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Abstract− This paper studies the relationship between polynomials and classical number
sequences, focusing on their structural properties and mathematical significance. It explores a
specific class of polynomials inspired by Vietoris’ number sequences, referred to as Vietoris-like
polynomials. The primary objective is to analyze their fundamental algebraic properties,
recurrence relations, and special identities. The study employs algebraic methods to derive
the recurrence relations and explicit formulas for these polynomials. Moreover, it establishes
Catalan-like, Cassini-like, and d’Ocagne-like identities.
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1. Introduction

Polynomial forms of number sequences, beginning with Fibonacci polynomials, hold an important
place in various subfields of mathematics such as geometry and algebra [1–3]. Fibonacci and Lucas
polynomials constitute significant recursive sequences with remarkable algebraic and combinatorial
properties. These polynomials have been extensively studied for their theoretical importance and
applicability in interdisciplinary fields such as coding theory, quantum computing, and symbolic
computation. Their structural characteristics enable efficient formulations in both pure and applied
mathematics. In particular, Fibonacci-type polynomials have considerable applications in number
theory [4–7]. For any variable quantity x, the Fibonacci polynomial Fn(x) is defined as

Fn(x) = xFn−1(x) + Fn−2(x), for all n ≥ 2

with F0(x) = 0 and F1(x) = 1. With a similar idea, the Lucas polynomial Ln(x) is defined as

Ln(x) = xLn−1(x) + Ln−2(x), for all n ≥ 2

with L0(x) = 2 and L1(x) = x. For more details, see [8, 9].

In 1958, Vietoris used Appell polynomials in connection with positivity problems of trigonometric
sums [10]. Positivity as an interdisciplinary subject was an active research field, and several works
were conducted using Vietoris’ results [11]. Later on, in [12], the authors studied Vietoris’ number
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sequence {vs}s≥0 with s-th term formula

vs =
1
2s

(
s⌊
s
2
⌋) (1.1)

where
(

s⌊
s
2
⌋) is the central binomial coefficient [13] and ⌊.⌋ represents the floor function. This sequence

is associated with the sequence A283208 in the Online Encyclopedia of Integer Sequences (OEIS) [14].
As can be observed from [13,15–19], Vietoris’ sequence is one of the members of rational sequences,
and some terms are as follows:

1,
1
2 ,

1
2 ,

3
8 ,

3
8 ,

5
16 ,

5
16 ,

35
128 ,

35
128 ,

63
256 ,

63
256 , · · ·

In addition, the sequence of Appell-Vietoris polynomials [20], namely {Vn(x)}n≥0, is defined. For this
sequence,

Vn(x) =
n∑

k=0
Tn

kxk =
n∑

k=0

(
n

k

)
cn−kxk

where Tn
k and ck are triangle, i.e., these numbers form a triangular array with n + 1 rows, indexed

from k = 0 to k = n, and k−th term of the Vietoris sequence, respectively. In [20], it can be seen that
Vietoris’ sequence via the sequence of Appell-Vietoris polynomials for x = 0.

In this paper, we investigate the following questions: Is it possible to determine a special type of Vietoris-
like polynomials by considering the properties of Vietoris’ numbers? If so, what relations, identities,
and properties do they satisfy? What conditions must be imposed on Vietoris-like polynomials to
obtain meaningful results? This paper aims to explore and provide answers to the questions posed.

The rest of this study is structured as follows: Section 2 introduces the fundamental concepts to be
utilized throughout the paper. Section 3 defines special Vietoris-like polynomials, investigates some of
their basic properties, and analyzes their recurrence relations, special equalities, and identities such as
those of Catalan, Cassini, and d’Ocagne. Finally, Section 4 provides the conclusions.

2. Preliminaries

This section discusses the basic properties of Vietoris’ number sequence {vs}s≥0 with the s-th element
in (1.1), For more details, see [10–18]. Even members of {vs}s≥0 are as follows:

v2n = 1
22n

(
2n

n

)
, n ≥ 0

where v2n = v2n−1. The two-term recurrence relation for {v2n}n≥0 is as follows:

v2n+2 = L(2n)v2n, n ≥ 0 (2.1)

where
L(k) = k + 1

k + 2 , k ≥ 0 (2.2)

Thus, the expression for v2n in terms of any v2k is as follows:

v2n =
n−k∏
l=1

L(2n − 2l)v2k, n > k
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Similarly, v2n in terms of v0 is as follows:

v2n+2 =
n∏

i=0
L(2i)v0 = (2n + 1)!!

(2n + 2)!!

Here, the double factorial of a number is defined as the product of all positive integers up to this
number that shares the same parity (odd or even) as itself. The three consecutive-term recurrence
relation for {v2n}n≥0 is as follows [17]:

v2n+2 =
1
2v2n+1 +

1
2L(2n)v2n, n ≥ 0 (2.3)

The characteristic equation for the recurrence relation in (2.3) is given by [17]:

t2 − 1
2 t − 1

2L(2n) = 0

with roots

r
†1
2n =

1
4

(
1 −

√
1 + 8L(2n)

)
and r

†2
2n =

1
4

(
1 +

√
1 + 8L(2n)

)
(2.4)

According to the roots in (2.4), Vietoris’ number sequence provides the following Binet-like formula [17]:

v2n = c
†1
2n

(
r

†1
2n

)2n
+ c

†2
2n

(
r

†2
2n

)2n

where

c
†1
2n =

(
r

†2
2n

)2n
− v2(

r
†2
2n

)2n
−
(
r

†1
2n

)2n

n−1∏
k=1

(
2r

†1
2k − 1

)
r

†1
2k and c

†2
2n =

v2 −
(
r

†1
2n

)2n

(
r

†2
2n

)2n
−
(
r

†1
2n

)2n

n−1∏
k=1

(
2r

†2
2k − 1

)
r

†2
2k

By the roots in (2.4), the following holds: r
†2
0 = 1+

√
5

4 (half of the golden ratio), r
†1
2n + r

†2
2n =

1
2, and

r
†1
2nr

†2
2n = −L(2n)

2 [17]. Using (2.1), (2.3) of order two for the even index is rewritten as [17]:

v2n+2 = 1
2L(2n)v2n + 1

2L(2n)L(2n − 2)v2n−2, n ≥ 1

The characteristic equation of this recurrence is as follows [17]:

t2 − 1
2L(2n)t − 1

2L(2n)L(2n − 2) = 0

with roots

r†1
2n = L(2n)

4

(
1 −

√
1 + 8L(2n − 2)

L(2n)

)
and r†2

2n = L(2n)
4

(
1 +

√
1 + 8L(2n − 2)

L(2n)

)
(2.5)

According to these roots, Vietoris’ number sequence provides the Binet-like formula [17]:

v2n = c†1
2n

(
r†1

2n

)2n
+ c†2

2n

(
r†2

2n

)2n

where

c†1
2n =

(2n − 1)!!
(

−L(2n)
(
r†2

2n

)2n
+
(
r†2

2n+2

)2n+2
)

2nn!
((

r†1
2n

)2n (
r†2

2n+2

)2n+2
−
(
r†2

2n

)2n (
r†1

2n+2

)2n+2
)

and

c†2
2n =

(2n − 1)!!
(

L(2n)
(
r†1

2n

)2n
−
(
r†1

2n+2

)2n+2
)

2nn!
((

r†1
2n

)2n (
r†2

2n+2

)2n+2
−
(
r†2

2n

)2n (
r†1

2n+2

)2n+2
)
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By the roots in (2.5), the following hold: r†1
2n + r†2

2n =
L(2n)

2 and r†1
2nr†2

2n = −
L(2n)L(2n − 2)

2 [17].
Moreover, the generating function is given by [15]:

g(z) =
√

1 + z −
√

1 − z

z
√

1 − z
=

∞∑
p=0

vpzp, 0 < |z| < 1

3. Special Vietoris-like Polynomials

This section introduces special Vietoris-like polynomials and presents several of their properties.

Definition 3.1. For real variable x, the s-th element of Vietoris-like polynomial sequence {Vs(x)}s≥0

is defined by

Vs(x) =

 L(s − 1)Vs−1(x), if s is odd
x+1

2 L(s − 2)Vs−2(x), if s is even
(3.1)

where V0(x) = 1.

The first few Vietoris-like polynomials are

1, 1
2 , x+1

4 , 3(x+1)
16 , 3(x+1)2

32 , 5(x+1)2

64 , 5(x+1)3

128 , 35(x+1)3

1024 , 35(x+1)4

2048 , 63(x+1)4

4096 , 63(x+1)5

8192 , · · · (3.2)

In particular, for x = 1, Vietoris-like polynomials are equal to Vietoris’ sequence. For x = −1, Vs(x) = 0
where s ≥ 2. It can be observed the graphs of the first eleven elements of Vietoris-like polynomial
sequence in Figure 1, for −5 ≤ x ≤ 5.

Figure 1. First eleven elements of Vietoris-like polynomial sequence

Corollary 3.2. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, two-term recurrence
relation, for {V2n(x)}n≥0 is obtained from (3.1), for s = 2n + 2 as follows:

V2n+2(x) = x + 1
2 L(2n)V2n(x) (3.3)

Moreover, even members can be also written using (2.2) such that:

V2n(x) =
(

x + 1
2

)n 1
22n

(
2n

n

)
, n ≥ 0 (3.4)

Corollary 3.3. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Considering (3.3) in terms of
{V2n(x)}n≥0,
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V2n+2(x) =
(

x + 1
2

)2
L(2n)L(2n − 2)V2n−2(x), n ≥ 1 (3.5)

Additionally, the term V2n(x) in terms of any V2k(x) is as follows:

V2n(x) =
n−k∏
l=1

(
x + 1

2

)n−k

L(2n − 2l)V2k(x), n > k (3.6)

The following equality in terms of V0(x) is obtained:

V2n+2(x) =
(

x + 1
2

)n+1 n∏
i=0

L(2i)V0(x) =
(

x + 1
2

)n+1 (2n + 1)!!
(2n + 2)!! (3.7)

Proof. By putting s = 2n + 2 and s = 2n in (3.1), (3.3) and

V2n(x) = x + 1
2 L(2n − 2)V2n−2(x) (3.8)

calculates, respectively. When (3.8) is substituted into (3.3), (3.5) is obtained. If this process continues,
(3.6) is obtained. Moreover, for a particular value k = 0, (3.6) is transformed into (3.7). Here, it is
clear that

n∏
i=0

L(2i) = (2n+1)!!
(2n+2)!! via (2.2)

Corollary 3.4. The three consecutive-term recurrence relation for {V2n(x)}n≥0 is as follows:

V2n+2(x) =
x

2V2n+1(x) +
L(2n)

2 V2n(x) (3.9)

Proof. From (3.3), V2n+2(x) = x+1
2 L(2n)V2n(x). Then, it follows V2n+2(x) = x

2 L(2n)V2n(x) +
1
2L(2n)V2n(x). From (3.1), L(2n)V2n(x) for V2n+1. This ultimately leads to the three-consecutive-term
recurrence relation (3.9).

Corollary 3.5. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, two-term recurrence
relation, for {V2n+1(x)}n≥0 is obtained from (3.1), for s = 2n + 1 as follows:

V2n+1(x) = x + 1
2 L(2n)V2n−1(x) (3.10)

Moreover, odd members can be also written using (2.2) such that:

V2n−1(x) =
(

x + 1
2

)n−1 1
22n

(
2n

n

)
, n ≥ 0

Corollary 3.6. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Considering (3.10) in terms of
{V2n+1(x)}n≥0,

V2n+1(x) =
(

x + 1
2

)2
L(2n)L(2n − 2)V2n−3(x), n ≥ 1 (3.11)

Additionally, by using (3.10), the term V2n+1(x) in terms of any V2k+1(x) is as follows:

V2n−1(x) =
n−k∏
l=1

(
x + 1

2

)n−k

L(2n − 2l)V2k−1(x), n > k (3.12)

the term V2n+1(x) in terms of V0(x) is obtained as follows:

V2n+1(x) =
(

x + 1
2

)n n∏
i=0

L(2i)V0(x) =
(

x + 1
2

)n (2n + 1)!!
(2n + 2)!! (3.13)
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Proof. By putting s = 2n + 1 and s = 2n − 1 in (3.1), (3.10) and

V2n−1(x) = x + 1
2 L(2n − 2)V2n−3(x), (3.14)

is calculated, respectively. When (3.14) is substituted into (3.10), (3.11) is obtained. If this process
continues, (3.12) is obtained. Moreover, for a particular value k = 0, (3.12) is transformed into (3.13).
Here, it is clear that

n∏
i=0

L(2i) = (2n+1)!!
(2n+2)!! via (2.2)

Theorem 3.7 (Binet-like Formula-Form 1). Let {V2n(x)}n≥0 be Vietoris-like polynomial sequence.
Then, for n > 1, it provides Binet-like formula:

V2n(x) = C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n (3.15)

where
R

†1
2n(x) = 1

4

(
x −

√
x2 + 8L(2n)

)
, R

†2
2n(x) = 1

4

(
x +

√
x2 + 8L(2n)

)
(3.16)

and 
C

†1
2n(x) =

(
x+1

2

)n−1 (R†2
2n(x))2n − V2(x)

(R†2
2n(x))2n − (R†1

2n(x))2n

n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x)

C
†2
2n(x) =

(
x+1

2

)n−1 V2(x) − (R†1
2n(x))2n

(R†2
2n(x))2n − (R†1

2n(x))2n

n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)

(3.17)

Proof. Considering (3.9), characteristic equation for {V2n(x)}n≥0 is written by

t2 − 1
2xt − 1

2L(2n) = 0 (3.18)

Thus, its roots R
†1
2n(x) and R

†2
2n(x) are

R
†1
2n(x) = 1

4

(
x −

√
x2 + 8L(2n)

)
and R

†2
2n(x) = 1

4

(
x +

√
x2 + 8L(2n)

)
(3.19)

By (3.17),

C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n =
(

x + 1
2

)n−1

((
R

†2
2n(x)

)2n
− V2(x)

)
n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x)
(
R

†1
2n(x)

)2n

(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+
(

x + 1
2

)n−1

(
V2(x) −

(
R

†1
2n(x)

)2n
)

n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)
(
R

†2
2n(x)

)2n

(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

=
(

x + 1
2

)n−1

(
R

†2
2n(x)

)2n (
R

†1
2n(x)

)2n n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x) −
(
R

†1
2n(x)

)2n (
R

†2
2n(x)

)2n n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+
(

x + 1
2

)n−1 −V2(x)
(
R

†1
2n(x)

)2n n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2n(2k) + V2(x)
(
R

†2
2n(x)

)2n n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

=
(

x + 1
2

)n−1

(
R

†2
2n(x)

)2n (
R

†1
2n(x)

)2n n−1∏
k=1

(
2
(
R

†1
2k(x)

)2
− xR

†1
2k(x)

)
−
(

2
(
R

†2
2k(x)

)2
− xR

†2
2k(x)

)
(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+ V2(x)
(

x + 1
2

)n−1 −
(
R

†1
2n(x)

)2n n−1∏
k=1

(
2
(
R

†1
2k(x)

)2
− xR

†1
2k(x)

)
+
(
R

†2
2n(x)

)2n n−1∏
k=1

(
2
(
R

†2
2k(x)

)2
− xR

†2
2k(x)

)
(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

Since R
†1
2n(x) and R

†2
2n(x) in (3.19) satisfies (3.18), then

2
(
R

†1
2k(x)

)2
− xR

†1
2k(x) = L(2k) and 2

(
R

†2
2k(x)

)2
− xR

†2
2k(x) = L(2k)
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Then,

C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n = V2(x)
(

x + 1
2

)n−1 −
(
R

†1
2n(x)

)2n n−1∏
k=1

L(2k) +
(
R

†2
2n(x)

)2n n−1∏
k=1

L(2k)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

= V2(x)
(

x + 1
2

)n−1 n−1∏
k=1

L(2k)

Furthermore, using (3.6), for k = 1, the equality V2n(x) =
n−1∏
l=1

(
x+1

2

)n−1
L(2n − 2l)V2(x) is obtained,

and thus (3.15) is valid.

Example 3.8. Calculate V6(x) and V8(x) using Binet-like Formula-Form 1 for n = 3 and n = 4,
respectively. Through (3.16) and (3.17),

R
†1
6 (x) =

(
x −

√
x2 + 7

)6

4096

R
†2
6 (x) =

(
x +

√
x2 + 7

)6

4096

C
†1
6 (x) =

(x+1)2(x+
√

x2+6)
(

x+
√

x2+ 20
3

)
(−x+ 1

2 (x+
√

x2+6))
(

−x+ 1
2

(
x+
√

x2+ 20
3

))(
1
4 (−1−x)+(x+

√
x2+7)6

4096

)
64
(

−(x−
√

x2+7)6

4096 +(x+
√

x2+7)6

4096

)
and

C
†2
6 (x) =

(x+1)2(x−
√

x2+6)
(

x−
√

x2+ 20
3

)
(−x+ 1

2 (x−
√

x2+6))
(

−x+ 1
2

(
x−
√

x2+ 20
3

))(
1+x

4 −(x−
√

x2+7)6

4096

)
64
(

−(x−
√

x2+7)6

4096 +(x+
√

x2+7)6

4096

)
Then, V6(x) = C

†1
6 (x)(R†1

6 (x))6 + C
†2
6 (x)(R†2

6 (x))6 = 5(x+1)3

128 . It can also be observed that V6(x) via
(3.2). Similarly, through (3.16) and (3.17),

R
†1
8 (x) =

(
x −

√
x2 + 36

5

)8

65536

R
†2
8 (x) =

(
x +

√
x2 + 36

5

)8

65536

C
†1
8 (x) =

(x+1)3(−x+
√

x2+6)(x+
√

x2+6)
(

− x
2 + 1

2

√
x2+ 20

3

)(
x+
√

x2+ 20
3

)
(−x+

√
x2+7)(x+

√
x2+7)

(
1
4 (−x−1)+

(
x+

√
x2+ 36

5
)8

65536

)

2048

(
−

(
x−

√
x2+ 36

5
)8

65536 +

(
x+

√
x2+ 36

5
)8

65536

)
and

C
†2
8 (x) =

(x+1)3(−x−
√

x2+6)(x−
√

x2+6)
(

x−
√

x2+ 20
3

)(
− x

2 − 1
2

√
x2+ 20

3

)
(−x−

√
x2+7)(x−

√
x2+7)

(
1+x

4 −

(
x−

√
x2+ 36

5
)8

65536

)

2048

(
−

(
x−

√
x2+ 36

5
)8

65536 +

(
x+

√
x2+ 36

5
)8

65536

)

Then, it follows that V8(x) = C
†1
8 (x)(R†1

8 (x))8 + C
†2
8 (x)(R†2

8 (x))8 = 35(x+1)4

2048 . It can also be checked
via (3.2).

Remark 3.9. The following hold for R
†1
2n(x) and R

†2
2n(x):

i. R
†2
0 (1) = 1+

√
5

4 , which is half of the golden ratio
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ii. R
†1
2n(x) + R

†2
2n(x) = x

2

iii. R
†1
2n(x)R†2

2n(x) = −L(2n)
2

Theorem 3.10 (Binet-like Formula-Form 2). Let {V2n(x)}n≥0 be Vietoris-like polynomial sequence.
Then, it provides Binet-like formula

V2n(x) = C†1
2n(x)(R†1

2n(x))2n + C†2
2n(x)(R†2

2n(x))2n (3.20)

where 
R†1

2n(x) = L(2n)
4

(
x −

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)

R†2
2n(x) = L(2n)

4

(
x +

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

) (3.21)

and 

C†1
2n(x) =

(
x + 1

2

)n (2n − 1)!!
(
−L(2n)(R†2

2n(x))2n + (R†2
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

C†2
2n(x) =

(
x + 1

2

)n (2n − 1)!!
(
L(2n)(R†1

2n(x))2n − (R†1
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
(3.22)

Proof. Considering (3.5), the characteristic equation of Vietoris-like polynomials is as follows:

t2 − x

2 L(2n)t − x + 1
2

L(2n)L(2n − 2)
2 = 0

Thus, its roots R
†1
2n(x) and R†2

2n(x) are as follows:

R†1
2n(x) = L(2n)

4

(
x −

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)
and

R†2
2n(x) = L(2n)

4

(
x +

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)

By using (3.22), calculate C†1
2n(x)(R†1

2n(x))2n + C†2
2n(x)(R†2

2n(x))2n as:

=
(

x + 1
2

)n (2n − 1)!!
(
−L(2n)(R†2

2n(x))2n + (R†2
2n+2(x))2n+2

)
(R†1

2n(x))2n

2nn!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

+
(

x + 1
2

)n (2n − 1)!!
(
L(2n)(R†1

2n(x))2n − (R†1
2n+2(x))2n+2

)
(R†2

2n(x))2n

2nn!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

=
(

x + 1
2

)n (2n − 1)!!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
=
(

x + 1
2

)n (2n − 1)!!
2nn!

=
(

x + 1
2

)n (2n − 1)!!
(2n)!!
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Using (3.7), (3.20) is obtained.

Example 3.11. Calculate V6(x) with Binet-like Formula-Form 2 for n = 3. Through (3.21) and (3.22),

R†1
6 (x) = 117649

64

x −

√
x2 + 80 (x + 1)

21

6

R†2
6 (x) = 117649

64

x −

√
x2 + 80 (x + 1)

21

6

C†1
6 =

1953125(x+1)3

(
1679616(3x+

√
9x2+35x+35)8

390625 − 823543
512

(
x+
√

x2+ 80(x+1)
21

)6
)

4608
(
(3x+

√
9x2+35x+35)8(−21x+

√
21

√
21x2+80x+80)6−(−3x+

√
9x2+35x+35)8(21x+

√
21

√
21x2+80x+80)6

)
and

C†2
6 (x) =

1953125(x+1)3

(
−

1679616(−3x+
√

9x2+35x+35)8

390625 + 823543
512

(
x−
√

x2+ 80(x+1)
21

)6
)

4608
(
(3x+

√
9x2+35x+35)8(−21x+

√
21

√
21x2+80x+80)6−(−3x+

√
9x2+35x+35)8(21x+

√
21

√
21x2+80x+80)6

)
Then, V6(x) = C†1

6 (x)(R†1
6 (x))6 + C†2

6 (x)(R†2
6 (x))6 = 5(x+1)3

128 . It can be checked via (3.2). It can also be
observed that R(x) and C(x) values obtained in this example are different from R(x) and C(x) values
found in Example 3.8.

Remark 3.12. The following hold for R†1
2n(x) and R†2

2n(x):

i. R†1
2n(x) + R†2

2n(x) =
L(2n)x

2

ii. R†1
2n(x)R†2

2n(x) = −
L(2n)L(2n − 2)(x + 1)

4
Remark 3.13. By setting x = 1 in the previously obtained results, the concepts related to Vietoris’
number sequence {vs}s≥0 can be observed.

It can be observed that Theorem 3.7 presents Binet-like formula based on the three consecutive-term
recurrence relation (3.9). Theorem 3.10 adapts the recurrence relation (3.1) into (3.9) and also derives
Binet-like formula again. This leads to two alternative expressions, referred to as Form 1 and Form 2,
for the Binet-like formula.

3.1. Some Identities for Vietoris-like Polynomials

This subsection investigates several identities for Vietoris-like polynomial sequence {Vs(x)}s≥0.

Proposition 3.14. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, the following properties
hold:

i. V2n(x) + V2n−1(x) =
x + 3

2 L(2n − 2)V2n−2(x)

ii. V2n(x) − V2n−1(x) =
x − 1

2 L(2n − 2)V2n−2(x)

iii. V2n+1(x) + V2n−1(x) =
(

x+1
2 L(2n) + 1

)
L(2n − 2)V2n−2(x)

iv. V2n+1(x) − V2n−1(x) =
(

x+1
2 L(2n) − 1

)
L(2n − 2)V2n−2(x)

v. V2n(x) + V2n+2(x) =
(

x+1
2 L(2n) + 1

)
V2n(x) =

(
V2n+2(x)

V2n(x) + 1
)

V2n(x)
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vi. V2n(x) − V2n+2(x) =
(

x+1
2 L(2n) − 1

)
V2n(x) =

(
V2n+2(x)

V2n(x) − 1
)

V2n(x)

Proof. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence.

i. From (3.8) and (3.1), V2n(x) = x+1
2 L(2n−2)V2n−2(x) and V2n−1(x) = L(2n−2)V2n−2(x), respectively.

The proof is completed when these equations are added side by side.

ii. From (3.3) and (3.8), V2n(x) + V2n+2(x) =
(

x+1
2 L(2n) + 1

)
V2n(x). Since V2n+2(x)

V2n(x) = x+1
2 L(2n), the

desired result is obtained.

The other proofs are similar.

Proposition 3.15 (Catalan-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. For
s > t and K = Vs+t(x)Vs−t(x) − (Vs(x))2, the following relation is valid: For all n ≥ 1 and m > 1,

K =



(
t/2∏
l=1

(
x+1

2

)t/2
L(s + t − 2l) −

t/2∏
l=1

(
x+1

2

)t/2
L(s − 2l)

)
Vs(x)Vs−t(x), s = 2n and t = 2m

(
L(s − t − 1)

(t+1)/2∏
l=1

(
x+1

2

)(t−1)/2
L(s + t + 1 − 2l) −

(t+1)/2∏
l=1

(
x+1

2

)(t+1)/2
L(s − 2l)

)
Vs−t−1(x)Vs(x), s = 2n and t = 2m − 1

(
t/2∏
l=1

(
x+1

2

)(t−4)/2
L(s + t + 1 − 2l) −

t/2∏
l=1

(
x+1

2

)(t−4)/2
L(s + 1 − 2l)

)
Vs+1(x)Vs−t+1(x), s = 2n − 1 and t = 2m

 t−1
2∏

l=1

(
x+1

2

) t−1
2 L(s + t − 2l) −

t+1
2∏

l=1

(
x+1

2

) t−3
2 L(s + 1 − 2l)

Vs+1(x)Vs−t(x), s = 2n − 1 and t = 2m − 1

Proof. Consider (3.6). For s = 2n and t = 2m,

Vs+t(x)Vs−t(x) − (Vs(x))2 =V2n+2m(x)V2n−2m(x) − (V2n(x))2

=
m∏

l=1

(
x + 1

2

)m

L(2n + 2m − 2l)V2n(x)V2n−2m(x)

−
m∏

l=1

(
x + 1

2

)m

L(2n − 2l)V2n(x)V2n−2m(x)

=
(

m∏
l=1

(
x + 1

2

)m

L(2n + 2m − 2l) −
m∏

l=1

(
x + 1

2

)m

L(2n − 2l)
)

V2n(x)V2n−2m(x)

=

 t/2∏
l=1

(
x + 1

2

)t/2
L(s + t − 2l) −

t/2∏
l=1

(
x + 1

2

)t/2
L(s − 2l)

Vs(x)Vs−t(x)

For s = 2n and t = 2m − 1, using (3.1),

Vs+t(x)Vs−t(x) − (Vs(x))2 =V2n+2m−1(x)V2n−2m+1(x) − (V2n(x))2

=2V2n+2m(x)
x + 1

2V2n−2m+2(x)
x + 1 − (V2n(x))2

=
m∏

l=1

(
x + 1

2

)m−2
L(2n + 2m − 2l)V2n(x)V2n−2m+2(x)

− V2n(x)
m−1∏
l=1

(
x + 1

2

)m−1
L(2n − 2l)V2n−2m+2(x)

=

(t+1)/2∏
l=1

(
x + 1

2

)(t−3)/2
L(s + t + 1 − 2l) −

(t−1)/2∏
l=1

(
x + 1

2

)(t−1)/2
L(s − 2l)

Vs−t+1(x)Vs(x)
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For s = 2n − 1 and t = 2m,

Vs+t(x)Vs−t(x) − (Vn(x))2 =V2n+2m−1(x)V2n−2m−1(x) − (V2n−1(x))2

=2V2n+2m(x)
x + 1

2V2n−2m(x)
x + 1 −

(2V2n(x)
x + 1

)2

=
(

m∏
l=1

(
x + 1

2

)m−2
L(2n + 2m − 2l) −

m∏
l=1

(
x + 1

2

)m−2
L(2n − 2l)

)
V2n(x)V2n−2m(x)

=

 t/2∏
l=1

(
x + 1

2

)(t−4)/2
L(s + t + 1 − 2l) −

t/2∏
l=1

(
x + 1

2

)(t−4)/2
L(s + 1 − 2l)

Vs+1(x)Vs−t+1(x)

For s = 2n − 1 and t = 2m − 1,

Vs+t(x)Vs−t(x) − (Vs(x))2 = V2n+2m−2(x)V2n−2m(x) − (V2n−1(x))2

= V2n+2m−2(x)V2n−2m(x) −
(2V2n(x)

x + 1

)2

=
(

m−1∏
l=1

(
x + 1

2

)m−1
L(2n + 2m − 2 − 2l)

m∏
l=1

(
x + 1

2

)m−2
L(2n − 2l)

)
V2n(x)V2n−2m(x)

=


t−1

2∏
l=1

(
x + 1

2

) t−1
2

L(s + t − 2l) −
t+1

2∏
l=1

(
x + 1

2

) t−3
2

L(s + 1 − 2l)

Vs+1(x)Vs−t(x)

The above proposition is also valid for s > t > 2.

Example 3.16. Considering (3.2), we compute V10(x)V2(x) − V6(x)2 = 13(x+1)6

32768 , where s = 6 and
t = 4. Besides, using the above formula, we obtain the same results

V10(x)V2(x) − V6(x)2 =
( 2∏

l=1

(
x+1

2

)2
L(10 − 2l) −

2∏
l=1

(
x+1

2

)2
L(6 − 2l)

)
V6(x)V2(x)

=
13(x + 1)6

32768
Similarly, for s = 6 and t = 3,

V9(x)V3(x) − V6(x)2 =
(

L(2)
2∏

l=1

(
x+1

2

)
L(10 − 2l) −

2∏
l=1

(
x+1

2

)2
L(6 − 2l)

)
V6(x)V2(x)

= −
(x + 1)5 (−89 + 100x)

65536
For s = 9 and t = 4,

V13(x)V5(x) − V9(x)2 =
( 2∏

l=1
L(14 − 2l) −

2∏
l=1

L(10 − 2l)
)

V10(x)V6(x)

=
321(1 + x)8

16777216
For s = 5 and t = 3,

V8(x)V2(x) − V5(x)2 =
(

x+1
2 L(6) −

2∏
l=1

L(6 − 2l)
)

V6(x)V2(x)

=
5(x + 1)4 (−3 + 7x)

8192
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Proposition 3.17. For n ≥ 1,

Vs+2(x)Vs−2(x) − (Vs(x))2 =


x + 1

2
2

s(s + 2)Vs(x)Vs−2(x), s = 2n

x + 1
2

2
(s + 1)(s + 3)Vs(x)Vs−2(x), s = 2n − 1

Moreover, for x = 1, considering (3.1), we obtain the following result as in [18]:

vs+2vs−2 − (vs)2 =


2

s(s + 2)vsvs−2, s = 2n

2
(s + 1)(s + 3)vs+1vs−1, s = 2n − 1

Proposition 3.18 (Cassini-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then,

Vs+1(x)Vs−1(x) − (Vs(x))2 =


x+1

2

(
L(s) − x+1

2

)
(Vs−1(x))2, s = 2n

L(s − 1)
(

x+1
2 − L(s − 1)

)
(Vs−1(x))2, s = 2n − 1

where n ≥ 1.

Proof. Consider (3.12). For s = 2n,

Vs+1(x)Vs−1(x) − (Vs(x))2 = V2n+1(x)V2n−1(x) − (V2n(x))2

= x + 1
2 L(2n)V2n−1(x)V2n−1(x) −

(
x + 1

2 V2n−1

)2

= x + 1
2

(
L(2n) − x + 1

2

)
(V2n−1(x))2

= x + 1
2

(
L(s) − x + 1

2

)
(Vs−1(x))2

For s = 2n − 1,

Vs+1(x)Vs−1(x) − (Vs(x))2 = V2n(x)V2n−2(x) − (V2n−1(x))2

= x + 1
2 L(2n − 2)V2n−2(x)V2n−2(x) − L2(2n − 2)(V2n−2(x))2

= L(2n − 2)
(

x + 1
2 − L(2n − 2)

)
(V2n−2(x))2

= L(s − 1)
(

x + 1
2 − L(s − 1)

)
(Vs−1(x))2

Proposition 3.19 (d’Ocagne-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence.
Then,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) =



(L(t) − L(s)) Vs(x)Vt(x), s = 2n and t = 2m

(
1 − 2L(s)

x+1

)
Vs(x)Vt+1(x), s = 2n and t = 2m − 1

(
2L(t)
x+1 − 1

)
Vs+1(x)Vt(x), s = 2n − 1 and t = 2m

0, s = 2n − 1 and t = 2m − 1

(3.23)

where n, m ≥ 1.
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Proof. Consider (3.3). For s = 2n and t = 2m,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n(x)V2m+1(x) − V2n+1(x)V2m(x)

= V2n(x)L(2m)V2m(x) − L(2n)V2n(x)V2m(x)

= (L(2m) − L(2n)) V2n(x)V2m(x)

= (L(t) − L(s)) Vs(x)Vt(x)

Additionally, by (2.2),

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) =
(

t − s

(s + 2)(t + 2)

)
Vs(x)Vt(x)

Then, for s = 2n and t = 2m − 1,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n(x)V2m(x) − V2n+1(x)V2m−1(x)

= V2n(x)V2m(x) − L(2n)V2n(x)2V2m(x)
x + 1

=
(

1 − 2L(2n)
x + 1

)
V2n(x)V2m(x)

=
(

1 − 2L(s)
x + 1

)
Vs(x)Vt+1(x)

For s = 2n − 1 and t = 2m,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n−1(x)V2m+1(x) − V2n(x)V2m(x)

= 2V2n(x)
x + 1 L(2m)V2m(x) − V2n(x)V2m(x)

=
(2L(2m)

x + 1 − 1
)

V2n(x)V2m(x)

=
(2L(t)

x + 1 − 1
)

Vs+1(x)Vt(x)

For s = 2n − 1 and t = 2m − 1,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n−1(x)V2m(x) − V2n(x)V2m−1(x)

= 2V2n(x)
x + 1 V2m(x) − V2n(x)2V2m(x)

x + 1
= 0

Remark 3.20. For x = 1, (3.23) becomes the following formula as in [18]:

vsvt+1 − vs+1vt =



t − s

(s + 2)(t + 2)vsvt, s = 2n and t = 2m

1
s + 2vsvt+1, s = 2n and t = 2m − 1

−
1

t + 2vs+1vt, s = 2n − 1 and t = 2m

0, s = 2n − 1 and t = 2m − 1
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Proposition 3.21. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence and n ≥ 2. Then,

V2n+2(x) =
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)(1
2V2n(x) + x + 1

4 V2n−1(x)
)

(3.24)

Proof. From (3.4) and the Pascal’s identity
(n

k

)
=
(n−1

k−1
)

+
(n−1

k

)
,

V2n+2(x) =
(

x + 1
2

)n+1 1
22n+2

(
2n + 2
n + 1

)

=
(

x + 1
2

)n+1 1
22n+2

((
2n + 1

n

)
+
(

2n + 1
n + 1

))

=
(

x + 1
2

)n+1 1
22n+2

((
2n

n − 1

)
+
(

2n

n

)
+
(

2n

n

)
+
(

2n

n + 1

))

=
(

x + 1
2

)n+1
(

1
22n+2

((
2n

n − 1

)
+
(

2n

n + 1

))
+ 1

22n+1

(
2n

n

))
Using

(n
k

)
=
( n

n−k

)
,

V2n+2(x) =
(

x + 1
2

)n+1
(

1
22n+2

((
2n

n − 1

)
+
(

2n

2n − n − 1

))
+ 1

22n+1

(
2n

n

))

=
(

x + 1
2

)n+1
(

1
22n+1

(
2n

n − 1

)
+ 1

22n+1

(
2n

n

))

Using
(n

k

)
= n

n−k

(n−1
k

)
and (3.4),

V2n+2(x) =
(

x + 1
2

)n+1 1
22n+1

2n

(n + 1)

(
2n − 1
n − 1

)
+
(

x + 1
4

)(
x + 1

2

)n 1
22n

(
2n

n

)

=
(

x + 1
2

)2 2n − 1
22(n + 1)

(
x + 1

2

)n−1 1
22n−2

(
2n − 2
n − 1

)
+
(

x + 1
4

)
V2n(x)

=
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)
V2n(x)

From (3.1) and (3.3),

V2n+2(x) =
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)(1
2V2n(x) + x + 1

4 V2n−1(x)
)

Remark 3.22. For x = 1, (3.24) becomes the following equality as in [18]:

v2n+2 =
(1

4v2n + 1
4v2n−1

)
+ 2n − 1

4(n + 1)v2n−2, n ≥ 2

4. Conclusion

Many researchers have studied number sequences and their properties, which play an essential role in
mathematics. Hence, the polynomial forms of these number sequences for any variable quantity x have
also become an area of significant interest. The Fibonacci polynomials were among the first polynomial
forms considered. Since Fibonacci-type polynomials have significant applications in geometry and
algebra, various researchers have extensively studied them in number theory. In this paper, we provided
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an affirmative answer to a question related to the existence of special Vietoris-like polynomials by
using the properties of Vietoris’ numbers. Hence, we derived special Vietoris-like polynomials and
investigated their basic properties, recurrence relations, and special equalities. We also constructed
an analogy with the studies [10–12, 15–18] using Vietoris-like polynomial approach and established
some conditions for obtaining interesting results inspired by studies [2–9]. We determined Catalan-like,
Cassini-like and d’Ocagne-like identities. We also presented their special cases corresponding to
the existing identities in Vietoris’ number sequence. We believe that the calculations of this work
contribute to the broader understanding of polynomial structures and their connections with well-known
number sequences and enable new studies. Specifically, the results of Vietoris-like polynomials and
the properties of Vietoris’ hybrid numbers (for more details on hybrid numbers, see [21]) of the form
VHs = vs +vs+1i+εvs+2 +hvs+3 where i2 = −1, ε2 = 0, h2 = 1, and ih = −hi = ε+i [22], Vietoris-like
hybrid binomial sequence and its remarkable features represent key areas for future research.
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