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ABSTRACT: The hydraulic jump is a critical phenomenon in open channel hydraulics, and
understanding its behavior is essential for the design and safety of hydraulic structures. In this study, 96
experiments were conducted using five different gate openings to model the location of hydraulic jumps
in an open channel. The Particle Swarm Optimization (PSO) algorithm, a metaheuristic optimization
technique, was employed to develop both linear and nonlinear predictive models. Experimental data
from gate openings (e) of 2.5 cm, 3.5 cm, 4 cm, and 5 cm were used to train the models, while data from a
e=6 cm gate opening were used for testing. The results demonstrated that the PSO algorithm effectively
modeled the hydraulic jump location, yielding high accuracy and consistency with experimental
observations. Model performance was evaluated using the Coefficient of Determination (R?), Nash-
Sutcliffe Efficiency (NSE), and Mean Squared Error (MSE). The linear model outperformed the nonlinear
model, achieving NSE = 0.954, R? = 0.983, and MSE = 0.022. Furthermore, the upstream total head (H)
and gate opening (e) were identified as the most influential parameters affecting the hydraulic jump
location.

Keywords: Open Channel Hydraulics, Sluice Gate, Hydraulic Jump, Particle Swarm Optimization (PSO)
1. INTRODUCTION

Sluice gates regulate water levels in reservoirs and open channels, maintain water level at
maximum, capture floating objects, and manage the controlled release of excess water to downstream.
After sudden rainfall, the opening (e) under the sluice gates is adjusted to regulate discharge (Q) and to
prevent sudden floods passing to the downstream side by providing controlled release of water [1]. The
flow passing under the gate in supercritical flow regime (F>1) may cause scour at the end of the
spillway and on the downstream side of the river, so the energy of the flow must be reduced before it
passes to the downstream side [2]. Energy dissipation can be achieved through the energy loss (AE) that
occurs during the hydraulic jump. Hydraulic jump is created by the flow under the gate in supercritical
regime (F:>1) in the free flow condition and passing to the subcritical regime (F:<1) [3]. While hydraulic
jump sometimes occurs naturally, in some cases, energy dissipation structures are constructed on the
downstream side of the channel to provide hydraulic jump formation and increase energy loss (AE) and
to ensure the transition of flow to the subcritical regime [4]. Energy dissipating structures and pools are
designed in various ways based on the Froude number (F:) and the approach velocity (Vi) of the
supercritical flow. Blocks, barriers, and thresholds are installed within these pools to aid in energy
dissipation [5]. The hydraulic jump is intended to be formed in a designated location inside the energy
dissipation pools [6]. An uncontrolled hydraulic jump occurring outside the energy dissipation pools
may pose a danger to the riverbed, open channels and surrounding hydraulic structures [7]. The
hydraulic jump location must be known exactly so that the hydraulic jump does not damage the
surrounding structures and the channel it is located in.

In the first studies on hydraulic jump, researchers tried to explain the behavior of hydraulic jump
with momentum equations [8], [9]. Levy et al. [10] investigated the amount of energy loss (AE) and the
mixing of chemicals into water in their hydraulic jump experiments. Rouse et al. [11] investigated the
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average velocities and turbulences patterns during the jump experimentally and theoretically to explain
the behavior of hydraulic jump. Silvester [12] found semi-empirical analytical solutions for conjugate
depth, energy loss rate (%AE) and jump length (Lj) for different Froude numbers (F:) in horizontal
rectangular, triangular, parabolic, circular and trapezoidal channels. Rajaratnam and Subramanya [13]
obtained a generalized water surface profile for hydraulic jumps formed in smooth and rectangular
open channels. Hager and Wanoschek [14] determined the surface profiles and velocity distributions of
hydraulic jump in a triangular channel and compared the results with hydraulic jumps in a rectangular
channel. Gharangik and Chaudhry [15] used Boussinesq equations to create a two-dimensional
numerical model of hydraulic jump in a rectangular channel with low bed slope (0). Ead et al. [16]
experimentally investigated hydraulic jumps in an open channel with different bottom roughness for
Froude numbers (Fr) from 4 to 10. Habibzadeh et al. [17] derived the discharge coefficient (Ca) formula
using theoretical methods to calculate the energy loss (AE) under rectangular sluice gates in submerged
and free flow conditions. The accuracy of the formula was tested using experimental studies in the
literature and it was seen that the energy loss (AE) in sluice gates is mainly affected by the geometry of
the gate. Kim et al. [18] conducted experiments to examine the characteristic features of hydraulic jumps
formed by fixed weirs and movable sluice gates and to compare their effects on energy dissipation (AE).
Movahed et al. [19] et al. developed an semi analytical formula to find the length of the hydraulic jump
(Ly) using 387 experimental data points. Simsek et al. [20] examined the length of the hydraulic jump (Lj)
formed in a stilling basin with two different bed slopes (0) and six different Froude numbers (F:). They
found that as the Froude number (F:) decreases, the length of the hydraulic jump (Lj) increases.

In recent years, researchers have been using artificial intelligence techniques for hydraulic jumps
modeling. Naseri and Othman [21] calculated the length of the hydraulic jump (Lj) formed in a
rectangular channel using an artificial neural network (ANN) model with the Levenberg-Marquardt
(LM) and gradient descent with momentum and adaptive learning rule back propagation (BP)
algorithms. Omid et al. [22] used ANN models to model the sequent depth ratio (y2/y1) and length of
hydraulic jump (Lj), evaluating 16 configurations with different numbers of hidden layers and neurons.
In the study, 611 experimental data points were collected for gradually expanding jumps in rectangular
and trapezoidal channels. Karbasi and Azamathulla [23] used the Gene Expression Programming (GEP)
method to predict the jump length ratio (Li/y1) and sequent depth ratio (y2/y1) of the hydraulic jump
formed on a rough channel bed. The GEP model, created with 491 experimental data points, was
evaluated for accuracy and performance along with ANN and SVR models. Karbasi [24] used the
teaching-learning-based optimization (TLBO) algorithm to predict the length of a classical hydraulic
jump (Ljy). For the TLBO model, 167 experimental data points were used, and the algorithm was applied
to four different regression forms (linear, quadratic, exponential, and power). Gul et al. [25] predicted
the relative jump length (Lj/y1) and characteristics such as sequent depth ratios (y2/y1) of the hydraulic
jump formed in a suddenly expanding stilling basin using a hybrid extreme learning machine (ELM). In
their study, Froude Number (F:), expansion ratio (B=b1/b2), and relative sill height (S=s/y1) were given as
inputs, and sequent depth ratio (Y=y2/y1) and Lj/y:1 values were predicted. To hybridize the ELM, meta-
heuristic algorithms such as the imperialist competitive algorithm (ICA), firefly algorithm (FA), and
particle swarm optimization (PSO) were used.

As can be seen from the literature review, most of the studies in the literature focus on determining
the length of the hydraulic jump and the depths before and after the jump. There are not many studies in
literature aimed at determining the location of the hydraulic jump. In this study, the location of free
hydraulic jump formed by the flow passing under the gate in a rectangular open channel with a constant
width experimentally determined and modeled with ANN. In experimental studies, 5 different gate
openings (e1=2.5 cm, e2=3.5 cm, e3=4 cm, e+=5 cm, and es=6 cm) were used, and a total of 96 experimental
data were collected. The locations of the hydraulic jumps were determined for varying gate openings (e)
and discharge values (Q). The most important parameters affecting the location of the hydraulic jump
(L) are the total head on the upstream side (H), the velocity (V1), the flow depths before the jump (y1)
and after the jump (y2) [26]. Therefore, parameters H, V1, y1, and y2 were considered as input parameters
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in the Particle Swarm Optimization (PSO) algorithm, and the location of the hydraulic jump (L) was
attempted to be predicted. The results obtained from the PSO algorithm were compared with the
experimental data to test the accuracy of the mathematical model.

2. MATERIAL AND METHODS
2.1. Sluice gate and Hydraulic jump

Sluice gates provide a rectangular bottom opening from the front view through which water can
pass. The discharge (Q) passing under the sluice gate varies depending on the opening (e) under the
sluice gate and the total head on the upstream side (H). The flow passing under a sluice gate can be in
two conditions: free flow or submerged flow.

1- Free flow condition: After the flow passes under the gate, it is in supercritical regime and open to
the atmosphere (Figure 1(a)). The flow depth (y1) is smaller than the gate opening (e). If the flow on the

downstream side is in subcritical regime, hydraulic jump may occur away from the gate resulting in
energy dissipation and head loss (AE).

2-Submerged flow condition: After the flow passes under the gate, it is not open to the atmosphere
and the hydraulic jump caused by the flow occurs adjacent to the downstream surface of the sluice gate.
The flow depth (y2) is greater than the gate opening (e) (Figure 1(b)). A free hydraulic jump does not
form; instead, a submerged hydraulic jump occurs, accompanied by head loss (AE) due to intense
turbulence and backflow effects. The free and submerged flow conditions passing under the sluice gate
are shown in Figure 1. The total upstream water head (H) behind the gate is equal to the sum of the
piezometric depth (h) and the velocity head (V?/2 x g). (H =h+V?%/2 X g)
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Figure 1. Free (a) and submerged (b) flow conditions passing under the sluice gate

The discharge of the flow passing under the sluice gate is determined by the following Equation (1);
Q=Covexbr|Tegeh W

Where;

Q :Discharge (m/s)

Ca :Discharge Coefficient

e :Gate opening (m)

b :Gate width (m)

H :Upstream total head (m)

The free or submerged condition of the flow passing under a sluice gate can be determined from
Figure 2, depending on the upstream head (H) and downstream (y2) water levels. Depending on
whether the value obtained from the H/e and y:/e ratios remains above or below the curve, it is
determined whether the flow will be submerged or free flowing.
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Figure 2. Determination of the flow type depending on the H/e and y2/e ratios. [13].

In the case of free flow, the discharge coefficient (Ca) depends on the upstream water head (H) and
the gate opening (e), while in the submerged flow case, the discharge coefficient (Ca) depends on the
downstream water level (y2) and the gate opening (e). In addition, the discharge coefficient (Ca) values
are read from a single curve in the free flow case, while the discharge coefficient (Cu) is read from
different curves in the submerged flow case depending on the degree of submergence. The variation of
the discharge coefficient (Ca) depending on the H/e and y2/e ratios is shown in Figure 3.
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Figure 3. Determination of the discharge coefficient (Cd) depending on the H/e and y2/e ratios for the
submerged and free flow conditions [27]

If the depth of a flow changes significantly over a short distance in an open channel, it is called
rapidly varying flow (RVF) and if it changes more slowly over a long distance, it is called gradually
varying flow (GVF). Hydraulic jump is classified as rapidly varying flow (RVF) and occurs when the
flow is exposed to turbulence as it passes from the supercritical (Fr>1) to the subcritical regime (Fr<1)
(Figure 4). The flow regime in open channels is determined by the Froude number. The Froude number
is calculated from the ratio of inertial forces to gravitational forces and is formulated as F. =V/ \/gTy
Here, V is the velocity, g is the acceleration of gravity and y is the hydraulic depth (for rectangular
channels). When inertial forces are greater than the gravitational forces (Fr>1), flow is called the
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supercritical. When inertial forces are less than the gravitational forces (Fr<l), flow is called the
subcritical. Hydraulic jumps occur in two ways, submerged and free, depending on the state of the flow
[28].
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Figure 4. Hydraulic jump

Hydraulic jumps pose a great danger when they occur uncontrolled in open channels because large
forces are generated during the jump and the depth of the flow suddenly increases. A controlled
hydraulic jump is beneficial in terms of aeration and energy dissipation (AE). In submerged hydraulic
jumps, in addition to the fact that the supercritical and subcritical parts of the flow cannot be determined
exactly, the amount of energy to be broken cannot be calculated with the formula used in free jump.
Calculations of submerged hydraulic jumps are generally made with experimental and numerical
studies. High-energy flow from the spillway crest can lead to erosion in the riverbed. Strong turbulences
can damage the material on the river bed and cause abrasions. Subjecting the flow from the spillway in
the flood regime to a controlled hydraulic jump will reduce the energy of the flow and make it easier
and safer to transport water. The flow depth before (y1) and after (y2) the hydraulic jump and the total
energy loss (AE) are calculated with Equations (2) and (3).

yr= (1485 FiP 1) @)

3
NE= CV*z i)
Yy1* 52

Where; y1 is the flow depth before the hydraulic jump, yzis the flow depth after the hydraulic jump,

®)

Fr1 is the Froude number in the supercritical regime and AF is the total amount of energy loss in the
hydraulic jump.

2.2. Experimental Setup

In this study, experiments were conducted on an open channel system to investigate the alternating
position (L) of the hydraulic jump created by a flow passing under the sluice gate depending on the
discharge (Q) and the gate opening (e) (Figure 5). The open channel system where the physical
experiment setups were prepared is 6.5 m long, 0.5 m deep and 0.6 m wide. The walls and bed of the
open channel are made of 1.2 cm thick laminated tempered glass. The bed slope of the open channel
system is 0.7 %. The flow in the open channel system is provided by two reservoirs between which the
channel is placed. Two parallel connected pumps take water from the downstream reservoir and send it
to the upstream reservoir through pipes. After water fills the upstream reservoir and reaches its
maximum level, it overflows into the open channel system and is eventually discharged into the
downstream reservoir at the end of the channel. The amount of discharge that the pumps will provide to
the pipe is adjusted by the frequency converter that controls the pumps. Discharge is measured with an
ultrasonic flow meter with a sensitivity of 0.01 l/s, placed on the main pipe.
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Figure 5. Experimental setup

In the experiments, 5 different gate openings (e1=2.5 cm, e2=3.5, es=4 cm, e+=5 cm and es=6 cm) were
used (Figure 6). The sluice gates were manufactured from 1 cm thick plexiglas material. The bottom
edge of the sluice gates where the water passes has a flat crest shape and its thickness is equal to the gate
thickness of 1 cm. Flow depth measurements were made with a limnimeter at 3 different points in open
channel, which are the total upstream water depth behind the sluice gate (h), the water depth before the
jump (y1) and the water depth after the jump (y2). Also the distance of the hydraulic jump to the gate (L)
was measured. The measured parameters and the total number of measurements are shown in Table 1.

Table 1. Obtained parameters for each gate opening (e) and measurement ranges

Gate Total test ~ Discharge Total Head y1(cm) y2 (cm) Froude
Opening  number Range Range Range Range Num. Range
e (cm) Q (It/s) H (cm) Fn
e=2.5 13 Tests ~ 14.70-25.70 13.40-38.90 1.60-1.80  9.10-13.20 3.87-5.66
ex=3.5 24 Tests ~ 19.85-32.04 13.10-30.80 2.20-2.40  9.50-15.00 3.24-4.59
es=4 24 Tests ~ 22.27-34.15 13.10-28.30 2.40-2.50 10.10-15.50 3.19-4.60
es=5 12 Tests ~ 29.60-41.50 15.60-27.80 3.10-3.80 12.00-15.10 2.89-2.98
es=6 23 Tests  35.03-46.90 15.40-25.60 3.60-3.90 12.70-16.50 2.73-3.24

Since the aim of the study was to determine the location of the hydraulic jump (L), which varying
depending on the discharge (Q) and the gate opening (e), the experiments aimed to create a free
hydraulic jump in the open channel. For an observable hydraulic jump, the regime of the flow passing
under the gate must change from supercritical to subcritical. The regime of the flow passing from under
the gate does not changed until the end of the channel unless it encounters an obstacle. In order to
provide the flow regime change, a rectangular linear weir with a height of 5 cm was placed at the end of
the channel (Figure 6). The Fr varies between 2.7 and 6.8 for subcritical regime. This weir remained as
submerged during all experiments, increasing the flow depth and creating the subcritical regime. The
linear weir was placed 450 cm far away from the sluice gate.

The total upstream head (H) behind the sluice gate was obtained from the sum of the upstream
water depth (h) and the velocity head (V?/2 X g). The piezometric depth (h) behind the gate and the
velocities used in the velocity head calculations were measured 20 cm behind the sluice gate. Although
the upstream side of the gate acts like a reservoir, a swell occurs at a distance of 7-10 cm just behind the
gate due to the impact of the flow to the gate. For this swell not to affect the depth measurement, a point
20 cm behind the gate where water surface is flat was selected for the measurements. The velocity
measured with an acoustic doppler velocimeter (ADV). Velocity measurements can be made in 3 axes
with an ADV, but since the current flows in the +x direction, the velocity values obtained in the +x
direction was used in the velocity head (V?/2 x g) calculations.



772 A.YILDIZ, V. YILMAZ

Acoustic Doppler
velocimetry

Limnimeter

20 cm
Measuremgnt :

=
H H -

Vv }_L I }[2

450 cm

Figure 6. General scheme of the physical experimental setup and measurement points

2.3 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm is a heuristic-based optimization algorithm first
proposed by Kennedy and Eberhart [29]. In the PSO algorithm, behaviors of birds and fishes for
searching food, which are living in a herd in nature are modeled. Due to its simplicity of use and being a
successful optimization algorithm, the PSO algorithm has been applied to many engineering problems
and successful results have been obtained [30]. In PSO, in the first stage, all particles are randomly
distributed in nature and determine the locations of possible food sources in the range of [xj™i»; xjmx]. he
Z objective function is evaluated at the position of each particle, representing a potential solution point.
This evaluation helps determine how good or effective each solution is, allowing the algorithm to assess
the quality of the solutions found by the particles. At this stage, the best food location obtained by each
particle is recorded as puest, and the highest quality food location reached by the colony is recorded in the
common memory of the colony as grest. Then, as shown in Equation (4), the speed values that allow each
particle to move towards the best results obtained both locally (prest) and globally (gpest) are calculated.
Then, with the help of these values, the position information of the particles is updated as shown in
Equation (5).

t+1

Vi o= WULF]' +toan (pbest - Xi]') +6my (gbest - Xij) (4)

X=X +viT 5)
The speed value vi*! obtained for the solution point Xj is shown in Equation (4). The w value in the

equation is the inertia weight which provides the sensitivity of the search, a more global search is
performed with large w values, while more local searches are performed with small w values. It is
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recommended that the inertia weight to be determined in a way that it decreases linearly throughout the
iterations for a more successful solution [31]. The c1 and c2 values in Equation (4) are the acceleration
coefficients. While c1 pulls the positions of the particles towards the prest values, c2 pulls them towards
the gpest values. Although the acceleration coefficients vary according to the type of problem, the value c1
= c2 = 2.0 is generally recommended as a starting point [32], [33]. The r1 and r2 values are randomly
generated in the range of [0,1] and provide the randomness of the PSO algorithm. After calculating the
velocity values of all particles, the new positions of the particles are determined with the help of
Equation (5). The Z objective function is run again for the current positions of the particles and the
quality of the new solution points obtained is determined. The pvest and gpest values are updated
throughout the iterations and the search process continues.

In the current study, Vi, H, y1 and y2 values be used as model inputs and modeling will be carried
out using the PSO algorithm in order to estimate L values. Here, the two most well-known basic
modeling types, linear (Equation 6) and nonlinear (Equation 7) model structures, were preferred.

Ly =P1*Vi+B*H+B3*y + P, *y; (6)
Ly, = Vlﬁl * HP2 « Y1‘83 * YZE4 @)

The PSO algorithm will be used to determine the (3 coefficients that will create the most successful
modeling at this stage. While designing the algorithm, a limit is determined for the search space of the 3
coefficients as [xjmn; xjmax] and the best model information is sought within this limit.

While creating models, Z objective functions are used to determine whether any model is better than
others. If the L values generated by the developed models are denoted as LML_MLM, and the L value
obtained from experimental observations is denoted as LOL_OLO, then the objective functions for the
PSO (Particle Swarm Optimization) algorithm can be formulated using various statistical indicators.
These indicators measure the difference or error between the model predictions and experimental
results, as shown below. Mean Squared Error (MSE) is shown in Equation (8), Coefficient of
Determination R? is shown in Equation (9) and Nash Sutcliffe Efficiency Coefficient (NSE) is shown in
Equation (10). Any of these indicators can be used as an objective function alone or they can be used in
proportion to each other as shown in Equation (8). Here, if Z1 or Z4 is chosen as the objective function,
the optimization problem turns into minimization, and if Z2 or Zs is chosen, it turns into maximization.
In the PSO (Particle Swarm Optimization) algorithm, the effectiveness of the model structure generated
in each iteration is evaluated based on the chosen objective function, which reflects how well the model's
predictions match the actual data. Based on this evaluation, the {3 coefficients —representing the model
parameters—are updated to guide the search toward more accurate and successful models in
subsequent iterations. In this way, it is aimed to determine the most successful model structure.

ZiL1(Lo = Lu)?

Z, = MSE =
1 N

(8)

7, = p? = 2o — Lo)(bw — L) o
Z§\1=1(LO - Lo)z £V=1(LM - LM)Z

N (Lo — Ly)?
Z3=NSE=1—M (10)
Zi=1(LO _LO)Z
, _MSE »
+ = NSE (11)
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3. RESULTS AND DISCUSSION

In the present study, linear and nonlinear models were created as shown in Equation (6) and
Equation (7) using the PSO algorithm to estimate hydraulic jump positions (L). For this purpose, the
results obtained from a total of 96 experimental measurements were first divided into two group as
training and test. While a total of 73 experimental results from experiments with a gate opening (e) of 2.5
cm, 3.5 cm, 4 cm and 5 cm were separated as the training group, 23 experimental results with a gate
opening (e) of 6 cm constituted the test group. Models will be created for the training group with the
help of the PSO algorithm and these models will be applied to the test group to examine how consistent
the model results and the observed experimental results are.

Since there are 4 input parameters in all linear and nonlinear modeling studies with the PSO
algorithm, the problems were solved in 4 dimensions. In all studies, the particle number was 8 and The
[xjmin; xjmax] interval, which defines the boundaries of the search space, was set to [-5;5]. The inertia
weight w was linearly decreased over the iterations within the range [0.9;0.4]. Similarly, the acceleration
coefficients c1 = c2 = 2.0 were accepted and 2000 iterations were performed.

In the search operations performed in the PSO algorithm, the Zi objective function shown in
Equation (11) is preferred. In this way, the minimization of Zs values is aimed. The minimization of Z4
values aims to minimize the MSE values expressing the error values and to maximize the NSE metric,
which is a strong performance indicator at the same time. Since the NSE metric taking values in the
range of [-oo;1] will bring some problems, a manipulation was made in the NSE metric as shown in
Equation (12) below.

if NSE <0 — NSE = 107%; if NSE > 0 —» NSE = NSE (12)

In Equation (12), when the A values take large values, the negative NSE values take very low values
on the positive side, causing the Zs values to increase astronomically, and in this way, the models that
produce negative NSE values are naturally eliminated. In this way, the most successful models can be
determined among the models that give positive NSE values. The value A=11 was used in the current
study[34].

In summary, the PSO algorithm searches for the 3 coefficients shown in Equation (6) and Equation
(7) in the range of [-5;5]. It evaluates the model result it produces with the Zs objective function. It tries to
produce the model information with the lowest Zs value by changing the {3 coefficients throughout the
iterations. After the PSO algorithm was designed in this way, 30 linear and 30 nonlinear models were
produced. The model information produced and the performance indicators of the models are shown in
detail in Appendix A.

As a result of the studies, the most successful model for linear modeling (LiPet) is shown in Equation
(13), and the most successful model for nonlinear modeling (LntBet) is shown in Equation (14). On the
other hand, the statistical indicators of the most successful models obtained are given in Table 2.

1Best = —2.8591 x V; + 0.1202 x H — 1.1007 * y; + 0.5733 * y, (13)

Best _ y7 4.9892 2.0287 22718 —-4.3645
Lyt =W *H *V1 * Y2 (14)

When the results obtained from Table 2 are analyzed, two situations stand out in particular. First, it
is seen that the PSO algorithm can achieve quite successful results within the framework of this problem.
In both linear and nonlinear modeling, the PSO algorithm has shown a very successful performance.
When the test results are examined in particular, a very high value of NSE = 0.954 was reached in linear
modeling, while the value of NSE = 0.902 was reached in nonlinear modeling. The fact that the results of
both methods are above 0.9 shows that the PSO algorithm is quite successful in this regard when
evaluated within the framework of a strong metric such as NSE. The second important result obtained in
line with Table 2 is that linear modeling is clearly more successful than nonlinear modeling. More
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successful results were obtained with the linear modeling method compared to nonlinear modeling in
all evaluation criteria except the test R? metric. Due to the fact that the relationships between the model's
input and output parameters tend to exhibit more linear behavior, the linear modeling approach has
cumulatively achieved higher performance values in the research results. Although the nonlinear
models yielded very high R? results in the testing phase, they performed worse during training and
exhibited higher MSE values. This may indicate overfitting or overly complex model structures.

Table 2. Performance indicators of the most successful solutions obtained.

Performance Indicators Linear Modelling Nonlinear Modelling

(LiBest) (LNrBest)

o R 0.942 0.653
5 NSE 0.942 0.562
g MSE 0.042 0.320
MSE/NSE 0.045 0.569

R 0.983 0.990

g NSE 0.954 0.902
S MSE 0.022 0.047
MSE/NSE 0.023 0.052

On the other hand, the minimum, average and maximum values of the performance indicators of the
30 models produced are shown in Table 3 below. As can be understood from Table 3, more successful
results were achieved in linear modeling in all evaluation criteria except Test R2. When the average
performance values for both modeling methods are examined, while the value of NSE=0.943 was
obtained in linear modeling in the training phase, the value of NSE=0.720 was reached in nonlinear
modeling. In this respect, approximately 25% more successful results were achieved in linear modeling
in the training phase. When the results in the test phase are examined, the average NSE value of 30
models in linear modeling is 0.942, while this value is calculated as 0.807 in nonlinear modeling. In this
respect, it can be said that linear modeling is 16.7% more successful in the test results. The same success
is also seen in MSE values, which are an error indicator. The MSE values of linear modeling are much
lower than nonlinear modeling. In order to visually present the performance of the methods in general,
radar diagrams of the evaluation metrics used were created and presented in Figure 7. It can be visually
understood that the models produced as a result of linear modeling are more successful.

Table 3. Summary values of the performance of the models produced with the help of the PSO
algorithm.

Training Testing
R2 NSE MSE MSE/NSE R? NSE MSE MSE/NSE
Minimum 0.936 0.934 0.041 0.044  0.983 0.924 0.022  0.023
Linear Modelling Mean  0.943 0.943 0.042  0.045 0.985 0.942 0.028  0.030
Maximum 0.944 0.944 0.048  0.052  0.987 0.954 0.036  0.039
Minimum 0.637 0.553 0.142  0.177  0.987 0.748 0.047  0.052
Nonlinear Modelling ~ Mean  0.750 0.720 0.204  0.291  0.990 0.807 0.093  0.117
Maximum 0.822 0.805 0.326  0.590  0.990 0.902 0.121  0.162

The findings obtained from the studies were evaluated in terms of the stability of the methods in
another stage. For this purpose, the information belonging to the first 10 most successful models
obtained as a result of linear [Li'®est-L119] and nonlinear [Lac!®est-Lail] modeling was processed into
Taylor diagrams and the performances of the methods were evaluated in a different framework. The
standard deviation and NSE (or R?) values formed by the models obtained in the Taylor diagrams are
processed circularly and angularly, respectively, and interpretations are made based on the positions of
the models on the diagram. In Taylor diagrams; if the point where any produced model is marked is
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further (angularly) clockwise and closer (circularly) to the observed standard deviation curve, it
indicates that the model is more successful, while the opposite indicates that it is a less successful model.
The successes of the produced models are shown in Figure 8a for the training stage and in Figure 8b for
the testing stage. In order to observe the obtained findings more clearly and understandably, not all
models were included in the Taylor diagrams and only the most successful 10 model results were
shown. When both Figure 8a and Figure 8b are examined, it is seen that the linear modeling results are
very stable and located in a very narrow area. In contrast, the models obtained as a result of nonlinear
analysis exhibit a more scattered structure and exhibit lower performance. When the nonlinear analysis
results in Figure 8a are examined in particular, it can be seen that the result values are spread over a
very wide area. On the other hand, when Figure 8a is examined in particular, it is seen that the results
obtained as a result of linear modeling are located very close to the standard deviation curve of the
observed data. It is evident that the PSO algorithm can successfully train the model. Furthermore, linear
analysis based on Taylor diagrams indicates that more accurate and stable results are achieved.

On the other hand, in order to examine the performances of the most successful models in more
detail, the extent to which the two most successful models (LiPest and LniBest) produced as a result of
linear and nonlinear modeling can capture the observed result values is shown in detail in Figure 9. The
ranges of the observed values [-5%; +5%] and [-10%; +10%] were also processed on the same figure and
the extent to which the models could enter this range was also examined and the model results were
evaluated from a different perspective. The extent to which the LiPet and LBt models could enter the [-
5%; +5%] and [-10%; +10%] ranges is shown in detail in Table 4.
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Figure 8. Taylor diagrams for the training (a) and test (b) groups of the top 10 most successful models
obtained.

When Figure 9 is examined in general, it can be stated that the LiPt model was able to capture the
experimental results observed in the training phase quite successfully. Especially in the experimental
results with a gate opening of e=4 cm in Figure 9a, this model exhibited near-perfect behavior. On the
other hand, when the test results in Figure 9b are examined, it can be said that this model is quite
successful. When the information shown in Table 4 is examined, the LiPet model was able to produce
values in the [-10%; +10%] range in 47 of the 73 experimental results observed in the training phase. On
the other hand, the LxiBet model was able to produce values in the [-10%; +10%] range in only 17 of the
73 experimental results. In other words, while the success rate of the LiBst model in the [-10%; +10%]
range was approximately 64%, the success of the LniBt model remained at approximately 23%. Model
successes for the test phase and the [-5%; +5%] ranges are shown in Table 4. It is seen that linear
modeling can capture the observed experimental results more successfully compared to nonlinear
modeling.

Up to this stage, it is seen that linear modeling is more successful in terms of performance, stability
of the methods and the ability of the methods to capture the observed experimental results and that the
PSO algorithm generally produces successful results. After this stage, as a result of the studies carried
out, the 3 values produced by the methods were evaluated within the framework of the parameter
effect. For this purpose, BoxPlot diagrams of the (3 values of 30 models obtained because of linear and
nonlinear modeling were created and shown in Figure 10a for linear modeling and in Figure 10b for
nonlinear modeling. When Figure 10a is examined, it is clearly seen that the 3 coefficients form a certain
form as a result of linear modeling. In this direction, it is seen that especially 31 and [3; are in the negative
direction and 32 and (s are in the positive side.

Table 4. The capturing rates of the most successful linear and nonlinear models for different ranges of
observation values.

Training Testing
Range [-10%,+10%] Range [-5%;+5%] Range [-10%;+10%] Range [-5%;+5%]
Linear (LiBest) 47173 (=64%) 34/73 (=47%) 15/23 (=65%) 12/23 (=52%)

Nonlinear (LniBest) 17/73 (=23%) 12/73 (=16%) 14/23 (=61%) 10/23 (=44%)
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When the basic linear equation model shown in Equation (6) and Figure 10a are examined together,
it is understood that the H and y2 parameters have a significant positive effect on the location of the
hydraulic jump (L), while the V1 and y1 parameters have a negative effect. The terms "positive” and
"negative" effect refer to the direction of influence that independent variables (H, y2, V1, y1) have on the
dependent variable (L). More specifically, an independent variable with a positive effect increases the
value of the dependent variable as it increases. In other words, when H or y2 increases, the location of
the hydraulic jump moves further downstream, and the length L increases. Conversely, an independent
variable with a negative effect causes the dependent variable to decrease as it increases. That is, when V1
or yl increases, the hydraulic jump occurs closer upstream, and the length L decreases.

In line with these results, it is expected result that the H parameter, in particular, remained on the
positive side and had a positive effect on the location of the hydraulic jump (L). On the other hand, the
fact that both the Vi and y1 parameters are in the same direction in a common way leads to the
conclusion that the gate opening (e) is a very important parameter on the location of the hydraulic jump
(L). It can be said that the gate opening (e) and the upstream total head (H) are one of the basic dynamics
determining the location of the hydraulic jump (L).

It is seen that 31, the coefficient of the parameter V1 obtained from the linear equation in Figure 10a,
takes a negative value in the linear modeling. The hydraulic jump position (L) moves forward in the
open channel with the increasing velocity value (V1) for all gate openings (e). Therefore, a directly
proportional increase between the hydraulic jump position (L) and the velocity values (V1), ie. the
parameter (31, is expected to be positive. The negative value of 1, which is the coefficient of velocity
value (V1), is because the upstream total head (H) has a more dominant effect on the hydraulic jump
position than the velocity value (V1). The velocity value (V1) varies depending on the upstream total
head (H) and the gate opening (e). The hydraulic jump was formed by the flow from under a gate in the
supercritical regime and the parameters of the entire system were considered. The upstream total head
(H) represents the system’s total potential energy, which governs all flow characteristics, including the
velocity (Vi1). As H increases, both the potential energy and its transformation into kinetic energy also
rise. Consequently, H becomes the primary determinant not only for V; but also for the depth before the
jump (y1) and the hydraulic jump location (L). The strong correlation between H and Vi diminishes the
independent influence of V; in the modeling process.

In nonlinear modeling, the coefficient (31 of the velocity value (V1) is calculated as positive in contrast
to linear modeling. This is due to the difference in the operation of the algorithms of the models. In
nonlinear modeling, the flow depth after the jump (y2) coefficient B4+ was calculated as negative. On the
other hand, it is seen that the s and s+ parameters changed direction in both methods. During the
experiments, a significant positive relationship was observed between the y2 parameter affected by the
4+ coefficient and the location of the hydraulic jump (L). The negative P4 coefficient is due to the
dominance of other experimental parameters, similar to the situation in the linear equation. For these
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reasons, it can be said that the information in Figure 10b cannot successfully express the observed
results. Based on this, it was concluded that linear modeling was more successful.

4. CONCLUSIONS

The hydraulic jump formed by a flow passing under the gate in supercritical condition was modeled
with the Particle Swarm Optimization (PSO) algorithm to determine the location of the jump in open
channel. Linear and nonlinear PSO models were created, and it is known that the models created in the
studies conducted in the field of applied hydraulics are generally nonlinear. In line with the findings
obtained from this study, it was observed that the optimization model established in a linear manner
was more successful. PSO algorithm solved the problem more successfully with linear modeling than
with nonlinear modeling. It is thought that the change in 3 coefficients, especially in nonlinear modeling,
changes the result significantly, therefore the PSO algorithm cannot achieve more successful results.
When the experimental results are examined, the hydraulic jump location (L) moves to downstream
within direct proportion with upstream total head (H), velocity (V1), flow depth before jump (y1) and
after jump (y2). As expected in linear modeling, the hydraulic jump position (L) does not increase
proportionally with all parameters, and the parameters 1 and 33, which belong to the velocity (Vi) and
flow depth before jump (y1), are negative in the equation. This is due to the fact that the upstream total
head (H) and flow depth after jump (y2) have a more dominant effect on the hydraulic jump position (L).
Depending on the type of system, the dominant parameters may affect the jump position more than the
other parameters.
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