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ABSTRACT: The hydraulic jump is a critical phenomenon in open channel hydraulics, and 

understanding its behavior is essential for the design and safety of hydraulic structures. In this study, 96 

experiments were conducted using five different gate openings to model the location of hydraulic jumps 

in an open channel. The Particle Swarm Optimization (PSO) algorithm, a metaheuristic optimization 

technique, was employed to develop both linear and nonlinear predictive models. Experimental data 

from gate openings (e) of 2.5 cm, 3.5 cm, 4 cm, and 5 cm were used to train the models, while data from a 

e=6 cm gate opening were used for testing. The results demonstrated that the PSO algorithm effectively 

modeled the hydraulic jump location, yielding high accuracy and consistency with experimental 

observations. Model performance was evaluated using the Coefficient of Determination (R²), Nash-

Sutcliffe Efficiency (NSE), and Mean Squared Error (MSE). The linear model outperformed the nonlinear 

model, achieving NSE = 0.954, R² = 0.983, and MSE = 0.022. Furthermore, the upstream total head (H) 

and gate opening (e) were identified as the most influential parameters affecting the hydraulic jump 

location. 

 

Keywords: Open Channel Hydraulics, Sluice Gate, Hydraulic Jump, Particle Swarm Optimization (PSO) 

1. INTRODUCTION 

Sluice gates regulate water levels in reservoirs and open channels, maintain water level at 

maximum, capture floating objects, and manage the controlled release of excess water to downstream. 

After sudden rainfall, the opening (e) under the sluice gates is adjusted to regulate discharge (Q) and to 

prevent sudden floods passing to the downstream side by providing controlled release of water [1]. The 

flow passing under the gate in supercritical flow regime (Fr>1) may cause scour at the end of the 

spillway and on the downstream side of the river, so the energy of the flow must be reduced before it 

passes to the downstream side [2]. Energy dissipation can be achieved through the energy loss (ΔE) that 

occurs during the hydraulic jump. Hydraulic jump is created by the flow under the gate in supercritical 

regime (Fr>1) in the free flow condition and passing to the subcritical regime (Fr<1) [3]. While hydraulic 

jump sometimes occurs naturally, in some cases, energy dissipation structures are constructed on the 

downstream side of the channel to provide hydraulic jump formation and increase energy loss (ΔE) and 

to ensure the transition of flow to the subcritical regime [4]. Energy dissipating structures and pools are 

designed in various ways based on the Froude number (Fr) and the approach velocity (V1) of the 

supercritical flow. Blocks, barriers, and thresholds are installed within these pools to aid in energy 

dissipation [5]. The hydraulic jump is intended to be formed in a designated location inside the energy 

dissipation pools [6]. An uncontrolled hydraulic jump occurring outside the energy dissipation pools 

may pose a danger to the riverbed, open channels and surrounding hydraulic structures [7]. The 

hydraulic jump location must be known exactly so that the hydraulic jump does not damage the 

surrounding structures and the channel it is located in.  

In the first studies on hydraulic jump, researchers tried to explain the behavior of hydraulic jump 

with momentum equations [8], [9]. Levy et al. [10] investigated the amount of energy loss (ΔE) and the 

mixing of chemicals into water in their hydraulic jump experiments. Rouse et al. [11] investigated the 
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average velocities and turbulences patterns during the jump experimentally and theoretically to explain 

the behavior of hydraulic jump. Silvester [12] found semi-empirical analytical solutions for conjugate 

depth, energy loss rate (%ΔE) and jump length (LJ) for different Froude numbers (Fr) in horizontal 

rectangular, triangular, parabolic, circular and trapezoidal channels. Rajaratnam and Subramanya [13] 

obtained a generalized water surface profile for hydraulic jumps formed in smooth and rectangular 

open channels. Hager and Wanoschek [14] determined the surface profiles and velocity distributions of 

hydraulic jump in a triangular channel and compared the results with hydraulic jumps in a rectangular 

channel. Gharangik and Chaudhry [15] used Boussinesq equations to create a two-dimensional 

numerical model of hydraulic jump in a rectangular channel with low bed slope (θ). Ead et al.  [16] 

experimentally investigated hydraulic jumps in an open channel with different bottom roughness for 

Froude numbers (Fr) from 4 to 10. Habibzadeh et al. [17] derived the discharge coefficient (Cd) formula 

using theoretical methods to calculate the energy loss (ΔE) under rectangular sluice gates in submerged 

and free flow conditions. The accuracy of the formula was tested using experimental studies in the 

literature and it was seen that the energy loss (ΔE) in sluice gates is mainly affected by the geometry of 

the gate. Kim et al. [18] conducted experiments to examine the characteristic features of hydraulic jumps 

formed by fixed weirs and movable sluice gates and to compare their effects on energy dissipation (ΔE). 
Movahed et al. [19] et al. developed an semi analytical formula to find the length of the hydraulic jump 

(LJ) using 387 experimental data points. Simsek et al. [20] examined the length of the hydraulic jump (LJ) 

formed in a stilling basin with two different bed slopes (θ) and six different Froude numbers (Fr). They 

found that as the Froude number (Fr) decreases, the length of the hydraulic jump (LJ) increases. 

In recent years, researchers have been using artificial intelligence techniques for hydraulic jumps 

modeling. Naseri and Othman [21] calculated the length of the hydraulic jump (LJ) formed in a 

rectangular channel using an artificial neural network (ANN) model with the Levenberg–Marquardt 

(LM) and gradient descent with momentum and adaptive learning rule back propagation (BP) 

algorithms. Omid et al. [22] used ANN models to model the sequent depth ratio (y2/y1) and length of 

hydraulic jump (LJ), evaluating 16 configurations with different numbers of hidden layers and neurons. 

In the study, 611 experimental data points were collected for gradually expanding jumps in rectangular 

and trapezoidal channels. Karbasi and Azamathulla [23] used the Gene Expression Programming (GEP) 

method to predict the jump length ratio (LJ/y1) and sequent depth ratio (y2/y1) of the hydraulic jump 

formed on a rough channel bed. The GEP model, created with 491 experimental data points, was 

evaluated for accuracy and performance along with ANN and SVR models. Karbasi [24] used the 

teaching-learning-based optimization (TLBO) algorithm to predict the length of a classical hydraulic 

jump (LJ). For the TLBO model, 167 experimental data points were used, and the algorithm was applied 

to four different regression forms (linear, quadratic, exponential, and power). Gul et al. [25] predicted 

the relative jump length (LJ/y1) and characteristics such as sequent depth ratios (y2/y1) of the hydraulic 

jump formed in a suddenly expanding stilling basin using a hybrid extreme learning machine (ELM). In 

their study, Froude Number (Fr), expansion ratio (B=b1/b2), and relative sill height (S=s/y1) were given as 

inputs, and sequent depth ratio (Y=y2/y1) and LJ/y1 values were predicted. To hybridize the ELM, meta-

heuristic algorithms such as the imperialist competitive algorithm (ICA), firefly algorithm (FA), and 

particle swarm optimization (PSO) were used.  

As can be seen from the literature review, most of the studies in the literature focus on determining 

the length of the hydraulic jump and the depths before and after the jump. There are not many studies in 

literature aimed at determining the location of the hydraulic jump. In this study, the location of free 

hydraulic jump formed by the flow passing under the gate in a rectangular open channel with a constant 

width experimentally determined and modeled with ANN. In experimental studies, 5 different gate 

openings (e1=2.5 cm, e2=3.5 cm, e3=4 cm, e4=5 cm, and e5=6 cm) were used, and a total of 96 experimental 

data were collected. The locations of the hydraulic jumps were determined for varying gate openings (e) 

and discharge values (Q). The most important parameters affecting the location of the hydraulic jump 

(L) are the total head on the upstream side (H), the velocity (V1), the flow depths before the jump (y1) 

and after the jump (y2) [26]. Therefore, parameters H, V1, y1, and y2 were considered as input parameters 
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in the Particle Swarm Optimization (PSO) algorithm, and the location of the hydraulic jump (L) was 

attempted to be predicted. The results obtained from the PSO algorithm were compared with the 

experimental data to test the accuracy of the mathematical model.  

2. MATERIAL AND METHODS 

2.1. Sluice gate and Hydraulic jump 

Sluice gates provide a rectangular bottom opening from the front view through which water can 

pass. The discharge (Q) passing under the sluice gate varies depending on the opening (e) under the 

sluice gate and the total head on the upstream side (H). The flow passing under a sluice gate can be in 

two conditions: free flow or submerged flow. 

1- Free flow condition: After the flow passes under the gate, it is in supercritical regime and open to 

the atmosphere (Figure 1(a)). The flow depth (y1) is smaller than the gate opening (e). If the flow on the 

downstream side is in subcritical regime, hydraulic jump may occur away from the gate resulting in 

energy dissipation  and head loss (ΔE). 

2-Submerged flow condition: After the flow passes under the gate, it is not open to the atmosphere 

and the hydraulic jump caused by the flow occurs adjacent to the downstream surface of the sluice gate. 

The flow depth (y2) is greater than the gate opening (e) (Figure 1(b)). A free hydraulic jump does not 

form; instead, a submerged hydraulic jump occurs, accompanied by head loss (ΔE) due to intense 

turbulence and backflow effects. The free and submerged flow conditions passing under the sluice gate 

are shown in Figure 1. The total upstream water head (H) behind the gate is equal to the sum of the 

piezometric depth (h) and the velocity head (𝑉2/2 × 𝑔). (𝐻 = ℎ + 𝑉2/2 × 𝑔) 

 
Figure 1. Free (a) and submerged (b) flow conditions passing under the sluice gate 

 

The discharge of the flow passing under the sluice gate is determined by the following Equation (1); 

𝑄 = 𝐶𝑑 ∗ 𝑒 ∗ 𝑏 ∗ √2 ∗ 𝑔 ∗ 𝐻                                                                                                                                                     (1) 

Where; 

Q : Discharge (m3/s) 

Cd : Discharge Coefficient 

e : Gate opening (m) 

b : Gate width (m) 

H : Upstream total head (m) 

The free or submerged condition of the flow passing under a sluice gate can be determined from 

Figure 2, depending on the upstream head (H) and downstream (y2) water levels. Depending on 

whether the value obtained from the H/e and y2/e ratios remains above or below the curve, it is 

determined whether the flow will be submerged or free flowing. 
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Figure 2. Determination of the flow type depending on the H/e and y2/e ratios. [13]. 

 

In the case of free flow, the discharge coefficient (Cd) depends on the upstream water head (H) and 

the gate opening (e), while in the submerged flow case, the discharge coefficient (Cd) depends on the 

downstream water level (y2) and the gate opening (e). In addition, the discharge coefficient (Cd) values 

are read from a single curve in the free flow case, while the discharge coefficient (Cd) is read from 

different curves in the submerged flow case depending on the degree of submergence. The variation of 

the discharge coefficient (Cd) depending on the H/e and y2/e ratios is shown in Figure 3. 

 
Figure 3. Determination of the discharge coefficient (Cd) depending on the H/e and y2/e ratios for the 

submerged and free flow conditions [27] 

 

If the depth of a flow changes significantly over a short distance in an open channel, it is called 

rapidly varying flow (RVF) and if it changes more slowly over a long distance, it is called gradually 

varying flow (GVF). Hydraulic jump is classified as rapidly varying flow (RVF) and occurs when the 

flow is exposed to turbulence as it passes from the supercritical (Fr>1) to the subcritical regime (Fr<1) 

(Figure 4). The flow regime in open channels is determined by the Froude number. The Froude number 

is calculated from the ratio of inertial forces to gravitational forces and is formulated as 𝐹𝑟 = 𝑉 √𝑔 ∗ 𝑦⁄ . 

Here, V is the velocity, g is the acceleration of gravity and y is the hydraulic depth (for rectangular 

channels). When inertial forces are greater than the gravitational forces (Fr>1), flow is called the 
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supercritical. When inertial forces are less than the gravitational forces (Fr<1), flow is called the 

subcritical. Hydraulic jumps occur in two ways, submerged and free, depending on the state of the flow 

[28]. 

 

 
Figure 4. Hydraulic jump 

 

Hydraulic jumps pose a great danger when they occur uncontrolled in open channels because large 

forces are generated during the jump and the depth of the flow suddenly increases. A controlled 

hydraulic jump is beneficial in terms of aeration and energy dissipation (ΔE). In submerged hydraulic 

jumps, in addition to the fact that the supercritical and subcritical parts of the flow cannot be determined 

exactly, the amount of energy to be broken cannot be calculated with the formula used in free jump. 

Calculations of submerged hydraulic jumps are generally made with experimental and numerical 

studies. High-energy flow from the spillway crest can lead to erosion in the riverbed. Strong turbulences 

can damage the material on the river bed and cause abrasions. Subjecting the flow from the spillway in 

the flood regime to a controlled hydraulic jump will reduce the energy of the flow and make it easier 

and safer to transport water. The flow depth before (y1) and after (y2) the hydraulic jump and the total 

energy loss (ΔE) are calculated with Equations (2) and (3). 

 

y2=
y1

2
*(√1 + 8 ∗ 𝐹𝑟1

2-1)                                                                                                                     (2) 

ΔE=
(y2 − y1)3

4*y1 ∗ y2
                                                                                                                                     (3) 

Where; y1 is the flow depth before the hydraulic jump, y2 is the flow depth after the hydraulic jump, 

Fr1 is the Froude number in the supercritical regime and ΔE is the total amount of energy loss in the 

hydraulic jump. 

2.2. Experimental Setup 

In this study, experiments were conducted on an open channel system to investigate the alternating 

position (L) of the hydraulic jump created by a flow passing under the sluice gate depending on the 

discharge (Q) and the gate opening (e) (Figure 5). The open channel system where the physical 

experiment setups were prepared is 6.5 m long, 0.5 m deep and 0.6 m wide. The walls and bed of the 

open channel are made of 1.2 cm thick laminated tempered glass. The bed slope of the open channel 

system is 0.7 %. The flow in the open channel system is provided by two reservoirs between which the 

channel is placed. Two parallel connected pumps take water from the downstream reservoir and send it 

to the upstream reservoir through pipes. After water fills the upstream reservoir and reaches its 

maximum level, it overflows into the open channel system and is eventually discharged into the 

downstream reservoir at the end of the channel. The amount of discharge that the pumps will provide to 

the pipe is adjusted by the frequency converter that controls the pumps. Discharge is measured with an 

ultrasonic flow meter with a sensitivity of 0.01 l/s, placed on the main pipe. 
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Figure 5. Experimental setup 

 

In the experiments, 5 different gate openings (e1=2.5 cm, e2=3.5, e3=4 cm, e4=5 cm and e5=6 cm) were 

used (Figure 6). The sluice gates were manufactured from 1 cm thick plexiglas material. The bottom 

edge of the sluice gates where the water passes has a flat crest shape and its thickness is equal to the gate 

thickness of 1 cm. Flow depth measurements were made with a limnimeter at 3 different points in open 

channel, which are the total upstream water depth  behind the sluice gate (h), the water depth before the 

jump (y1) and the water depth after the jump (y2). Also the distance of the hydraulic jump to the gate (L) 

was measured. The measured parameters and the total number of measurements are shown in Table 1. 

 

Table 1. Obtained parameters for each gate opening (e) and measurement ranges 

Gate 

Opening 

e (cm) 

Total test 

number 

Discharge 

Range 

Q (lt/s) 

Total Head 

Range 

H (cm) 

y1 (cm) 

Range 

y2 (cm) 

Range  

Froude 

Num. Range 

Fr1 

e1=2.5  13 Tests 14.70-25.70 13.40-38.90 1.60-1.80 9.10-13.20 3.87-5.66 

e2=3.5 24 Tests 19.85-32.04 13.10-30.80 2.20-2.40 9.50-15.00 3.24-4.59 

e3=4 24 Tests 22.27-34.15 13.10-28.30 2.40-2.50 10.10-15.50 3.19-4.60 

e4=5  12 Tests 29.60-41.50 15.60-27.80 3.10-3.80 12.00-15.10 2.89-2.98 

e5=6 23 Tests 35.03-46.90 15.40-25.60 3.60-3.90 12.70-16.50 2.73-3.24 

 

Since the aim of the study was to determine the location of the hydraulic jump (L), which varying 

depending on the discharge (Q) and the gate opening (e), the experiments aimed to create a free 

hydraulic jump in the open channel. For an observable hydraulic jump, the regime of the flow passing 

under the gate must change from supercritical to subcritical. The regime of the flow passing from under 

the gate does not changed until the end of the channel unless it encounters an obstacle. In order to 

provide the flow regime change, a rectangular linear weir with a height of 5 cm was placed at the end of 

the channel (Figure 6). The Fr varies between 2.7 and 6.8 for subcritical regime. This weir remained as 

submerged during all experiments, increasing the flow depth and creating the subcritical regime. The 

linear weir was placed 450 cm far away from the sluice gate. 

The total upstream head (H) behind the sluice gate was obtained from the sum of the upstream 

water depth (h) and the velocity head (𝑉2/2 × 𝑔). The piezometric depth (h) behind the gate and the 

velocities used in the velocity head calculations were measured 20 cm behind the sluice gate. Although 

the upstream side of the gate acts like a reservoir, a swell occurs at a distance of 7-10 cm just behind the 

gate due to the impact of the flow to the gate. For this swell not to affect the depth measurement, a point 

20 cm behind the gate where water surface is flat was selected for the measurements. The velocity 

measured with an acoustic doppler velocimeter (ADV). Velocity measurements can be made in 3 axes 

with an ADV, but since the current flows in the +x direction, the velocity values obtained in the +x 

direction was used in the velocity head (𝑉2/2 × 𝑔) calculations. 
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Figure 6. General scheme of the physical experimental setup and measurement points 

 

 

2.3 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) algorithm is a heuristic-based optimization algorithm first 

proposed by Kennedy and Eberhart [29]. In the PSO algorithm, behaviors of birds and fishes for 

searching food, which are living in a herd in nature are modeled. Due to its simplicity of use and being a 

successful optimization algorithm, the PSO algorithm has been applied to many engineering problems 

and successful results have been obtained [30]. In PSO, in the first stage, all particles are randomly 

distributed in nature and determine the locations of possible food sources in the range of [xjmin; xjmax]. he 

Z objective function is evaluated at the position of each particle, representing a potential solution point. 

This evaluation helps determine how good or effective each solution is, allowing the algorithm to assess 

the quality of the solutions found by the particles. At this stage, the best food location obtained by each 

particle is recorded as pbest, and the highest quality food location reached by the colony is recorded in the 

common memory of the colony as gbest. Then, as shown in Equation (4), the speed values that allow each 

particle to move towards the best results obtained both locally (pbest) and globally (gbest) are calculated. 

Then, with the help of these values, the position information of the particles is updated as shown in 

Equation (5). 

 

𝑣𝑖𝑗
𝑡+1 = 𝑤𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑗) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑗)                                                                                                          (4) 

 

𝑋𝑖𝑗
𝑡+1 = 𝑋𝑖𝑗

𝑡 + 𝑣𝑖𝑗
𝑡+1                                                                                                                                                                         (5) 

 

The speed value vijt+1 obtained for the solution point Xij is shown in Equation (4). The w value in the 

equation is the inertia weight which provides the sensitivity of the search, a more global search is 

performed with large w values, while more local searches are performed with small w values. It is 
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recommended that the inertia weight to be determined in a way that it decreases linearly throughout the 

iterations for a more successful solution [31]. The c1 and c2 values in Equation (4) are the acceleration 

coefficients. While c1 pulls the positions of the particles towards the pbest values, c2 pulls them towards 

the gbest values. Although the acceleration coefficients vary according to the type of problem, the value c1 

= c2 = 2.0 is generally recommended as a starting point [32], [33]. The r1 and r2 values are randomly 

generated in the range of [0,1] and provide the randomness of the PSO algorithm. After calculating the 

velocity values of all particles, the new positions of the particles are determined with the help of 

Equation (5). The Z objective function is run again for the current positions of the particles and the 

quality of the new solution points obtained is determined. The pbest and gbest values are updated 

throughout the iterations and the search process continues. 

In the current study, V1, H, y1 and y2 values be used as model inputs and modeling will be carried 

out using the PSO algorithm in order to estimate L values. Here, the two most well-known basic 

modeling types, linear (Equation 6) and nonlinear (Equation 7) model structures, were preferred. 

 
𝐿𝐿 = 𝛽1 ∗ 𝑉1 + 𝛽2 ∗ 𝐻 + 𝛽3 ∗ 𝑦1 + 𝛽4 ∗ 𝑦2                                                                                                                              (6) 

 

𝐿𝑁𝐿 = 𝑉1
𝛽1 ∗ 𝐻𝛽2 ∗ 𝑦1

𝛽3 ∗ 𝑦2
𝛽4                                                                                                                                                  (7) 

 

The PSO algorithm will be used to determine the β coefficients that will create the most successful 

modeling at this stage. While designing the algorithm, a limit is determined for the search space of the β 

coefficients as [xjmin; xjmax] and the best model information is sought within this limit.  

While creating models, Z objective functions are used to determine whether any model is better than 

others. If the L values generated by the developed models are denoted as LML_MLM, and the L value 

obtained from experimental observations is denoted as LOL_OLO, then the objective functions for the 

PSO (Particle Swarm Optimization) algorithm can be formulated using various statistical indicators. 

These indicators measure the difference or error between the model predictions and experimental 

results, as shown below. Mean Squared Error (MSE) is shown in Equation (8), Coefficient of 

Determination R2 is shown in Equation (9) and Nash Sutcliffe Efficiency Coefficient (NSE) is shown in 

Equation (10). Any of these indicators can be used as an objective function alone or they can be used in 

proportion to each other as shown in Equation (8). Here, if Z1 or Z4 is chosen as the objective function, 

the optimization problem turns into minimization, and if Z2 or Z3 is chosen, it turns into maximization. 

In the PSO (Particle Swarm Optimization) algorithm, the effectiveness of the model structure generated 

in each iteration is evaluated based on the chosen objective function, which reflects how well the model's 

predictions match the actual data. Based on this evaluation, the β coefficients—representing the model 

parameters—are updated to guide the search toward more accurate and successful models in 

subsequent iterations. In this way, it is aimed to determine the most successful model structure. 

 

𝑍1 = 𝑀𝑆𝐸 =
∑ (𝐿𝑂 − 𝐿𝑀)2𝑁

𝑖=1

𝑁
                                                                                                                                                   (8) 

 

𝑍2 = 𝑅2 =
[∑ (𝐿𝑂 − 𝐿𝑂)(𝐿𝑀 − 𝐿𝑀)𝑁

𝑖=1 ]
2

∑ (𝐿𝑂 − 𝐿𝑂)2 ∑ (𝐿𝑀 − 𝐿𝑀)2𝑁
𝑖=1

𝑁
𝑖=1

                                                                                                                        (9) 

 

𝑍3 = 𝑁𝑆𝐸 = 1 −
∑ (𝐿𝑂 − 𝐿𝑀)2𝑁

𝑖=1

∑ (𝐿𝑂 − 𝐿𝑂)2𝑁
𝑖=1

                                                                                                                                         (10) 

 

𝑍4 =
𝑀𝑆𝐸

𝑁𝑆𝐸
                                                                                                                                                                                     (11) 
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3. RESULTS AND DISCUSSION 

In the present study, linear and nonlinear models were created as shown in Equation (6) and 

Equation (7) using the PSO algorithm to estimate hydraulic jump positions (L). For this purpose, the 

results obtained from a total of 96 experimental measurements were first divided into two group as 

training and test. While a total of 73 experimental results from experiments with a gate opening (e) of 2.5 

cm, 3.5 cm, 4 cm and 5 cm were separated as the training group, 23 experimental results with a gate 

opening (e) of 6 cm constituted the test group. Models will be created for the training group with the 

help of the PSO algorithm and these models will be applied to the test group to examine how consistent 

the model results and the observed experimental results are. 

 Since there are 4 input parameters in all linear and nonlinear modeling studies with the PSO 

algorithm, the problems were solved in 4 dimensions. In all studies, the particle number was 8 and The 

[xjmin; xjmax] interval, which defines the boundaries of the search space, was set to [-5;5]. The inertia 

weight w was linearly decreased over the iterations within the range [0.9;0.4]. Similarly, the acceleration 

coefficients c1 = c2 = 2.0 were accepted and 2000 iterations were performed. 

In the search operations performed in the PSO algorithm, the Z4 objective function shown in 

Equation (11) is preferred. In this way, the minimization of Z4 values is aimed. The minimization of Z4 

values aims to minimize the MSE values expressing the error values and to maximize the NSE metric, 

which is a strong performance indicator at the same time. Since the NSE metric taking values in the 

range of [-∞;1] will bring some problems, a manipulation was made in the NSE metric as shown in 

Equation (12) below. 

 

𝑖𝑓 𝑁𝑆𝐸 ≤ 0 → 𝑁𝑆𝐸 = 10−∆;  𝑖𝑓 𝑁𝑆𝐸 > 0 → 𝑁𝑆𝐸 = 𝑁𝑆𝐸                                                                                            (12) 

 

In Equation (12), when the Δ values take large values, the negative NSE values take very low values 

on the positive side, causing the Z4 values to increase astronomically, and in this way, the models that 

produce negative NSE values are naturally eliminated. In this way, the most successful models can be 

determined among the models that give positive NSE values. The value Δ=11 was used in the current 

study[34].  

In summary, the PSO algorithm searches for the β coefficients shown in Equation (6) and Equation 

(7) in the range of [-5;5]. It evaluates the model result it produces with the Z4 objective function. It tries to 

produce the model information with the lowest Z4 value by changing the β coefficients throughout the 

iterations. After the PSO algorithm was designed in this way, 30 linear and 30 nonlinear models were 

produced. The model information produced and the performance indicators of the models are shown in 

detail in Appendix A.  

As a result of the studies, the most successful model for linear modeling (LLBest) is shown in Equation 

(13), and the most successful model for nonlinear modeling (LNLBest) is shown in Equation (14). On the 

other hand, the statistical indicators of the most successful models obtained are given in Table 2. 

 

𝐿𝐿
𝐵𝑒𝑠𝑡 = −2.8591 ∗ 𝑉1 + 0.1202 ∗ 𝐻 − 1.1007 ∗ 𝑦1 + 0.5733 ∗ 𝑦2                                                                              (13) 

 

𝐿𝑁𝐿
𝐵𝑒𝑠𝑡 = 𝑉1

4.9892 ∗ 𝐻2.0287 ∗ 𝑦1
2.2718 ∗ 𝑦2

−4.3645                                                                                                                 (14) 
 

When the results obtained from Table 2 are analyzed, two situations stand out in particular. First, it 

is seen that the PSO algorithm can achieve quite successful results within the framework of this problem. 

In both linear and nonlinear modeling, the PSO algorithm has shown a very successful performance. 

When the test results are examined in particular, a very high value of NSE = 0.954 was reached in linear 

modeling, while the value of NSE = 0.902 was reached in nonlinear modeling. The fact that the results of 

both methods are above 0.9 shows that the PSO algorithm is quite successful in this regard when 

evaluated within the framework of a strong metric such as NSE. The second important result obtained in 

line with Table 2 is that linear modeling is clearly more successful than nonlinear modeling. More 



Location of Hydraulic Jump  775 

 

successful results were obtained with the linear modeling method compared to nonlinear modeling in 

all evaluation criteria except the test R2 metric. Due to the fact that the relationships between the model's 

input and output parameters tend to exhibit more linear behavior, the linear modeling approach has 

cumulatively achieved higher performance values in the research results. Although the nonlinear 

models yielded very high R² results in the testing phase, they performed worse during training and 

exhibited higher MSE values. This may indicate overfitting or overly complex model structures. 

 

Table 2. Performance indicators of the most successful solutions obtained. 

 Performance Indicators 
Linear Modelling  

(LLBest) 

Nonlinear Modelling  

(LNLBest) 

T
ra

in
in

g
 R2 0.942 0.653 

NSE 0.942 0.562 

MSE 0.042 0.320 

MSE/NSE 0.045 0.569 

T
es

ti
n

g
 R2 0.983 0.990 

NSE 0.954 0.902 

MSE 0.022 0.047 

MSE/NSE 0.023 0.052 
 

On the other hand, the minimum, average and maximum values of the performance indicators of the 

30 models produced are shown in Table 3 below. As can be understood from Table 3, more successful 

results were achieved in linear modeling in all evaluation criteria except Test R2. When the average 

performance values for both modeling methods are examined, while the value of NSE=0.943 was 

obtained in linear modeling in the training phase, the value of NSE=0.720 was reached in nonlinear 

modeling. In this respect, approximately 25% more successful results were achieved in linear modeling 

in the training phase. When the results in the test phase are examined, the average NSE value of 30 

models in linear modeling is 0.942, while this value is calculated as 0.807 in nonlinear modeling. In this 

respect, it can be said that linear modeling is 16.7% more successful in the test results. The same success 

is also seen in MSE values, which are an error indicator. The MSE values of linear modeling are much 

lower than nonlinear modeling. In order to visually present the performance of the methods in general, 

radar diagrams of the evaluation metrics used were created and presented in Figure 7. It can be visually 

understood that the models produced as a result of linear modeling are more successful. 
 

Table 3. Summary values of the performance of the models produced with the help of the PSO 

algorithm. 
  Training Testing 
  R2 NSE MSE MSE/NSE R2 NSE MSE MSE/NSE 

Linear Modelling 

Minimum 0.936 0.934 0.041 0.044 0.983 0.924 0.022 0.023 

Mean 0.943 0.943 0.042 0.045 0.985 0.942 0.028 0.030 

Maximum 0.944 0.944 0.048 0.052 0.987 0.954 0.036 0.039 

Nonlinear Modelling 

Minimum 0.637 0.553 0.142 0.177 0.987 0.748 0.047 0.052 

Mean 0.750 0.720 0.204 0.291 0.990 0.807 0.093 0.117 

Maximum 0.822 0.805 0.326 0.590 0.990 0.902 0.121 0.162 
 

The findings obtained from the studies were evaluated in terms of the stability of the methods in 

another stage. For this purpose, the information belonging to the first 10 most successful models 

obtained as a result of linear [LL1(Best)-LL10] and nonlinear [LNL1(Best)-LNL10] modeling was processed into 

Taylor diagrams and the performances of the methods were evaluated in a different framework. The 

standard deviation and NSE (or R2) values formed by the models obtained in the Taylor diagrams are 

processed circularly and angularly, respectively, and interpretations are made based on the positions of 

the models on the diagram. In Taylor diagrams; if the point where any produced model is marked is 
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further (angularly) clockwise and closer (circularly) to the observed standard deviation curve, it 

indicates that the model is more successful, while the opposite indicates that it is a less successful model. 

The successes of the produced models are shown in Figure 8a for the training stage and in Figure 8b for 

the testing stage. In order to observe the obtained findings more clearly and understandably, not all 

models were included in the Taylor diagrams and only the most successful 10 model results were 

shown. When both Figure 8a and Figure 8b are examined, it is seen that the linear modeling results are 

very stable and located in a very narrow area. In contrast, the models obtained as a result of nonlinear 

analysis exhibit a more scattered structure and exhibit lower performance. When the nonlinear analysis 

results in Figure 8a are examined in particular, it can be seen that the result values are spread over a 

very wide area. On the other hand, when Figure 8a is examined in particular, it is seen that the results 

obtained as a result of linear modeling are located very close to the standard deviation curve of the 

observed data. It is evident that the PSO algorithm can successfully train the model. Furthermore, linear 

analysis based on Taylor diagrams indicates that more accurate and stable results are achieved. 

On the other hand, in order to examine the performances of the most successful models in more 

detail, the extent to which the two most successful models (LLBest and LNLBest) produced as a result of 

linear and nonlinear modeling can capture the observed result values is shown in detail in Figure 9. The 

ranges of the observed values [-5%; +5%] and [-10%; +10%] were also processed on the same figure and 

the extent to which the models could enter this range was also examined and the model results were 

evaluated from a different perspective. The extent to which the LLBest and LNLBest models could enter the [-

5%; +5%] and [-10%; +10%] ranges is shown in detail in Table 4. 
 

 
Figure 7. Radar diagrams of the performance of the produced models 
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Figure 8. Taylor diagrams for the training (a) and test (b) groups of the top 10 most successful models 

obtained. 

 

When Figure 9 is examined in general, it can be stated that the LLBest model was able to capture the 

experimental results observed in the training phase quite successfully. Especially in the experimental 

results with a gate opening of e=4 cm in Figure 9a, this model exhibited near-perfect behavior. On the 

other hand, when the test results in Figure 9b are examined, it can be said that this model is quite 

successful. When the information shown in Table 4 is examined, the LLBest model was able to produce 

values in the [-10%; +10%] range in 47 of the 73 experimental results observed in the training phase. On 

the other hand, the LNLBest model was able to produce values in the [-10%; +10%] range in only 17 of the 

73 experimental results. In other words, while the success rate of the LLBest model in the [-10%; +10%] 

range was approximately 64%, the success of the LNLBest model remained at approximately 23%. Model 

successes for the test phase and the [-5%; +5%] ranges are shown in Table 4. It is seen that linear 

modeling can capture the observed experimental results more successfully compared to nonlinear 

modeling. 

Up to this stage, it is seen that linear modeling is more successful in terms of performance, stability 

of the methods and the ability of the methods to capture the observed experimental results and that the 

PSO algorithm generally produces successful results. After this stage, as a result of the studies carried 

out, the β values produced by the methods were evaluated within the framework of the parameter 

effect. For this purpose, BoxPlot diagrams of the β values of 30 models obtained because of linear and 

nonlinear modeling were created and shown in Figure 10a for linear modeling and in Figure 10b for 

nonlinear modeling. When Figure 10a is examined, it is clearly seen that the β coefficients form a certain 

form as a result of linear modeling. In this direction, it is seen that especially β1 and β3 are in the negative 

direction and β2 and β4 are in the positive side. 

 

Table 4. The capturing rates of the most successful linear and nonlinear models for different ranges of 

observation values. 

 Training Testing 

 Range [-10%;+10%] Range [-5%;+5%] Range [-10%;+10%] Range [-5%;+5%] 

Linear (LLBest) 47/73 (≈64%) 34/73 (≈47%) 15/23 (≈65%) 12/23 (≈52%) 

Nonlinear (LNLBest) 17/73 (≈23%) 12/73 (≈16%) 14/23 (≈61%) 10/23 (≈44%) 
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Figure 9. Comparison of the results of the most successful models in the training (a) and testing (b) 

stages with the observation values. 
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Figure 10. Box plot diagram of β values obtained as a result of linear (a) and nonlinear (b) modeling. 

 

When the basic linear equation model shown in Equation (6) and Figure 10a are examined together, 

it is understood that the H and y2 parameters have a significant positive effect on the location of the 

hydraulic jump (L), while the V1 and y1 parameters have a negative effect.  The terms "positive" and 

"negative" effect refer to the direction of influence that independent variables (H, y2, V1, y1) have on the 

dependent variable (L). More specifically, an independent variable with a positive effect increases the 

value of the dependent variable as it increases. In other words, when H or y2 increases, the location of 

the hydraulic jump moves further downstream, and the length L increases. Conversely, an independent 

variable with a negative effect causes the dependent variable to decrease as it increases. That is, when V1 

or y1 increases, the hydraulic jump occurs closer upstream, and the length L decreases. 

In line with these results, it is expected result that the H parameter, in particular, remained on the 

positive side and had a positive effect on the location of the hydraulic jump (L). On the other hand, the 

fact that both the V1 and y1 parameters are in the same direction in a common way leads to the 

conclusion that the gate opening (e) is a very important parameter on the location of the hydraulic jump 

(L). It can be said that the gate opening (e) and the upstream total head (H) are one of the basic dynamics 

determining the location of the hydraulic jump (L). 

It is seen that β1, the coefficient of the parameter V1 obtained from the linear equation in Figure 10a, 

takes a negative value in the linear modeling. The hydraulic jump position (L) moves forward in the 

open channel with the increasing velocity value (V1) for all gate openings (e). Therefore, a directly 

proportional increase between the hydraulic jump position (L) and the velocity values (V1), i.e. the 

parameter β1, is expected to be positive. The negative value of β1, which is the coefficient of velocity 

value (V1), is because the upstream total head (H) has a more dominant effect on the hydraulic jump 

position than the velocity value (V1). The velocity value (V1) varies depending on the upstream total 

head (H) and the gate opening (e). The hydraulic jump was formed by the flow from under a gate in the 

supercritical regime and the parameters of the entire system were considered. The upstream total head 

(H) represents the system’s total potential energy, which governs all flow characteristics, including the 

velocity (V₁). As H increases, both the potential energy and its transformation into kinetic energy also 

rise. Consequently, H becomes the primary determinant not only for V₁ but also for the depth before the 

jump (y₁) and the hydraulic jump location (L). The strong correlation between H and V₁ diminishes the 

independent influence of V₁ in the modeling process. 

In nonlinear modeling, the coefficient β1 of the velocity value (V1) is calculated as positive in contrast 

to linear modeling. This is due to the difference in the operation of the algorithms of the models. In 

nonlinear modeling, the flow depth after the jump (y2) coefficient β4 was calculated as negative. On the 

other hand, it is seen that the β3 and β4 parameters changed direction in both methods. During the 

experiments, a significant positive relationship was observed between the y2 parameter affected by the 

β4 coefficient and the location of the hydraulic jump (L). The negative β4 coefficient is due to the 

dominance of other experimental parameters, similar to the situation in the linear equation. For these 
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reasons, it can be said that the information in Figure 10b cannot successfully express the observed 

results. Based on this, it was concluded that linear modeling was more successful. 

4. CONCLUSIONS 

The hydraulic jump formed by a flow passing under the gate in supercritical condition was modeled 

with the Particle Swarm Optimization (PSO) algorithm to determine the location of the jump in  open 

channel. Linear and nonlinear PSO models were created, and it is known that the models created in the 

studies conducted in the field of applied hydraulics are generally nonlinear. In line with the findings 

obtained from this study, it was observed that the optimization model established in a linear manner 

was more successful. PSO algorithm solved the problem more successfully with linear modeling than 

with nonlinear modeling. It is thought that the change in β coefficients, especially in nonlinear modeling, 

changes the result significantly, therefore the PSO algorithm cannot achieve more successful results. 

When the experimental results are examined, the hydraulic jump location (L) moves to downstream 

within direct proportion with upstream total head (H), velocity (V1), flow depth before jump (y1) and 

after jump (y2). As expected in linear modeling, the hydraulic jump position (L) does not increase 

proportionally with all parameters, and the parameters β1 and β3, which belong to the velocity (V1) and 

flow depth before jump (y1), are negative in the equation. This is due to the fact that the upstream total 

head (H) and flow depth after jump (y2) have a more dominant effect on the hydraulic jump position (L). 

Depending on the type of system, the dominant parameters may affect the jump position more than the 

other parameters. 
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