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Abstract— Construction material cost is the major 

component of construction project costs. Among the material 

cost categories, construction material price fluctuation is the 

major risk that causes construction cost estimation to be 

different from actual cost in many countries. In addition, unable 

to consider the construction material price in construction 

material procurement cost optimization is uneconomical 

because may lead to the material being ordered at a period when 

the price is high. Therefore, a two-staged method for 

construction material price prediction and a strategic 

economical construction procurement method is proposed. In 

the first stage, the Multilayer Perceptron (MLP) is used to 

predict construction material prices. Then in the second stage, 

the predicted price of the MLP model was taken as input along 

with procurement data for the Deep Q Network (DQN) to 

identify ordering time and quantity at a minimum cost. The 

application of the proposed method in the Ethiopian 

construction industry shows that MLP has better performance 

in predicting cement prices than linear regression. Besides, the 

DQN algorithm procurement strategy for the nonpolynomial 

hard problem is < 1% in cost performance than the exact mixed 

integer linear programming (MILP) method with reasonable 

solution time. The proposed hybrid model can help construction 

practitioners to make material-related data-driven decisions. 

Keywords— Construction Material, DQN, Machine Learning, 

MLP, Price Prediction, Procurement Cost Optimization 

I. INTRODUCTION  

The cost of construction materials is greater than 50% of 

the construction project cost [1]. It contains costs due to the 

price of construction material [2], shortage cost [3], ordering 

costs during procurement, and holding of inventory [4]. 

Construction material price fluctuation is the main risk that 

causes time and cost overrun of construction projects in 

developing and less developed countries [5-7]. Tang et al. 
highlight having reliable construction material price 

prediction tools helps to better estimate construction costs 

instead of using previous historical data that don't consider 

price fluctuation due to time and economic market [8]. 

Moreover, it helps to know the best time for the procurement 

of materials.  

Project cost reduction can be maintained by using an 

economically strategic material procurement. Kumar, 

alongside with and Patil & Pataskar emphasize construction 

companies using the mathematical Economic order quantity 

(EOQ) model can decrease costs that incur during ordering 

and inventory holding by directing the optimal order quantity, 

order interval, and the available inventory [4,9]. In addition, 

construction material availability in construction projects 

before the commencement of work improves productivity by 

8-10% and decreases delay [10].  However, EOQ has 

limitations because in reality cost per unit of purchase of 

material fluctuates over time, so the ordering period may lay 

in time when the actual price of the material is uneconomical 

[4]. To capture the variability Khondoker et al. have proposed 

a mixed integer linear programming (MILP)-based 

procurement plan for 32 time steps [11]. However, Urbanucci 

outlines MILPs have difficulty optimizing high dimensional 

problems [12]. 

In addition, many simulation researches were done to form 

a model that considers the variability in construction materials 

procurement parameters in the construction industry such as 

[13-15]. Apart from that for prefab manufacturers, Du et al. 
have proposed a genetic algorithm-based material 

procurement model that considers construction price 

prediction [13]. The model optimizes the procurement cost for 

monthly construction material requirements of prefab 

components based on the site's installation plan.  But Kulkarni 

& Halder mentioned that heuristics algorithms like genetic 

algorithms rarely find global optimum but are better at finding 

near optimum values [14]. Besides construction projects may 

take several months to finish.  These increase the complexity 

and broadness of the problem, so there is a need for a machine-

learning procurement model to give insight [16]. In the 

construction industry project delays, cost overruns and 

contractual disputes are common due to resource planning, 

risk management, and logistic difficulties. These challenges 

encourage the use of advanced machine learning algorithms to 

analyze the cause and preventive measures. The use of recent 

technology and analyzing its accuracy can help to make an 

improved prediction for stakeholders in the construction 

industry [17].  

Given that, the objective of this study is to propose a 

hybrid machine learning-based procurement model for 

construction projects scheduled material requirements that 

considers fluctuation of construction material price based on 

predicted construction material price. The proposed MLP 

model is used for the prediction of construction material price 

then the predictions are taken as input to the procurement 

DQN model environment.  Then DQN agent is used to 

identify the period for strategic procurement and optimum 

construction material quantity to order at minimum cost. 

https://orcid.org/0009-0005-5553-0978


Journal of Emerging Computer Technologies 
Gebregiorgis Atnafie 

48 

II. LITERATURE REVIEW 

A. Construction Material Price Prediction 

Past Prediction methods can be grouped into two. These 

are either qualitative or quantitative forecasting. Qualitative 

forecasting depends on the expert's judgment. Whereas, 

quantitative forecasting uses causal past data to predict future 

value. The types of quantitative forecasts are causal methods 

using regression or time series [18]. 

Many studies have been done on the prediction of 

construction cost index including [18]. However, it may not 

accurately predict construction cost as Hwang et al.  
highlight, total construction material cost fluctuation is the 

sum of each construction material price fluctuation because 

construction materials prices increase or decrease at different 

rates [19]. Besides Shiha et al. state construction materials can 

have different leading indicators within the same countries 

depending upon the economic condition [20]. The author also 

stated that the construction cost index contains many 

assumptions, so predicting individual construction material 

prices helps to reach a more accurate prediction. 

 Akintoye et al. highlight leading indicators help to project 

future trends of construction price movements [18]. Shiha et 

al. using macroeconomic indicators in Egypt developed an 

Artificial neural network (ANN) for the prediction of steel and 

cement prices [20]. The identified leading indicators by 

correlation analysis for the prediction of the steel 

reinforcement bar prices were GDP, CPI, unemployment rate, 

foreign reserves, PPI, lending rate, and US dollar to Egyptian 

pound exchange rate. But, for the cement price prediction the 

indicators were, all the indicators for steel reinforcement bar 

price except the lending rate. The validation of the model 

results with multiple linear regression prediction model shows 

that ANN is suitable to predict price fluctuation during 

economic instability.  

For the Ghana construction industry, Bediako et al.  have 

developed a multiple linear regression model to predict 

Portland cement [21]. From the analysis, it was concluded that 

cement price was not affected due to inflation and monetary 

policy rate but was affected by trends of an exchange rate with 

a positive relationship. In addition, Ernest et al. have identified 

key economic indicators that affect the building construction 

industry that construction planners should give attention to 

[22]. From indicators identified through the literature review 

top 5 factors refined using statistical methods were CPI, PPI, 

currency exchange rate, GDP, and interest rate. 

Afolabi & Abimbola developed a web-based linear 

regression machine learning model for cement price 

prediction in the Nigerian construction industry to assist 

construction firms during tendering and planning construction 

material procurement [23]. The predictors used were the 

bank's interest rate, exchange rate to the dollar, petrol prices, 

and diesel prices. The model developed has 80% accuracy. 

However, the method has limitations as the predictors are 

estimated first to predict the dependent variable. 

Dilip & Jesna assessed the macroeconomic indicators of 

India and performed a test method same as Shiha et al. to 

identify potential predictors for cement and steel prices from 

June 2010 to June 2020 in lagged months of 0, 1, 3, 6 and 12 

[24,20]. The result shows Bank Lending Rate, PPI, Inflation 

Rate, and outputs from steel manufacturing industries are 

potential predictors of cement price prediction for a lag of 6 

months among lagged months with a correlation coefficient of 

0.7. A 6-month lag is also identified as best for steel price 

prediction with predictors with a correlation coefficient of 

0.697. 

B. Construction Material Procurement Management 

Efficient material procurement is essential to the 

successful completion of the project by making material to be 

accessible at their point of use when required. Construction 

project cost saving during procurement of construction 

materials is one role of construction material management. 

Because construction materials are a key expense in 

construction; reduced construction material procurement costs 

increase the opportunities to lower the total project cost [9]. 

The Traditional mathematical EOQ model can be used for 

construction material procurement cost optimization [9]. It is 

an optimization of ordering cost and carrying cost to obtain 

economic order quantity and interval [25]. In terms of cost 

structures, carrying costs and ordering costs are essentially in 

contradiction with one another. For instance, the overall cost 

of carrying inventory lowers when the order quantity drops. 

However, as several orders must be placed to meet the 

demand, the overall cost of ordering will increase. Contrarily, 

when order quantity is raised, the overall cost of orders will 

decrease since fewer orders are issued, but the total cost of 

carrying inventory will rise because the average cyclical 

inventory in the system will grow. Planning and controlling 

inventory will revolve around striking a balance between these 

two opposing expenses [26]. However, the traditional EOQ 

model is uneconomical because it does not consider shortage, 

price breaks, and inflation [25].  

Zhang et al. created an MS Excel add-in that uses a linear 

programming (LP) approach to reduce the overall cost of 

construction material supply chain for building projects under 

warehouse size limitation and site restriction [27]. The method 

is simple to apply because it doesn't call for any specialized 

software or even the users' technical proficiency in 

quantitative procedures. However, LP has the intrinsic 

drawback of being unable to take fluctuating variables into 

account like demand for construction material.  

Kulkarni & Halder developed a PERT-based simulation 

model, that is used to determine the optimal re-order point and 

order size for the procurement of building materials [14]. It 

aims to reduce the average inventory level and downtime 

caused by material unavailability. The STROBOSCOPE 

simulation framework, created by the University of Michigan 

academics, was used to execute the material procurement 

simulation. Each phase of the procurement process was 

modeled using the duration data gathered from a building 

project. Then the simulation result was compared with the 

traditional EOQ model. The study finds that the simulation has 

maintained safety stock but the EOQ methods construction 

material inventory level falls below the minimum threshold of 

safety stock. This is because of the uncertainty in delivery and 

change in demand fluctuation on the site. 

Some studies use meta-heuristic algorithms to optimize 

construction material logistics and handling [13,15]. Son et al. 
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have combined the dragonfly algorithm (DA) and particle 

swarm optimization algorithm (PSO) to optimize the cost of 

construction material through logistic planning from a 

contractor perspective [15]. To verify the advanced searching 

ability of the DA–PSO algorithm, the algorithm was 

compared with the gray wolf and the genetic algorithms. The 

input parameters to the model were discount to purchase of the 

bulk material, interest rate, schedule penalties, and cost for 

transport and site layout. The output of the model is an 

optimized fixed order period and warehouse size for each 

construction stage of the structure basement, superstructure, 

and finishing. The researcher took steel to study the developed 

model's performance and concluded that the DA-PSO model 

is more suitable to achieve optimum results in a limited time 

than the gray wolf and the genetic algorithms. The drawback 

of the model is it doesn’t consider the future price of the 

construction material. Several studies have been conducted to 

solve the NP-hard material cost optimization problems in the 

construction industry. However, in this study, a two-staged 

strategic construction material procurement method is 

proposed for onsite construction. The Procurement method 

includes the predicted price of material depending on the 

macroeconomic condition of the country and restricted 

warehouse capacity. In addition, despite the previous studies 

having limitations in terms of validation of their proposed 

models with the exact method, in this study with the hope of 

gaining a better solution by comparing against the exact 

method, a deep reinforcement algorithm is proposed to solve 

the NP-hard problem with reasonable solution time. 

III. METHODOLOGY 

In this section, the two staged MLP-DQN-based methods 

problem to solve the problem are described. The methodology 

flow chart in Figure I illustrates the stages.  Section III.A 

describes the MLP model which is the first stage of the method 

to make price prediction. Then the DQN model used in the 

second stage is described in detail in Section III.B to show 

how it was used in construction material procurement cost 

optimization. 

 
FIGURE I. RESEARCH METHODOLOGY FLOWCHART 

A. Construction material Price Prediction Using 

Multilayer Perceptron 

1. Data Collection and Data Source 

Depending on the literature review on the leading 

indicators and the availability of data, potential leading 

indicators that are identified in Ethiopia are shown in Table I. 

The data collected is monthly from Sep 2010 to May 2022. 

TABLE I. POTENTIAL LEADING INDICATORS FOR CEMENT 

Indicator ID Description Data 

Source 

Net 

Foreign 

Assets 

NFA Shows the country’s economic 

condition and equity-debt 

imbalance. It gives attraction to 

investors in the construction sector 

[20]. 

NBE 

Consumer 

Price 

Index 

CPI The consumer price index is a way 

to gauge the cost of a representative 

basket of products and services that 

urban consumers would typically 

buy [28]. 

CSS 

Inflation 

Rate 

IR Inflation causes the rate of change 

in the price of construction 

materials to vary over time [29].  

CSS 

Export EX The export of goods gives a 

country additional foreign 

currency.  

NBE 

Lending 

Rate 

LR To finance their projects, 

construction stakeholders would be 

dependent on loans from financial 

organizations. The rate of interest 

changes would influence the party's 

readiness to invest, which would 

have an impact on the demand for 

new development [20]. 

NBE 

Exchange 

Rate 

ER Affects the decision to invest in the 

country's construction industry by 

foreign investors [20]. 

NBE 

Money 

Supply 

M2 It is a metric that shows the sum of 

money that circulates in the 

country's economy [28]. 

NBE 

2. Input variable selection 

In this step among the available potential leading 

indicators collected, input variables that are cause for cement 

price fluctuation were identified. Leading indicators have a 

relationship with the dependent variable with a margin period. 

So, to identify the leading indicators for cement price in the 

Ethiopian construction sector it was tested for a lag period of 

1, 3 and 7 months using the Granger Causality test. The test is 

a theory of causality based on statistics and prediction. The 

variable under test is a leading indicator if, previous values of 

its contain information to predict the dependent variable in 

addition to the dependent variable's past values [30]. 

However, the test needs stationary data of the variables. So, 

the stationarity of the data was tested by the Augmented 

Dickey-Fuller (ADF) method. To transform the time series 

data to stationary differencing technique was adopted. For the 

variables that show test result data is nonstationary, 

differencing stops when the null hypothesis is rejected or the 

time series is stationary. Then granger causality test was 

performed between the leading indicators that have the same 

order of cointegration with the dependent variable for the 

specified lag length. 
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3. Model Development 

Multilayer Perceptron (MLP) is an important class of 

neural network that uses a feed-forward supervised learning 

algorithm to bring a set of outputs from the given set of inputs. 

The network is composed of an input layer, more than one 

hidden layer, and an output layer. During the forward pass 

input vector is applied to the input neuron of a network then it 

propagates into the subsequent layer of the MLP network to 

give a prediction. According to Parmezan et al. [31], 

mathematically the forward pass is expressed as:  

𝑦𝑚 = 𝑓(∑ 𝑤𝑙𝑚𝑦𝑙 + 𝑏)
𝑚

𝑖
    ( 1) 

where, ym = the mth output layer predicted output, yl = the 

output at the previous(l) hidden layer, b = is the bias, wm = the 

weight at the mth output layer, f = activation function, i = the 

input layer, m = the output layer 

Then the difference between the actual and predicted 

values is backpropagated to adjust the weights and bias. MLP 

can solve complex problems, and handle datasets with a large 

number of features especially non-linear ones [32]. 

TABLE II. HYPERPARAMETERS PURPOSE LITERATURE REVIEW 

HyperParameters Description 

Learning rate Too small a learning rate may cause 

overfitting. Excessive large learning rates 

cause divergence in training. Choosing 

an appropriate learning rate will increase 

the model's performance [35].  

Window size It is the number of time steps in a 

reframing of time series problems as 

supervised machine learning. There is no 

ideal window size [36]. So it is necessary 

to test the performance of the model 

using different window sizes.  

Epoch Size Epoch size is a hyperparameter that 

controls the number of times the learning 

algorithm will operate over the full 

training dataset [37]. 

Activation 

function  

It helps the artificial neural network to 

learn the complex and nonlinear 

relationships between inputs and outputs 

[38]. 

Hidden layer To get a good performance of the model, 

the number of hidden layers depends on 

the complexity of the problem [39]. 

Therefore, it is mandatory to test the 

performance of the model with a different 

number of hidden layers. 

Number of neurons It affects the performance of the model.  

If the number of neurons is small the 

model prediction error is high because, 

information from the input grid cannot be 

conveyed to the next layers correctly 

[40].    

Batch Size It is the size of data samples that are used 

to update a neural network weight. 

Searching for the optimal value helps to 

identify what works for the problem [37]. 

 

Feature scaling 

Data contain features with different ranges of values. This 

makes features with large values more dominant in 

influencing the convergence of the result than features with 

small values. It also decreases the speed of the learning 

process. Feature scaling techniques help to change the data 

into the same range. Among the techniques Min-Max, Z-

Score, and Median Normalization can be listed [33]. In this 

model, the min-max method was selected. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−min (𝑟𝑎𝑛𝑔𝑒)

max(𝑟𝑎𝑛𝑔𝑒)−𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
   

Hyperparameter tuning 

The accuracy of the model depends on the hyperparameter 

values. Hyperparameter value setting needs experience and 

exploration. In this model gird search method was employed 

to tune the set value of hyperparameters and search the 

optimal set of hyperparameters as specified by [34]. The 

hyperparameters and search space of the grid search are 

illustrated in Table II and Table III. 

TABLE III. LIST OF HYPERPARAMETERS AND GRID SEARCH 

SPACE FOR TIME-SERIES MODELS 

HyperParameters Search Space 

Learning rate 0.1,0.01,0.001,0.0001,0.00001,0.000001 

Epoch Size 7000 

Activation 

function  

Relu, Sigmoid, Tanh 

Number of Hidden 

layers 

2,4,8 

Number of neurons 2,4,6,8,10 

Batch Size 4,8,16,32,64 

Train, Test, and Validation Split 

Samples were generated and divided into train and test sets 
using ratios of (90, 10), (80, 20), (70, 30), and (60, 40) to train 
the model and validate the model by setting early stopping of 
10. 

Measurement of Prediction Performance 

Metrics used for model performance evaluations were the 
most commonly used methods. These are mean squared 
error(MSE), root mean squared error(RMSE), and mean 
absolute percentage error(MAPE). Eq. 3 to Eq. 5 illustrates the 
performance evaluation metrics formula as highlighted by 
Steurer et al. [41]. 

MSE is a Squared-difference measure that is particularly 

helpful in circumstances when it is necessary to reduce 

significant forecast mistakes. 

𝐌𝐒𝐄 =
𝟏

𝐍
∑ (𝐀𝐜𝐭𝐮𝐚𝐥 𝐕𝐚𝐥𝐮𝐞 − 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐕𝐚𝐥𝐮𝐞 )𝟐𝐍

𝐧=𝟏
  (3) 

The MSE may be monotonically transformed into the 

RMSE as shown in Eq. 4. RMSE has an advantage over MSE 

because it produces smaller numbers that are simpler to 

compare and thus simpler for the user to interpret. 

𝑅𝑀𝑆𝐸 = √∑ ( 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2𝑁
𝑛=1

𝑁
  (4) 

Mean Absolute Percentage Error (MAPE) is a prediction 

error measured as ratios of predicted and actual values. 
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   𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ ( (

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆

𝑨𝒄𝒕𝒖𝒂𝒍 𝒗𝒂𝒍𝒖𝒆
) − 𝟏)

𝑵

𝒏=𝟏
  (5) 

Residual Normality Test 

The residual Normality test is applied to assess the model's 

fitness for the data. If the residuals are normally distributed it 

can be concluded that the model has captured the relevant 

information from the input data for the prediction. In this study 

distributed histogram is used for testing the normality of 

residuals. 

B. Construction Material Procurement Using The DQN 

Model 

Reinforcement learning is used to solve problems that 

contain dynamic sequential systems by the interaction of the 

agent with the dynamic environment. The expression of the 

problem suitable for reinforcement learning as state and action 

is called the Markovian Decision Process (MDP) [42]. While 

learning the agent explores and exploits by making an action 

to navigate from the current state(S) to a new state(S+1). Then 

the agent gains a reward (r+1) that gives temporal credit to the 

state (S) [43]. The temporal credit that the agent gives to the 

state is given by the Bellman equation in Eq. 6. 

𝑄∗(𝑆𝑡 , 𝐴𝑡) = 𝑟 +  γmax𝑎 𝑄∗(𝑆𝑡+1, 𝐴𝑡+1)  (6) 

Where γ is the discount rate to give less value for future 

rewards? 

The exploration and exploitation dilemma of the agent is 

avoided by epsilon value which ranges from 0 to 1. As the 

agent trains epsilon value decreases from 1 to the minimum 

set value by the given epsilon decay rate. When the epsilon 

value decreases the exploration, rate decreases but 

exploitation increases. The agent's fastness in learning is 

monitored by the learning rate in the temporal difference or 

error between the state(s) action value and the next state(s+1) 

action value plus the reward the agent gets when making the 

action as shown in the Eq. 7. This method helps to avoid the 

need to wait until the end of the episode to compute the 

optimal value and policy [43]. 

𝑄(𝑆𝑡, 𝐴𝑡) ← Q(𝑆𝑡, 𝐴𝑡) +  α[ 𝑅𝑡+1 + γmax𝑎 Q(𝑆𝑡+1, 𝐴𝑡+1) − Q(𝑆𝑡, 𝐴𝑡)] (7) 

One of the known reinforcement learning is q learning. 

However, it needs tables to map the state and the action [44]. 

This causes high memory requirements of computers for 

computing large problems. Besides the agent needs to visit the 

states frequently. To avoid those problems, Mnih et al. 

proposed a deep reinforcement learning technique (DRL) 

called a Deep Q Network (DQN) algorithm that uses the value 

function approximation method [45]. The error between the q 

network prediction and the target action-value function shown 

in Eq. 8 is a temporal difference that the DQN agent learns 

using the backpropagation algorithm [45,46].  

To avoid instability of learning during training Mnih et al. 

use experience replay and target q network. The experience 

replay allows agents to sample from the experience buffer 

which breaks the relationship between sequential action by 

sampling from different episodes and sequences of action to 

avoid instability [45]. Besides, the target q network in addition 

to the online q network is used to maintain stability by fixing 

the q values for some episodes to avoid divergence and 

oscillation.  

𝑇𝐷 ←  ( 𝑅𝑡+1 +   𝛾𝑚𝑎𝑥𝑎𝑄(𝑆’, 𝑎’; 𝛳𝑖
−) − 𝑄(𝑆, 𝑎; 𝛳𝑖))2 (8) 

Where ϴ𝑖
− is target network parameter and ϴ𝑖  is the online 

network parameter. 

1. Problem Formulation as a Markov Decision Process 

(MDP) 

States 

The model possesses the Markov property, the state is 

solely determined by the state that came before it and the 

selected action. State (s) in the MDP contains a tuple of (d, P, 

D, It) where  

d is a colander day that accounts for preparation for 

procurement of material and construction project duration. 

P is the predicted price of the construction material on day 

d 

D is the demand for construction material at the day d 

depending on construction planning. 

It is the current inventory in the warehouse that is available 

at the end of day d. 

Action 

Actions available in a given state (at) consist of [0, 1]. 

Where 0 represents the action of not to procure and action of 

1 represents the action to procure bulk units of material. The 

bulk material procurement amount is with a maximum limit 

of warehouse capacity and a minimum set amount according 

to convenience. The choice of action depends on the agent's 

decision by observing the available current inventory (kt) and 

price of construction material in the state of the environment. 

The action tuple is (Q, P, ddel) where Q is the quantity ordered, 

P is the price of construction material on the day of 

procurement, and ddel is a delivery day on the calendar days.  

Rewards 

State(St) in MDP has reward(rt) for being in itself plus 

expected total rewards in future states(St+1 to Sn) of the 

environment. For strategic construction material procurement, 

MDPs consist of a negative reward or penalty for ordering(k), 

unit material purchasing price at the lead time (𝑃𝑡−𝐿), holding 

cost(h) per unit of inventory( 𝐼𝑡), storing cost(T) per unit of 

holding inventory(  𝐼𝑡)  beyond the storage capacity of the 

warehouse(W), lead time(L), Safety stock(S), and large 

liquidated damage assumed as a result of construction material 

shortage in the warehouse(M) on day d. For the first n 

timesteps (n days) the shortage cost occurs when the inventory 

is less than the safety stock. However, for the last n timesteps, 

shortage cost arises when the inventory is less than the 

demand for the material.  

For the first n steps the equations and functions that are 

used in the step function are illustrated Eq. 9 to Eq. 18. 

In case 1 when the DQN agent does not make a 

procurement (action = 0) during the lead time and: 

a) if the current inventory (𝐼𝑡) is within a range of safety 

stock(S) and warehouse capacity(W) as illustrated in 
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Eq. 9, the reward at time t is the holding cost for the 

inventory as shown in Eq. 10. 

 𝑆 ≤  𝐼𝑡 ≤ 𝑊      (9) 

𝑟𝑡 =  (𝐼𝑡−1 − 𝐷𝑡) ∗ ℎ     (10) 

b) if the current inventory (𝐼𝑡) exceed the warehouse 

capacity(W), the reward is the holding cost of the 

material with the maximum warehouse capacity plus 

the penalty for excess storage as illustrated in the Eq. 

11. 

 𝐼𝑡 > 𝑊      (11) 

 𝑟𝑡 = 𝑊 ∗ ℎ + (𝐼𝑡−1 − 𝐷𝑡 − 𝑊) ∗ 𝑇  (12) 

c) if the current inventory is less than the safety stock, 

the reward at the time step is a shortage cost as 

indicated in Eq. 14: 

𝐼𝑡 < 𝑆       (13) 

𝑟𝑡 = (𝑆 − 𝐼𝑡−1 − 𝐷𝑡) ∗ 𝑀   (14) 

But in case 2 when the action at the lead time is to procure 

(action = 1), the order arrives and; 

a) if the inventory is within a range of safety stock and 

warehouse capacity, the reward at time t is the sum 

of the purchasing price, ordering cost, and the 

holding cost for the inventory given by Eq. 15. 

𝑟𝑡 =  𝑃𝑡−𝐿 ∗ (𝑄) + 𝑘 + (𝐼𝑡) ∗ ℎ   (15) 

b) if the inventory at time t is greater than the warehouse 

capacity, the reward at time t is the sum of the 

purchasing price, ordering cost, holding cost, and 

penalty for excess storage as illustrated in the Eq. 16: 

𝑟𝑡 =  𝑃𝑡−𝐿 ∗ (𝑄) + 𝑘 +  𝑊 ∗ ℎ +    (𝐼𝑡 − 𝑊) ∗ 𝑇 (16) 

c) if the inventory storage is less than the safety stock, 

the reward at time t is the sum of the purchasing 

price, ordering cost, and shortage cost as shown in 

Eq. 17. 

𝑟𝑡 =  𝑃𝑡−𝐿 ∗ (𝑄) + 𝑘 +  (𝑆 − 𝐼𝑡) ∗ 𝑀)     (17) 

Where inventory at time t ( 𝐼𝑡) is the sum of inventory at 

the previous timestep ((𝑰𝒕−𝟏) plus the arrived material minus 

the planned demand for the material on day d as illustrated in 

Eq.18. 

   𝐼𝑡 = (𝐼𝑡−1  − 𝐷𝑡 +  𝑄)     (18) 

For the remaining last timesteps, the if conditions safety 

stock(S) of Eq. 9, Eq.13, Eq.15 and Eq.17 are replaced with 

the demand for the material at time t (𝐷𝑡). This enables the 

agent to make procurement decisions that eliminate inventory 

upon completion of the project.  

IV. RESULT AND DISCUSSION 

Depending on stage one and the methodology stated in the 

previous chapter using Python programming language, 

potential leading indicators were tested to identify indicators 

for cement price prediction. First, the retail cement price and 

the indicators were investigated for stationarity by the ADF 

unit root test. As shown in Table IV cement price and all the 

indicators are not stationary because the ADF t-statistics is 

greater than a critical value of -2.88. 

Then to avoid the nonstationarity of the macroeconomic 

indicators and retail cement price data the first difference was 

performed. The ADF unit root test result for the first 

difference shows cement price, lending rate, foreign reserve, 

and inflation rate become stationary as demonstrated in Table 

IV. But money supply(M2), Consumer Price Index, and 

export don’t come stationary at first differencing so it needs 

another differencing. However, the variable for the Granger 

causality test is to be in the same order of integration with the 

dependent variable of cement price, variables that become 

stationary at first difference were used for further 

investigation of causality and lag length determination. 

TABLE IV. RESULT OF ADF UNIT ROOT TEST FOR CEMENT 

PRICE AND ALL INDICATORS 

Variable ADF t-

statistic 

Variable ADF t-

statistic 

Cement 2.42 ΔCement -5.73* 

CPI 2.82 ΔCPI 2.73 

M2 2.45 ΔM2 0.62 

NFA -1.70 ΔNFA -3.36* 

LR 0.05 ΔLR -11.91* 

IR -1.46 ΔIR -4.83* 

EXP 3.53 ΔEP -1.25 

ER 4.93 ΔER -2.76 

Granger causality test was conducted to examine the 

relationship between differenced cement price to itself, a net 

foreign asset to cement price, lending rate to cement price, and 

inflation rate to cement price for a lag period of 1,3 and 6 

months with the confidence of 90%.  The net foreign asset is 

accepted as a Granger cause of cement price for the lag 

periods. This is because the result of the Granger causality is 

not less than the critical value for F-statistics and the null 

hypothesis is rejected. However, for the cement price itself, 

the lending rate to cement price and inflation rate to cement 

price is not a granger cause for lags specified because the null 

hypothesis is accepted as shown in Table V. 

TABLE V. RESULT OF GRANGER CAUSALITY TEST BETWEEN 

CEMENT PRICE AND LEADING INDICATORS 

Null Hypothesis 

F – Statistics 

1-Month 

lag 

3-Month 

lag 

6-Month 

lag 

ΔCement doesn’t Granger 

cause ΔCement 

0 0 0 

ΔNFA doesn’t Granger 

cause ΔCement 

5.26* 3.13* 3.25* 

ΔLR doesn’t Granger cause 

ΔCement 

0.10 0.89 0.59 

ΔIR doesn’t Granger cause 

ΔCement 

1.22 1.71 1.4 

A. Model Development and Evaluation 

Using the methodology specified in the previous chapter, 

a model of MLP was developed by using the predictor of net 

foreign assets of the country which is the Granger cause of 

cement price for three-month lag duration. By using 

hyperparameter tuning of grid search and performance 
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evaluation metrics as shown in Table VI, the MLP model that 

gives better performance contains a training validation split of 

60:40 with a lookback window size of 5 months. Besides, the 

best hyperparameter combinations are learning rate, epoch, 

activation function, hidden layer, number of neurons, the 

batch size value of 0.00001,720, Tanh,4,10, and 32 

respectively.  

TABLE VI. RESULTS FOR MLP MODEL 

Model 
Metrics 

Data Sets 

MLP 

Training Validation Testing 

MAPE 14.6 13.6 13.01 

MSE 1274.5 1650.79 8328.9 

RMSE 35.7 40.66 91.26 

The developed model performance was compared with 

linear regression model prediction performance. The linear 

regression model has a RMSE of 36.4 in the training set and 

206.26 in the testing set. Whereas in terms of MAPE, it has 

20.6% in training and 47.24% in testing set. This shows the 

developed model can learn the trend of cement prices using 

the leading indicator.  

Furthermore, as illustrated in Figure II below from the 

distributed residual histogram plot, the residuals are normally 

distributed. This indicates the model has captured the relevant 

information from the data. 

 
FIGURE II. DISTRIBUTED RESIDUAL HISTOGRAM 

B. Simulated example of DQN model performance 

This study takes a building construction project located in 

Addis Ababa city with storage space limitations. It is a private 

project which is under construction with a total project cost of 

120 million birrs and a total project duration of 90 days. The 

demand for cement in quintals from the 6th of Dec-2022 to the 

6th of Mar-2022 for structural work based on the material 

requirement planning is in alignment with the predicted 

construction material price. The project time to assess for 

procurement of cement price to the project is 90 Days and the 

warehouse capacity to carry cement is 1200 Qtls with a safety 

stock of 200 Qtls. The ordering cost per order to cover the cost 

related to dealing, market assessing, and inspection costs for 

cement collected from the site is 500 birr. To cover the cost 

related to storage, security, obsolescence, interest cost, and 

insurance, the estimated cost for cement is 136 birr per year.  

Other project data-related inputs to procurement are a leading 

time of 6 days, a penalty of 40 birrs per quintal of cement for 

excess inventory, and 300,000 birr per shortage quantity. 

 
FIGURE III. EPISODE REWARD AND MOVING AVERAGE 

REWARD OF DQN MODEL 

1. Deep Q Learning (DQL) Model 

The DQN agent was trained with the optimization 

algorism of Adam, the activation function of ReLU, the 

number of neurons of 30, hidden layer of 2, Batch size of 32, 

the learning rate of 0.0006, the number of episodes of 3000, 

minimum epsilon value of 0.008, epsilon decay rate of 0.995 

and replay buffer size of 20000 to find the optimal quantity 

and ordering period for the project in the custom environment. 

In Figure III, the episode reward plot shows the total 

procurement cost at the end of each episode. As the episode 

increases the agent is trained to learn action to perform in a 

given state which decreases the cost because it is negative 

reinforcement learning. The red moving average line indicates 

the cumulative rewards or total cement procurement, holding 

cost, and other penalties starting from the first up to the 

episode under consideration divided by episode number. The 

moving average cost decreasing as episodes increase implies 

that the agent is learning through time as it decreases 

exploration and exploits more. The optimal policy is the 

policy that has lower cost as a result of the agent's decision on 

when and how much cement to procure. In this case, it is the 

lowest point in the episode reward line given the indicated 

episode number. 

 
FIGURE IV. PROCUREMENT USING DQN’S AGENT AND THE 

EXACT MILP METHOD 

To validate the DQN Procurement model's performance, 

the problem was optimized using the exact MILP method 

which gives the global minimum value. It was implemented 

on an Intel(R) Core (TM) i3-3120M CPU @ 2.50GHz laptop 

like the DQN method, using the MIP python package and 

CBC solver [47]. As shown in Figure IV for the three-month 

duration of the construction project, during the December 

month the rate of increase for cement price is lower than 
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January and February. But as the price increases the total 

procured cement quantity by both the DQN agent and the 

exact MILP optimization becomes less than the total demand 

of material in the given month. Because it is valuable to 

procure and hold materials in December to cover the demand 

in the following months. 

In addition to 90 time steps, sample tests were performed 

for 30 and 60. In all of the tests, the agent learns to make a 

decision which is less than 1% starting from around 1000 

Episodes.  As shown in Table VII the GAP for the total 3000 

episode value indicates that the proposed method quality of 

best solution is slightly less than the exact MILP method. 

However, as the timestep increases the time taken for the 

MILP method increases at a higher rate than the proposed 

DQN method. This is because in MILP to find the exact 

solution it needs assessment of all available spaces. But, in 

DQN the agent can learn the environment through exploration 

and exploitation so that by approximating the experience 

using bootstrapping it decreases the time for searching near 

optimal value. This implies the proposed DQN method can be 

used to execute material procurement strategy optimizations 

to projects with longer duration in less time than the exact 

MILP method. 

TABLE VII. OPTIMAL SOLUTION AND GAP BETWEEN MILP 

AND DQN 
Number 

of Steps 

MILP Exact 

Optimization 

DQN Optimization 

Optimal 

Cost 

Time 

per 

Step 

Optimal Cost Time 

per 

Step 

GAP 

30 1605074.989 0.22 Sec 1606486.521 156 Sec 0.088 % 

60 3206842.311 23 Sec 3,213,704.953 178 Sec 0.214 % 

90 4739536.468 482  Sec 4,754,892.56 212 Sec 0.324 % 

V. CONCLUSION 

Construction material cost is the major cost for 
construction projects. The costs include direct purchasing, 
procuring, and holding costs.  An inaccurate estimate of 
construction materials costs leads actual cost of construction 
to be over or under the initial estimate. The underestimation 
causes project time and cost overrun and overestimation 
decreases developers willingness to invest and also the 
contractor’s competitiveness. In this research, two staged 
hybrid machine learning models are proposed for predicting 
construction material prices and for optimizing construction 
material procurement costs.  

To show the performance of the proposed algorithms, in 
the first stage, using the most significant indicator identified 
in the Ethiopian Construction Industry three months ahead 
cement price is predicted by the MLP model. The performance 
of the prediction model is better than the alternative linear 
regression model in both MAPE and MSE. Then, in the 
second stage, price prediction is used as input to the DQN 
procurement model environment. The DQN agent interacts 
with the procurement model environment and learns to make 
a procurement action in the appropriate quantity and period. 
This implies that because the material procurement problem is 
NP-hard, the optimization process needs DQN’s algorithm to 
solve the formulated problem as MDP.  The developed two-
staged hybrid model is helpful to construction project 
practitioners to know early the optimized likely cost 
associated with construction material and its timely order.  

However, the study has some limitations. First, it includes 

one construction material but increasing the material types and 

solving it using multiagent could be future research direction. 

The objective of this study is also to decrease project costs. 

However, in construction projects, time is another significant 

factor. So, integrating multi-material ordering and renewable 

resources with project scheduling can create multiobjective 

problems that can be solved by a multiagent DQN algorithm.  

In addition, in the procurement stage, the agent is punished for 

storing material above storage capacity. This method is 

helpful for the agent to learn to make material ordering with a 

reasonable amount. But, in some of the best solutions in the 

episodes having less than 1 percent cost deviation with the 

exact method, it was observed that there is an inventory level 

above the storage capacity. This has an impact on training time 

requirements to get the constrained inventory level in the 

material reorder point. Future research can extend this study 

by adding techniques to compel the agent in the selection of 

valid procurement actions. 
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