradually decreased. This indicates that moderate regularization is 

optimal.  

(a) (b) 
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The kNN algorithm uses the k parameter to determine the number of neighbors 

considered when making decisions for the test sample. In kNN, models with small k values are 

more sensitive to noise and are more prone to overfitting, whereas models with large k values 

are more generalized but may be more prone to underfitting. To identify the best results, k was 

analyzed within the range of 1 to 30, with values increased one by one. 

  

Figure 8. (a) Performance of kNN F1-Score; (b) G-Mean. 

As shown in Figure 8(a) and Figure 8(b), the algorithm achieved the best F1-Score when 

k was set to 5, while the best G-Mean result was obtained when k was set to 3. For both metrics, 

the results gradually decreased as the k value increased further. This is convenient with the 

behavior of kNN, since smaller k values can capture local class patterns. The higher G-Mean 

score when k was set to 3 means that the sensitivity was improved in both classes.  

DT uses the min_sample_split and max_depth hyperparameters to control the structure 

of the tree and the model's generalization ability. The min_sample_split parameter determines 

the minimum number of samples required to split an internal node, while max_depth sets the 

maximum depth of the tree. For this study, min_sample_split values ranged from 1 to 17, and 

max_depth values ranged from 1 to 20. 

The results for F1-Score and G-Mean metrics in the DT method are shown in Figure 

9(a) and Figure 9(b), respectively. For both metrics, the best results were obtained with the same 

hyperparameters: max_depth = 9 and min_sample_split = 4. When the max_depth parameter 

exceeded 9, the results remained nearly constant which indicates that increasing the tree depth 

beyond 9 does not contribute to further improvements. This also indicates increasing the depth 

may risk overfitting. 

(a) (b) 
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Figure 9. (a) Results of DT F1-Score; (b) G-Mean. 

SVM with an RBF kernel takes the C and 𝛾 hyperparameters to balance the 

generalization performance of the algorithm. C value is taken between the range of 23 to 214, 

whereas 𝛾 value is taken between the range of  2−4 to 25. Figures 10(a) and 10(b) illustrate the 

F1-Score and G-Mean results of the SVM method for the RBF kernel, respectively. As 

illustrated in both figures, the performance improves with the increase of C, indicating that the 

model benefits from placing higher penalties on misclassification. This is consistent with the 

nature of the dataset, where correct instances are scarce and need to be captured decisively. On 

the contrary, extreme values of 𝛾 tends to degrade performance, suggesting that overly localized 

or overly generalized decision boundaries are detrimental in this context.  The highest F1-Score 

and G-Mean values were obtained when C is 214 and 𝛾 is  2−1 in both metrics. 

  

Figure 10. (a) Performance of SVM F1-Score; (b) G-Mean. 

Table 2 presents the performance metrics—accuracy, precision, recall, G-Mean, and F1-

Score—for the benchmarked algorithms. The hyperparameters chosen for each algorithm were 

based on the results that yielded the highest G-Mean for that specific algorithm. The choice to 

prioritize the G-Mean metric is due to the imbalance in the dataset used in this study. 

(a) (b) 

(a) (b) 
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Table 2. Performance results 

Methods Accuracy Precision Recall G-Mean F1-Score 

SGDClassifier 

𝛼= 0,00390625 

0.8821 0.7341 0.6123 0.6394 0.5844 

kNN                   

k=3 

0.9013 0.7537 0.6498 0.6661 0.6703 

Decision Tree 

max_depth= 9, 

min_sample_split=4 

0.9911 0.9609 0.9807 0.9757 0.9679 

RBF-SVM 

  C=214, γ=2−1 

0.9619 0.8901 0.7925 0.8807 0.8385 

 

According to Table 2, the DT algorithm achieved the best overall performance among 

the benchmarked algorithms. Given the characteristics of the dataset, G-Mean performance 

results were used for evaluation. It can be observed that the highest G-Mean result (0.97) was 

obtained with the Decision Tree. Similarly, for the F1-Score, the highest result (0.96) was also 

achieved by the Decision Tree. On the other hand, the lowest results for all metrics were 

observed with SGDClassifer, where the G-Mean performance was 0.63, and the F1-Score was 

0.58. This result can be explained by its linear nature and sensitivity which makes 

SGDClassifier less compatible for complex and imbalanced datasets.  

The performance gap between the DT and SGDClassifier can be explained by the 

models’ differences in their modeling capacities. While the DT algorithm is more suitable for 

structure datasets such as Spectrum Auction dataset, as it can identify important features and 

handle non-linear relationships. Furthermore, adjusting min_sample_split and max_depth to 

their optimal range allows the DT algorithm to generalize more efficiently without overfitting. 

On the contrary, SGDClassifier assumes linear separability and is highly sensitive to the 

learning rate α and other relevant parameters. Those features make the SGDClassifier less 

suitable for this particular dataset. 

The best performance result of DT can be explained by several reasons. Firstly, to 

achieve a balance between model complexity and generalization, comprehensive 

hyperparameter tuning was implemented with max_depth and min_samples_split. Conversely, 

previous studies did not point out this kind of hyperparameter tuning nor utilize expanded 

optimization techniques. Secondly, while the authors [8] employed 3-fold-cross-validation, we 

employed 10-fold-cross-validation over 10 iterations which makes the model results more 

reliable. Furthermore, even though RF and Fuzzy Neural Network (FNN) employed by [9] and 
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[8] are powerful ML algorithms, those algorithms also can be prone to overfitting and require 

more data to generalize to model effectively. The structure of DT can be especially convenient 

for this dataset since Spectrum Auction dataset is relatively structured and interpretable, and 

DT can capture discrete decision boundaries without the risk of excessive complexity.  

6 CONCLUSION AND SUGGESTION 

This study investigates the prediction of spectrum auction results using four distinct 

machine learning algorithms: SGDClassifier, kNN, DT, and SVM. Each algorithm's specific 

hyperparameters were optimized to achieve the best performance. To ensure the reliability of 

the results, 10-fold cross-validation was employed, and a range of performance metrics—

accuracy, recall, precision, G-Mean, and F1-Score—were utilized for evaluation. 

Among the benchmarked algorithms, the Decision Tree (DT) method with a max_depth 

of 9 and min_samples_split of 4 provided the best overall results. The DT model achieved 

approximately 99% accuracy, 96% precision, 98% recall, 97% G-Mean, and 96% F1-Score. 

The second-best results were observed using the SVM with an RBF kernel. In contrast, the 

SGDClassifier algorithm delivered the lowest performance across all metrics. Although the 

accuracy metric was relatively high across all methods, significant disparities were observed in 

other metrics. The gap between the best and worst results in terms of accuracy was around 11%, 

but it widened to 34% in G-Mean and 39.62% in F1-Score. 

Future studies could explore other machine learning algorithms to enhance classification 

performance. Additionally, deep learning models have the potential to capture more complex 

patterns within the dataset. Advanced approaches, such as transfer learning or fine-tuning pre-

trained models, hold promises for improving results by leveraging insights from similar 

datasets, which warrants further exploration. 
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