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Abstract: Traditional methods for assessing the quality, taste, and maturity of fruits and
vegetables without cutting rely on external attributes such as color, shape, surface patterns,
and acoustic responses. In this study, maturity levels of watermelons were validated through
physical inspection after cutting, and the corresponding acoustic data were analyzed using
spectrograms, extracting 120 features each sample. Several machine learning algorithms,
including Support Vector Classifier, Decision Tree Classifier, Random Forest Classifier
(RFC), Multi-Layer Perceptron Classifier, and K-Nearest Neighbors Classifier (KNC), were
evaluated. Among them, the KNC model achieved the highest accuracy (96.04%), followed
closely by the RFC model (95.47%). Specifically, the RFC model classified mature
watermelons with 98.2% accuracy, while the KNC model effectively distinguished
overmature and immature samples with accuracies of 96.3% and 96.2%, respectively.
Robustness against background noise was also demonstrated despite the naturally recorded
dataset. The findings were compared with studies on acoustic pattern recognition in animals,
environmental acoustics, and healthcare, highlighting the potential of machine learning-based
approaches as a reliable, non-invasive method for maturity and taste assessment with practical
applications in agriculture and the food industry.

Makine Ogrenimi Kullanarak Elle Vurulan Karpuzun Sesinden Tahribatsiz Olgunluk

Tahmini

Anahtar Kelimeler
Akustik 6zellik
¢ikarimi,
Gozetimli 6grenme
modelleri,
Olgunluk tahmini,
Ses siniflandirma,
Tahribatsiz meyve
analizi,

Tarimsal sinyal
isleme

0Oz: Meyve ve sebzelerin kesilmeden kalite, tat ve olgunluklarinin degerlendirilmesinde
geleneksel yontemler genellikle renk, sekil, yiizey desenleri ve akustik tepkiler gibi dig
Ozelliklere dayanir. Bu caligmada, karpuzlarin olgunluk seviyeleri kesim sonrasi fiziksel
inceleme ile dogrulanmis, elde edilen akustik veriler spektrogramlarla analiz edilerek her
ornek icin 120 6znitelik ¢ikarilmistir. Destek Vektor Siniflandiricist (SVC), Karar Agaci
Smiflandiricisi, Rastgele Orman Siniflandiricist  (RFC), Cok Katmanli Algilayict
Siniflandiricist (MLP) ve K-En Yakin Komsu Siniflandiricist (KNC) algoritmalari
degerlendirilmistir. Bunlar arasinda en yiiksek dogrulugu %96,04 ile KNC modeli elde etmis,
onu %95,47 ile RFC modeli izlemistir. Ozellikle, RFC modeli olgun karpuzlari %98,2
dogrulukla simiflandirirken, KNC modeli asir1 olgun ve az olgun drnekleri sirasiyla %96,3 ve
%96,2 dogrulukla ayirt etmistir. Dogal ortamda kaydedilen veri setine ragmen arka plan
giiriiltiistine kars1 da saglamlik gosterilmistir. Bulgular, hayvanlarda akustik desen tanima,
cevresel akustik ve saglik alanindaki ¢aligmalarla karsilastirilmis olup, makine 6grenmesine
dayali yaklasimlarin olgunluk ve tat degerlendirmesinde giivenilir ve invazif olmayan bir
yontem sundugu, tarim ve gida endiistrisinde pratik uygulama potansiyeline sahip oldugu
ortaya konmustur.
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1. INTRODUCTION

Agriculture is a cornerstone of global economic
development and serves as a primary source of
employment for impoverished populations worldwide [1].
The emergence of Smart Agriculture has introduced a
transformative paradigm that utilizes Information and
Communication Technologies (ICT) to address critical
global challenges such as hunger, malnutrition, and food
security. By incorporating advanced technologies, Smart
Agriculture seeks to enhance crop yields, optimize
cultivation practices, improve productivity, and ensure
higher product quality [2]. Increasing consumer
expectations for efficiency, reduced physical labor, and
rapid outcomes have further accelerated the adoption of
digital farming systems [3]. These innovations not only
lower the dependency on traditional manual practices but
also improve operational efficiency and generate new
employment opportunities in the agricultural sector [4].

Watermelon (Citrullus lanatus), prized for its sweetness
and high-water content, is among the most widely
consumed fruits worldwide, primarily enjoyed fresh [5].
According to the Food and Agriculture Organization of
the United Nations (FAO), nearly 70 million tons of
watermelon are produced annually across approximately
100 countries and regions [6]. The quality of watermelon
is influenced by both external characteristics, such as
shape and size, and internal attributes, including maturity,
pulp firmness, sugar concentration, water content, and
internal defects. Among these, sweetness remains the
most decisive factor shaping consumer preference and
internal quality [7-8].

1.1. Non-Destructive Assessment of Watermelon
Maturity

Traditionally, watermelon maturity has been evaluated
using empirical methods such as tapping sounds, rind
pattern inspection, and weight measurement. However,
these approaches are often subjective and lack precision.
Recent advancements in non-destructive technologies
have introduced more reliable alternatives, including X-

Table 1. Non-destructive quality assessment methods

ray Computed Tomography (CT) [9], acoustic analysis
[10], machine vision [11], dielectric property
measurement [12], Hyperspectral Imaging (HSI) [13], and
Surface-Enhanced Raman Spectroscopy (SERS) [14].
These methods support the development of regression and
classification models for maturity prediction, leveraging
acoustic and image processing for precise evaluation
[6,15].

Non-destructive approaches have successfully assessed
watermelon hardness and sweetness by integrating data
from tapping sounds, rind features, and weights. Acoustic
impulse methods, combined with linear models and
Artificial Neural Networks (ANN), have achieved
promising accuracy in classifying watermelon maturity
[16]. Moreover, fusion techniques that combine acoustic
and visual information have reported -classification
accuracies as high as 92% using gradient tree-based
models [17]. These findings demonstrate the potential of
integrating  traditional practices with advanced
technologies for improved agricultural outcomes.

The rapid progress of Artificial Intelligence (AI) has
further transformed agricultural practices. Al methods
such as neural networks, fuzzy logic, genetic algorithms,
and machine learning are increasingly applied across
domains including agriculture, healthcare, and robotics
[18-20]. In sound-based analysis, approaches originally
developed for medical applications such as heartbeat and
respiratory monitoring are now being adapted to
agriculture. These applications include classifying animal
sounds, environmental noises, and fruit maturity [21-23].
For audio signal processing, representations such as
spectrograms, Mel-Frequency Cepstral Coefficients
(MFCC), and Zero-Crossing Rate (ZCR) are commonly
employed. Advanced deep learning techniques,
particularly Convolutional Neural Networks (CNN),
enhance feature extraction from spectrograms and
waveforms, significantly improving classification
accuracy. Architectures such as VGGish and bottleneck
CNN further strengthen feature representation through 1D
and 2D convolutional layers, offering robust solutions for
sound-based classification tasks [24—26].

Studies | Technique Advantages Disadvantages
[27] NIR Spectroscopy Non-destructive, fast, accurate (>88%), can | Expensive, sensitive to lighting/surface, needs calibration
be portable
[28] Image Processing Simple, low-cost, reasonably accurate (76— | Surface-only info, lighting/angle dependent, rind pattern
89%) affects results
[29] Acoustic Response Easy, non-destructive, high accuracy (>90%) | Sensitive to tapping, noisy environments, some fruits must
be cut
[30 Microwave Imaging Visualizes internal structure, high-resolution | Expensive, complex setup, limited field use
[31] Portable NIR | Field-ready, practical accuracy Requires per-variety calibration, sunlight may affect
Spectrometer results, costly
[32] Traditional/Visual Very simple, no equipment needed Subjective, low accuracy, causes fruit waste
Methods

Recent studies have explored a variety of non-destructive
techniques for assessing agricultural product quality, each
with distinct advantages and limitations, as summarized
in Table 1. Near-Infrared (NIR) Spectroscopy has been
shown to provide fast, non-destructive, and accurate
measurements (>88%), with potential for portable
applications, though it remains costly and sensitive to

lighting and surface conditions [27]. Image processing
methods, including color and texture analysis, offer a
simple and low-cost approach with reasonable accuracy
(76-89%), yet they provide only surface-level
information and are affected by lighting, camera angle,
and rind patterns [28]. Acoustic response techniques, such
as hand-tapping combined with MFCC analysis, are easy
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to implement, non-destructive, and achieve high accuracy
(>90%), but their performance is influenced by tapping
force, environmental noise, and occasionally requires
cutting fruits for labeling [29]. Microwave imaging
enables visualization of internal structure with high
resolution, but its complexity, high cost, and limited field
applicability restrict widespread use [30]. Portable NIR
spectrometers offer practical, field-ready solutions,
although calibration per variety and sunlight interference
remain challenges [31]. Traditional visual methods, such
as tapping and rind inspection, are simple and require no
equipment, but they are subjective, less accurate, and can
lead to fruit waste [32]. Despite these advances, scalable,
non-destructive, and cost-effective quality evaluation
methods remain a critical need. Combining traditional
evaluation practices with modern machine learning
algorithms holds promise for developing more accurate
and objective assessment systems.

The primary aim of this study is to evaluate watermelon
maturity in a non-destructive manner using machine
learning. Unlike traditional methods that rely solely on
tapping sounds or rind patterns, this study integrates
traditional indicators with advanced acoustic signal
processing and image analysis. The collected data are
used to train classification models, including Multi-Layer
Perceptron (MLP), Support Vector Classifier (SVC),
Random Forest Classifier (RFC), and K-Nearest
Neighbors Classifier (KNC), to identify the most accurate
prediction approach.

\
b

hitting with hand

recording

audio converting audio

into signal

Figure 1. An overview of this study

2.1. Data Acquisition

This study was conducted on watermelons cultivated in
the South-Eastern region of Turkey during the summer
season, where two primary cultivation practices are
common: irrigated and non-irrigated farming. Regional
consumers generally prefer non-irrigated watermelons,
which are perceived to offer superior taste and quality.
Accordingly, for this study, non-irrigated watermelons
weighing between 4 and 12 kilograms were selected as the
main data source.

v‘

| Overmature
Classification

Feature extraction focuses on acoustic representations
such as mel-spectrograms, MFCC, and other sound-based
attributes, which are subsequently analyzed using
machine learning techniques. By bridging traditional
practices with modern data-driven methods, this research
aims to provide an efficient, scalable, and objective
framework for agricultural quality assessment.

2. MATERIAL AND METHOD

The shape of a watermelon has traditionally been an
important criterion for selection, particularly in markets
and greengrocers. Experienced farmers often assess
quality by tapping the watermelon and interpreting the
resulting acoustic signals. To evaluate watermelon taste
through these sounds, as illustrated in Figure 1, systematic
sound recordings are collected during the data acquisition
process. The tapping-generated acoustic signals from the
outer surfaces of selected watermelons are recorded, after
which the watermelons are cut and categorized into three
groups: immature, mature, and overmature.

The recorded signals are then analyzed, and their features
are extracted to serve as inputs for classification models.
These models are trained on the extracted features to
predict watermelon maturity and quality. The results
highlight the correlation between tapping sounds and
internal taste attributes, confirming the potential of sound-
based methods as effective tools for agricultural quality
assessment.

Audio
features
data

Results

Classification models

feature extraction

The samples were collected both directly from fields and
from various points of sale, including local markets and
roadside stands. During data acquisition, acoustic signals
were recorded by tapping the outer surface of each
watermelon with a seller’s hand. Before cutting, the
watermelons were classified into three maturity groups:
immature, mature, and overmature. The recorded signals
were then used for feature extraction and classification
analyses, allowing a systematic investigation of the
relationship between acoustic properties and watermelon
maturity.
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2.2. Pre-processing Data

The acoustic signals generated by tapping the
watermelons were recorded using a high-quality sound
device and processed with Audacity software for detailed
analysis. To ensure data integrity and clarity, background
noise between taps—arising from natural environmental

70 ¥0 90 80

Sound file(*.WAV)

Mature signal

conditions—was carefully removed. The cleaned audio
files were then systematically categorized according to
watermelon maturity and organized into separate class
folders, as shown in Figure 2. This structured procedure
ensured accurate labeling and reliable preparation of the
dataset for subsequent feature extraction, analysis, and
classification.
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Figure 2. Processing and schematic of sound files
2.3. Sound Analysis and Feature Extraction

The Librosa library is widely used for sound and music
analysis, providing essential tools for building audio-
focused information systems. It supports various audio
formats, including WAV and MP3, and enables
spectrogram analysis as well as the extraction of relevant
acoustic features. In addition to feature extraction,
Librosa offers functionalities for audio manipulation,
playback, and visualization. Key methods for generating
instantaneous frequency spectrograms include spectral
bandwidth, Short-Time Fourier Transform (STFT), and
spectral flatness, with outputs presented graphically [33].

In this study, sound feature data were obtained through
spectrograms, mel-spectrograms, MFCC images, Root
Mean Square (RMS) energy curves, and ZCR curves.
Spectrograms visually represent sound characteristics by
showing signal intensity across different frequencies. The
mel-spectrogram applies a perceptual scale based on
human hearing (Eq. 3), while MFCC images capture
frequency perception dynamics. ZCR indicates how often
the signal crosses the zero amplitude line, reflecting the
frequency of signal changes (Eq. 1), and RMS curves
represent the overall energy distribution of the signal (Eq.
2). Using these analytical and visual techniques, a total of
120 features were extracted from each sound sample.

°
amcc

3 & i
03 04 05 06 07 08 09
time(s)

7 08 09 01 0 o1 02

1 N )
ZCR = ﬁznzllﬂgn(x[n])

(1)
— sign(x[n — 1])|
1 N
RMS Energy = Nz:nﬂlx(n)l2 (2)
Mel(f) = 259510g<1 + %) (3)

In this study, several libraries were employed to read
sound files from directories and extract relevant features.
The os library facilitated folder access and management,
while Librosa was used for audio processing. NumPy and
Pandas supported data manipulation and organization,
and Matplotlib and Seaborn were used for visualization.
The scikit-learn (sklearn) library was applied to split the
dataset into training and testing sets, develop
classification models, and evaluate their performance.
Key audio features were extracted and converted into a
structured format suitable for analysis. The resulting
feature dataset was then divided into training and testing
subsets and applied to various classification techniques,
allowing the identification of the most effective prediction
models using machine learning methods.
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2.4. Machine Learning Classification Models

In this study, various classification models were applied
to the dataset, including SVC, Simple Linear Regression
(SLR), Polynomial Regression, Decision Tree Classifier
(DTC), RFC, MLP, KNC, Gradient Boosting Classifier
(GBC), Gaussian Naive Bayes Classifier (GNB), and
Bagging Classifier (BGC). The primary models used for
classification were MLP, SVC, KNC, GBC, GNB, DTC,
RFC, and BGC, as shown in Figure 3. SVC models
employ linear and non-linear decision boundaries to
maximize the margin between classes by identifying
support vectors. Equation 4 defines linear support vectors,
while Equation 5 provides the formulation for non-linear
support vectors [34]. For the SVC, kernel="poly",

degree=2, and gamma="auto" were used.

Fig. 3: Machine learning classification models
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The DTC algorithm partitions input data, which may
include varying numbers of nodes and branches, into
leaves and branches based on a function determined
during training. It recursively splits the data space,
integrating simple prediction models within each partition
to construct a graphical decision tree. The primary goal is
to generate an optimal decision tree from the dataset [35].
For the DTC, criterion="entropy" and splitter="best"
were used.

The RFC creates multiple decision trees using different
subsets of the input data to form an ensemble model for
classification. Each tree is built from independently
sampled data, and final predictions are obtained by
aggregating outputs from all trees. Increasing the number
of trees generally reduces generalization error, enhancing
predictive accuracy, internal correlation, and error
characteristics [36]. The KNC is widely used for its
simplicity and robust performance. Selecting the optimal
parameter k is critical, as both accuracy and training

efficiency depend on it. KNC classifies data points by
measuring their distance to the nearest neighbors in the
training set, making decisions based on proximity within
the feature space [37]. For the KNC, n_neighbors=3 was
used.

ANN, inspired by the human nervous system, are applied
to tasks such as dynamic system identification, pattern
classification, and function approximation. In ANN, input
data are processed by multiplying connection weights and
applying activation functions across hidden layers. MLP
models, a type of ANN, consist of an input layer, one or
more hidden layers, and an output layer, and use a non-
linear, supervised training algorithm to learn complex
patterns [38]. For the MLP, hidden layers = (1024, 1024,
1024, 1024) and max iter=1000 were used. The
performance of the classification models was evaluated
using accuracy, precision, recall, and F1 score, calculated
according to Equations 6-9.

TP+TN
Accuracy =————— (6)
TP+TN+FP+FN

Precision = @)

TP+FP

TP
Recall =

TP+FN ®)

Fl=2 Precision*Recall (9)

Precision+Recal

Where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false
positives and FN is the number of false negatives.

3. RESULTS

In this study, watermelons were sourced from grocery
stores and directly from fields. After being tapped by
hand, the resulting sounds were recorded. Classification
was determined post-cut based on internal color and taste:
red and sweet watermelons were labeled mature,
deteriorated or degraded watermelons as overmature, and
white or pink interiors as immature, resulting in three
classes. The dataset comprised 1,672 samples: 802
mature, 500 overmature, and 370 immature. Features
were extracted using spectrograms, mel-spectrograms,
MFCC images, RMS energy, and ZCR curves via
Librosa, totaling 120 features each sample.

The dataset was split into 80% training and 20% test data.
Training data were applied to classification models
including MLP, KNC, SVC, RFC, DTC, GBC, HGBC,
GNB, and BGC. Model performance was evaluated using
precision, recall, and F1 scores. As shown in Table 2,
KNC achieved the highest accuracy at 96.66%, while
GNB had the lowest at 51%. KNC attained the highest
precision (98.77%) for the mature class, whereas HGBC
scored highest for immature (100%) and overmature
(96.34%). Regarding recall, MLP scored highest for
overmature (98.15%), and KNC performed best for
mature (98.78%) and immature (96.15%). These results
demonstrate that sound-based classification provides a
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Table 2. Classification metric results

reliable, non-destructive method for assessing _
watermelon maturity. Accuracy | Precision | Recall |fl
Yy Model Class (%) (%) (%) (%)
. . mature 97.39 89.22 93.13
For F1 scores, the KNC model achieved the highest score MLP overmature | 92.92 86.18 98.15 19178
0f 97.3% for the mature class, while HGBC scored highest immature 90.91 89.75  190.33
for overmature (95.93%) and immature (96.61%). The mature 93.72 98.2 95.91
DTC, GNB, and BGC models showed lower F1 scores. RFC overmature | 95.46 96.23 94.45 9533
Overall, precision, recall, and F1 analyses indicate that L‘:::iteure 222; 2132 2:31
KNC and HGBC outperformed the others, particularly for DTC overmature | 7026 65.20 6945 16727
the mature and overmature classes, whereas GNB and immature 62.8 69.23 [ 65.86
BGC underperformed. Classification training results are mature 94.12 97.56 | 95.81
presented in Figure 4, highlighting KNC and HGBC as HGBC | overmature | 96.34 96.34 95.5  195.93
the most effective models for predicting watermelon Immature 100 93.59 196.61
) p & mature 91.48 9641 | 93.88
maturity. GBC  [overmature | 9321 94.34 926 9346
) ) ) immature 95.78 87.18 91.28
Confusion matrices generated from test data are shown in mature 91.13 9222  [91.67
Figure 5. These matrices compare actual versus predicted svC overmature | 91.5 94.4 93.52 |93.96
classes to determine prediction success. For MLP, 159 of ‘m‘t“amre ggﬁ gz;g 2??;
. 0 mature . . .
167 mature samples were correctly classified (9.5 .2%), 96 GNB overmature | 51 55 3056 13929
of 108 overmature samples were correctly predicted mmature 39.44 35.9 37.59
(88.9%), and 73 of 78 immature samples were correctly mature 98.77 98.78 [97.3
identified (93.6%). Misclassifications occurred among the KNC overmature | 96.66 95.42 93.7 95.86
remaining samples across the classes. immature 91.47 96.15 | 96.16
mature 85.03 95.21 89.84
BGC overmature | 87.82 90.91 83.34 86.96
immature 91.05 78.21 84.14
(a) Accuracy score for classification models (b) f1_score for classification models
92,92 &0 547 93,2 94,34

Accuracy_score (%)

87,82
| | ?0,26 | |

MLP KMNC SVC RFC DTC GBC HGBC GNB BGC
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Figure 4. Results of training a) Accuracy_score b) f1_score c) Precission_score d) Recall_score

These confusion matrices illustrate model prediction
accuracy across watermelon maturity classes. High
success rates demonstrate that the classification models
generally perform well, though some variation exists
between classes. The RFC model achieved the highest
accuracy for the mature class, while KNC performed best
for the immature and overmature classes. In contrast,
GNB exhibited the lowest accuracy across all classes. For
the mature class, the top-performing model correctly

predicted 164 of 167 test samples (98.2%), whereas the
lowest-performing model correctly predicted only 119
samples (71.3%). For overmature, the best model
achieved 104 correct predictions out of 108 (96.3%),
while the lowest model predicted 33 correctly (30.6%).
Similarly, for immature, the highest-performing model
achieved 75 correct predictions out of 78 (96.2%),
compared to 28 correct predictions (35.9%) by the lowest-
performing model.
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(a) Confusion Matrix of MLP

(b) Confusion Matrix of RFC

(c) Cenfusion Matrix of DTC
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Figure 5. Predicting classification for machine learning models

Success rates, along with visualizations of true and false
predictions for each class, are presented in Figure 6. DTC
and GNB showed comparatively lower accuracy, whereas
RFC and KNC demonstrated strong overall performance.

These findings indicate that machine learning models,
particularly RFC and KNC, can effectively predict
watermelon maturity based on hand-tapping sounds.

(a) Predicting test data of mature (b)  Predicting test data of overmature
159 164 162 161 454 160 159 9 102 99 100 101 104 -
@ 227 119 ¢ 75 75
3 a
E £
g c
T 5 3 3 ’
0 3
3 o 2
9 8 3 I 5 6 3 7 8 A 6 I 9 8 7 4 I
= | = L] - M O -
MLP RFC DTC HGBC GBC SVC GNB KNC BGC MLP RFC DTC HGBC GBC SVC GNB KNC BGC
B True predict M False predict M True predict M False predict
Classification models Classification models
(c) Predicting test data of immature (d) prediction success graph
75
B 7N 72 o 68 100
61 %0
1 E 4 N RiE
2 ]
£ 2 2 < 60
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€ 7 [|2 50
T S
§ s W7 s §° F° I 3 I 3 ;‘ﬁ
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Figure 6. Predicting results for classification model
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4. DISCUSSION AND CONCLUSION

This study demonstrates the potential of sound-based
classification for assessing watermelon maturity,
achieving a high accuracy of 96.66% using the KNC
model. These results are comparable to or surpass those
reported in similar studies across various domains,
including animal sounds, environmental noises, and
health-related audio data. The findings highlight the
robustness of the proposed method, particularly under
real-world conditions with ambient noise, and underscore
the effectiveness of machine learning models in
processing complex audio signals.

Table 3. Sample studies for sound classification

Previous studies have successfully applied sound
classification, as shown in the research summarized in
Table 3. For example, VGGish-MFCC features combined
with KNC achieved 94.79% accuracy for honey bee
sound classification [25], transformer CNN achieved
96.05% for domestic pig sounds [39], subspace KNC
ensembles reached 96.23% for environmental sounds
using spectrograms [40], and RFC-SVC models achieved
96.9% for fish sound classification [23]. Health-related
studies, such as heartbeat and respiratory sound analysis,
achieved accuracies ranging from 85% to 93% [21,41].

The studies Sound Feature Classification Accuracy
dataset Extraction method (%)
[25] Colony honey bee VGGish-MFCC KNC 94.79
[39] Domestic pig sound LM, MFCC, spectrogram Transformer CNN 96.05
[22] Bird sound Mel-spectrogram, harmonic-component based CNN 3631
spectrogram
[21] Heartbeat sound MFCC ABC-ANFIS 93
[40] Enviromental sound Spectrogram image, CNN Subspace KNC 96.23
ensembles
[41] Respiratory Sound Chrome vector, MFCC, ZCR MLP 85
[23] Fish sound time, frequency, and cepstral domains RFC-SVC 96.9
[42] Chewing sound Bottleneck-DNN Bi-LSTM 97.42
[17] :Zi;iirmelon Tapping Image processing GBC 92
This study Hand hitting sound Spectrogram, MFCC, ZCR, RMS energy KNC 96.66

In comparison, the 96.66% accuracy obtained in this study
using KNC is competitive with the highest performing
methods in the literature. Notably, this performance was
achieved despite background noise in recordings,
reflecting real-world conditions in grocery stores, fields,
and markets, unlike many studies that minimize ambient
noise. Feature extraction employed spectrograms, mel-
spectrograms, MFCC, ZCR, and RMS energy curves,
which are widely recognized as effective for audio
analysis. This combination allowed the extraction of 120
distinct features each sound sample, providing a robust
dataset for classification and enabling reliable assessment
of watermelon maturity.

Among the machine learning models tested, KNC and
RFC demonstrated superior performance, achieving the
highest accuracy and precision. KNC excelled in
classifying immature and overmature watermelons, with
success rates of 96.2% and 96.3%, respectively, while
RFC achieved 98.2% for the mature class. These results
align with previous studies, where KNC and RFC
performed well in sound classification tasks [23, 40].

A key innovation of this study is the use of sound data
recorded under natural conditions, including ambient
noise. This is the first study to employ sound recordings
obtained by tapping under natural conditions for
watermelon maturity classification. Unlike traditional
approaches that minimize background noise, this study
reflects real-world scenarios where consumers and
producers select watermelons based on tapping sounds.
The high prediction accuracy under such conditions
demonstrates the robustness of the proposed method and
its potential for practical agricultural applications.

This study also builds on research linking watermelon
sound characteristics to internal qualities such as
sweetness and maturity. By applying machine learning, it
provides an objective and scalable alternative to
subjective methods like visual inspection or manual
tapping, offering a reliable, non-destructive assessment of
watermelon quality. However, there are limitations. The
dataset was limited to a specific region and recordings
were conducted under controlled but natural conditions.
Future studies should include watermelons from diverse
regions and growing conditions and examine the impact
of varying ambient noise levels on classification accuracy.
Additionally, while traditional machine learning models
were employed, future work could explore deep learning
architectures, such as CNN or transformer-based models,
which have shown success in other sound classification
tasks [33,42]. Integrating these techniques could further
enhance the accuracy and robustness of watermelon
maturity classification.

Overall, this study demonstrates the effectiveness of
sound-based classification for assessing watermelon
maturity, achieving high accuracy despite ambient noise.
By combining advanced feature extraction with robust
machine learning models, particularly KNC and RFC, it
provides a practical and innovative solution for non-
destructive quality assessment in agriculture. Future
research should expand datasets and explore advanced
machine learning methods to improve both accuracy and
applicability.

Estimating the quality and maturity of fruits without
cutting is a critical challenge for both producers and
consumers. This study demonstrated the effectiveness of
sound-based, non-destructive methods for assessing
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watermelon maturity. By recording the sounds produced
when watermelons were hand-tapped and extracting
features such as MFCC, ZCR, RMS energy, spectrogram,
and mel spectrogram, a total of 120 features per sample
were obtained. These features were used to train multiple
machine learning models, with KNC achieving the
highest overall accuracy (96.66%) and RFC showing the
highest precision for mature watermelons (98.2%). KNC
also performed best for overmature (96.3%) and immature
(96.2%) classes.

The study highlights that KNC and RFC models are
highly effective for predicting watermelon maturity, even
in natural environments with ambient noise, reflecting
real-world conditions. Compared to previous studies
reporting accuracies between 85% and 99.6%, the results
of this work are competitive, underscoring the robustness
and practical applicability of the proposed method.

A key contribution of this study is the integration of
traditional empirical practices, such as tapping and
auditory evaluation, with advanced feature extraction and
machine learning techniques. This approach provides a
scalable, objective, and non-destructive solution for
quality assessment, enabling consumers to make informed
decisions and assisting producers in maintaining product
standards.

Future work could expand the dataset to include
watermelons from diverse regions and cultivation
conditions, investigate the impact of varying ambient
noise levels, and explore advanced deep learning models,
such as CNN or transformer-based architectures, to
further improve classification accuracy and robustness.
Overall, the findings demonstrate that sound-based
machine learning methods offer a practical, innovative,
and reliable approach for non-destructive quality
evaluation in agriculture.
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