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Abstract: Traditional methods for assessing the quality, taste, and maturity of fruits and 

vegetables without cutting rely on external attributes such as color, shape, surface patterns, 

and acoustic responses. In this study, maturity levels of watermelons were validated through 

physical inspection after cutting, and the corresponding acoustic data were analyzed using 

spectrograms, extracting 120 features each sample. Several machine learning algorithms, 

including Support Vector Classifier, Decision Tree Classifier, Random Forest Classifier 

(RFC), Multi-Layer Perceptron Classifier, and K-Nearest Neighbors Classifier (KNC), were 

evaluated. Among them, the KNC model achieved the highest accuracy (96.04%), followed 

closely by the RFC model (95.47%). Specifically, the RFC model classified mature 

watermelons with 98.2% accuracy, while the KNC model effectively distinguished 

overmature and immature samples with accuracies of 96.3% and 96.2%, respectively. 

Robustness against background noise was also demonstrated despite the naturally recorded 

dataset. The findings were compared with studies on acoustic pattern recognition in animals, 

environmental acoustics, and healthcare, highlighting the potential of machine learning-based 

approaches as a reliable, non-invasive method for maturity and taste assessment with practical 

applications in agriculture and the food industry. 

 

 

Makine Öğrenimi Kullanarak Elle Vurulan Karpuzun Sesinden Tahribatsız Olgunluk 

Tahmini 
 

 

Anahtar Kelimeler 

Akustik özellik 

çıkarımı,  

Gözetimli öğrenme 

modelleri,  

Olgunluk tahmini,  

Ses sınıflandırma,  

Tahribatsız meyve 

analizi,  

Tarımsal sinyal 

işleme 

Öz: Meyve ve sebzelerin kesilmeden kalite, tat ve olgunluklarının değerlendirilmesinde 

geleneksel yöntemler genellikle renk, şekil, yüzey desenleri ve akustik tepkiler gibi dış 

özelliklere dayanır. Bu çalışmada, karpuzların olgunluk seviyeleri kesim sonrası fiziksel 

inceleme ile doğrulanmış, elde edilen akustik veriler spektrogramlarla analiz edilerek her 

örnek için 120 öznitelik çıkarılmıştır. Destek Vektör Sınıflandırıcısı (SVC), Karar Ağacı 

Sınıflandırıcısı, Rastgele Orman Sınıflandırıcısı (RFC), Çok Katmanlı Algılayıcı 

Sınıflandırıcısı (MLP) ve K-En Yakın Komşu Sınıflandırıcısı (KNC) algoritmaları 

değerlendirilmiştir. Bunlar arasında en yüksek doğruluğu %96,04 ile KNC modeli elde etmiş, 

onu %95,47 ile RFC modeli izlemiştir. Özellikle, RFC modeli olgun karpuzları %98,2 

doğrulukla sınıflandırırken, KNC modeli aşırı olgun ve az olgun örnekleri sırasıyla %96,3 ve 

%96,2 doğrulukla ayırt etmiştir. Doğal ortamda kaydedilen veri setine rağmen arka plan 

gürültüsüne karşı da sağlamlık gösterilmiştir. Bulgular, hayvanlarda akustik desen tanıma, 

çevresel akustik ve sağlık alanındaki çalışmalarla karşılaştırılmış olup, makine öğrenmesine 

dayalı yaklaşımların olgunluk ve tat değerlendirmesinde güvenilir ve invazif olmayan bir 

yöntem sunduğu, tarım ve gıda endüstrisinde pratik uygulama potansiyeline sahip olduğu 

ortaya konmuştur. 
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1. INTRODUCTION 

 

Agriculture is a cornerstone of global economic 

development and serves as a primary source of 

employment for impoverished populations worldwide [1]. 

The emergence of Smart Agriculture has introduced a 

transformative paradigm that utilizes Information and 

Communication Technologies (ICT) to address critical 

global challenges such as hunger, malnutrition, and food 

security. By incorporating advanced technologies, Smart 

Agriculture seeks to enhance crop yields, optimize 

cultivation practices, improve productivity, and ensure 

higher product quality [2]. Increasing consumer 

expectations for efficiency, reduced physical labor, and 

rapid outcomes have further accelerated the adoption of 

digital farming systems [3]. These innovations not only 

lower the dependency on traditional manual practices but 

also improve operational efficiency and generate new 

employment opportunities in the agricultural sector [4]. 

 

Watermelon (Citrullus lanatus), prized for its sweetness 

and high-water content, is among the most widely 

consumed fruits worldwide, primarily enjoyed fresh [5]. 

According to the Food and Agriculture Organization of 

the United Nations (FAO), nearly 70 million tons of 

watermelon are produced annually across approximately 

100 countries and regions [6]. The quality of watermelon 

is influenced by both external characteristics, such as 

shape and size, and internal attributes, including maturity, 

pulp firmness, sugar concentration, water content, and 

internal defects. Among these, sweetness remains the 

most decisive factor shaping consumer preference and 

internal quality [7–8]. 

 

1.1. Non-Destructive Assessment of Watermelon 

Maturity 

 

Traditionally, watermelon maturity has been evaluated 

using empirical methods such as tapping sounds, rind 

pattern inspection, and weight measurement. However, 

these approaches are often subjective and lack precision. 

Recent advancements in non-destructive technologies 

have introduced more reliable alternatives, including X-

ray Computed Tomography (CT) [9], acoustic analysis 

[10], machine vision [11], dielectric property 

measurement [12], Hyperspectral Imaging (HSI) [13], and 

Surface-Enhanced Raman Spectroscopy (SERS) [14]. 

These methods support the development of regression and 

classification models for maturity prediction, leveraging 

acoustic and image processing for precise evaluation 

[6,15]. 

 

Non-destructive approaches have successfully assessed 

watermelon hardness and sweetness by integrating data 

from tapping sounds, rind features, and weights. Acoustic 

impulse methods, combined with linear models and 

Artificial Neural Networks (ANN), have achieved 

promising accuracy in classifying watermelon maturity 

[16]. Moreover, fusion techniques that combine acoustic 

and visual information have reported classification 

accuracies as high as 92% using gradient tree-based 

models [17]. These findings demonstrate the potential of 

integrating traditional practices with advanced 

technologies for improved agricultural outcomes. 

 

The rapid progress of Artificial Intelligence (AI) has 

further transformed agricultural practices. AI methods 

such as neural networks, fuzzy logic, genetic algorithms, 

and machine learning are increasingly applied across 

domains including agriculture, healthcare, and robotics 

[18–20]. In sound-based analysis, approaches originally 

developed for medical applications such as heartbeat and 

respiratory monitoring are now being adapted to 

agriculture. These applications include classifying animal 

sounds, environmental noises, and fruit maturity [21–23]. 

For audio signal processing, representations such as 

spectrograms, Mel-Frequency Cepstral Coefficients 

(MFCC), and Zero-Crossing Rate (ZCR) are commonly 

employed. Advanced deep learning techniques, 

particularly Convolutional Neural Networks (CNN), 

enhance feature extraction from spectrograms and 

waveforms, significantly improving classification 

accuracy. Architectures such as VGGish and bottleneck 

CNN further strengthen feature representation through 1D 

and 2D convolutional layers, offering robust solutions for 

sound-based classification tasks [24–26]. 

 
Table 1. Non-destructive quality assessment methods 

Studies Technique Advantages Disadvantages 

[27]  NIR Spectroscopy Non-destructive, fast, accurate (>88%), can 

be portable 

Expensive, sensitive to lighting/surface, needs calibration 

 [28] Image Processing Simple, low-cost, reasonably accurate (76–
89%) 

Surface-only info, lighting/angle dependent, rind pattern 
affects results 

[29] Acoustic Response Easy, non-destructive, high accuracy (>90%) Sensitive to tapping, noisy environments, some fruits must 

be cut 

[30] Microwave Imaging Visualizes internal structure, high-resolution Expensive, complex setup, limited field use 

[31] Portable NIR 

Spectrometer 

Field-ready, practical accuracy Requires per-variety calibration, sunlight may affect 

results, costly 

[32] Traditional/Visual 

Methods 

Very simple, no equipment needed Subjective, low accuracy, causes fruit waste 

 

Recent studies have explored a variety of non-destructive 

techniques for assessing agricultural product quality, each 

with distinct advantages and limitations, as summarized 

in Table 1. Near-Infrared (NIR) Spectroscopy has been 

shown to provide fast, non-destructive, and accurate 

measurements (>88%), with potential for portable 

applications, though it remains costly and sensitive to 

lighting and surface conditions [27]. Image processing 

methods, including color and texture analysis, offer a 

simple and low-cost approach with reasonable accuracy 

(76–89%), yet they provide only surface-level 

information and are affected by lighting, camera angle, 

and rind patterns [28]. Acoustic response techniques, such 

as hand-tapping combined with MFCC analysis, are easy 
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to implement, non-destructive, and achieve high accuracy 

(>90%), but their performance is influenced by tapping 

force, environmental noise, and occasionally requires 

cutting fruits for labeling [29]. Microwave imaging 

enables visualization of internal structure with high 

resolution, but its complexity, high cost, and limited field 

applicability restrict widespread use [30]. Portable NIR 

spectrometers offer practical, field-ready solutions, 

although calibration per variety and sunlight interference 

remain challenges [31]. Traditional visual methods, such 

as tapping and rind inspection, are simple and require no 

equipment, but they are subjective, less accurate, and can 

lead to fruit waste [32]. Despite these advances, scalable, 

non-destructive, and cost-effective quality evaluation 

methods remain a critical need. Combining traditional 

evaluation practices with modern machine learning 

algorithms holds promise for developing more accurate 

and objective assessment systems. 

 

The primary aim of this study is to evaluate watermelon 

maturity in a non-destructive manner using machine 

learning. Unlike traditional methods that rely solely on 

tapping sounds or rind patterns, this study integrates 

traditional indicators with advanced acoustic signal 

processing and image analysis. The collected data are 

used to train classification models, including Multi-Layer 

Perceptron (MLP), Support Vector Classifier (SVC),  

Random Forest Classifier (RFC), and K-Nearest 

Neighbors Classifier (KNC), to identify the most accurate 

prediction approach.  

Feature extraction focuses on acoustic representations 

such as mel-spectrograms, MFCC, and other sound-based 

attributes, which are subsequently analyzed using 

machine learning techniques. By bridging traditional 

practices with modern data-driven methods, this research 

aims to provide an efficient, scalable, and objective 

framework for agricultural quality assessment. 

 

2. MATERIAL AND METHOD 

 

The shape of a watermelon has traditionally been an 

important criterion for selection, particularly in markets 

and greengrocers. Experienced farmers often assess 

quality by tapping the watermelon and interpreting the 

resulting acoustic signals. To evaluate watermelon taste 

through these sounds, as illustrated in Figure 1, systematic 

sound recordings are collected during the data acquisition 

process. The tapping-generated acoustic signals from the 

outer surfaces of selected watermelons are recorded, after 

which the watermelons are cut and categorized into three 

groups: immature, mature, and overmature. 

 

The recorded signals are then analyzed, and their features 

are extracted to serve as inputs for classification models. 

These models are trained on the extracted features to 

predict watermelon maturity and quality. The results 

highlight the correlation between tapping sounds and 

internal taste attributes, confirming the potential of sound-

based methods as effective tools for agricultural quality 

assessment. 

 

 

 
Figure 1. An overview of this study 

 

2.1. Data Acquisition 

 

This study was conducted on watermelons cultivated in 

the South-Eastern region of Turkey during the summer 

season, where two primary cultivation practices are 

common: irrigated and non-irrigated farming. Regional 

consumers generally prefer non-irrigated watermelons, 

which are perceived to offer superior taste and quality. 

Accordingly, for this study, non-irrigated watermelons 

weighing between 4 and 12 kilograms were selected as the 

main data source. 

 

The samples were collected both directly from fields and 

from various points of sale, including local markets and 

roadside stands. During data acquisition, acoustic signals 

were recorded by tapping the outer surface of each 

watermelon with a seller’s hand. Before cutting, the 

watermelons were classified into three maturity groups: 

immature, mature, and overmature. The recorded signals 

were then used for feature extraction and classification 

analyses, allowing a systematic investigation of the 

relationship between acoustic properties and watermelon 

maturity. 
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2.2. Pre-processing Data 

 

The acoustic signals generated by tapping the 

watermelons were recorded using a high-quality sound 

device and processed with Audacity software for detailed 

analysis. To ensure data integrity and clarity, background 

noise between taps—arising from natural environmental 

conditions—was carefully removed. The cleaned audio 

files were then systematically categorized according to 

watermelon maturity and organized into separate class 

folders, as shown in Figure 2. This structured procedure 

ensured accurate labeling and reliable preparation of the 

dataset for subsequent feature extraction, analysis, and 

classification.

 

 
Figure 2. Processing and schematic of sound files 

 

2.3. Sound Analysis and Feature Extraction  

 

The Librosa library is widely used for sound and music 

analysis, providing essential tools for building audio-

focused information systems. It supports various audio 

formats, including WAV and MP3, and enables 

spectrogram analysis as well as the extraction of relevant 

acoustic features. In addition to feature extraction, 

Librosa offers functionalities for audio manipulation, 

playback, and visualization. Key methods for generating 

instantaneous frequency spectrograms include spectral 

bandwidth, Short-Time Fourier Transform (STFT), and 

spectral flatness, with outputs presented graphically [33]. 

 

In this study, sound feature data were obtained through 

spectrograms, mel-spectrograms, MFCC images, Root 

Mean Square (RMS) energy curves, and ZCR curves. 

Spectrograms visually represent sound characteristics by 

showing signal intensity across different frequencies. The 

mel-spectrogram applies a perceptual scale based on 

human hearing (Eq. 3), while MFCC images capture 

frequency perception dynamics. ZCR indicates how often 

the signal crosses the zero amplitude line, reflecting the 

frequency of signal changes (Eq. 1), and RMS curves 

represent the overall energy distribution of the signal (Eq. 

2). Using these analytical and visual techniques, a total of 

120 features were extracted from each sound sample. 

 

𝑍𝐶𝑅 =
1

2𝑁
∑ |𝑠𝑖𝑔𝑛(𝑥[𝑛])

𝑁

𝑛=1

− 𝑠𝑖𝑔𝑛(𝑥[𝑛 − 1])| 
(1) 

𝑅𝑀𝑆 𝐸𝑛𝑒𝑟𝑔𝑦 = √
1

𝑁
∑ |𝑥(𝑛)|2

𝑁

𝑛=1
 (2) 

𝑀𝑒𝑙(𝑓) = 2595 log (1 +
𝑓

700
) (3) 

 

In this study, several libraries were employed to read 

sound files from directories and extract relevant features. 

The os library facilitated folder access and management, 

while Librosa was used for audio processing. NumPy and 

Pandas supported data manipulation and organization, 

and Matplotlib and Seaborn were used for visualization. 

 The scikit-learn (sklearn) library was applied to split the 

dataset into training and testing sets, develop 

classification models, and evaluate their performance. 

Key audio features were extracted and converted into a 

structured format suitable for analysis. The resulting 

feature dataset was then divided into training and testing 

subsets and applied to various classification techniques, 

allowing the identification of the most effective prediction 

models using machine learning methods. 
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2.4. Machine Learning Classification Models  

 

In this study, various classification models were applied 

to the dataset, including SVC, Simple Linear Regression 

(SLR), Polynomial Regression, Decision Tree Classifier 

(DTC), RFC, MLP, KNC, Gradient Boosting Classifier 

(GBC), Gaussian Naive Bayes Classifier (GNB), and 

Bagging Classifier (BGC). The primary models used for 

classification were MLP, SVC, KNC, GBC, GNB, DTC, 

RFC, and BGC, as shown in Figure 3. SVC models 

employ linear and non-linear decision boundaries to 

maximize the margin between classes by identifying 

support vectors. Equation 4 defines linear support vectors, 

while Equation 5 provides the formulation for non-linear 

support vectors [34]. For the SVC, kernel="poly", 

degree=2, and gamma="auto" were used. 

 

 
Fig. 3: Machine learning classification models 

 

∑(𝛼𝑖 − 𝛼1
∗). 〈𝑥𝑖 , 𝑥〉 + 𝑏 

𝑁

𝑖=1

 (4) 

∑(αi − α1
∗). 〈φ(xi), φ(x)〉 + b

N

i=1

 (5) 

 

The DTC algorithm partitions input data, which may 

include varying numbers of nodes and branches, into 

leaves and branches based on a function determined 

during training. It recursively splits the data space, 

integrating simple prediction models within each partition 

to construct a graphical decision tree. The primary goal is 

to generate an optimal decision tree from the dataset [35].  

For the DTC, criterion="entropy" and splitter="best" 

were used. 

 

The RFC creates multiple decision trees using different 

subsets of the input data to form an ensemble model for 

classification. Each tree is built from independently 

sampled data, and final predictions are obtained by 

aggregating outputs from all trees. Increasing the number 

of trees generally reduces generalization error, enhancing 

predictive accuracy, internal correlation, and error 

characteristics [36]. The KNC is widely used for its 

simplicity and robust performance. Selecting the optimal 

parameter k is critical, as both accuracy and training 

efficiency depend on it. KNC classifies data points by 

measuring their distance to the nearest neighbors in the 

training set, making decisions based on proximity within 

the feature space [37]. For the KNC, n_neighbors=3 was 

used. 

 

ANN, inspired by the human nervous system, are applied 

to tasks such as dynamic system identification, pattern 

classification, and function approximation. In ANN, input 

data are processed by multiplying connection weights and 

applying activation functions across hidden layers. MLP 

models, a type of ANN, consist of an input layer, one or 

more hidden layers, and an output layer, and use a non-

linear, supervised training algorithm to learn complex 

patterns [38]. For the MLP, hidden layers = (1024, 1024, 

1024, 1024) and max_iter=1000 were used. The 

performance of the classification models was evaluated 

using accuracy, precision, recall, and F1 score, calculated 

according to Equations 6–9. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

Precision = 
TP

TP+FP
 (7) 

Recall = 
TP

TP+FN
 (8) 

F1 = 2
Precision∗Recall

Precision+Recal
 (9) 

 

Where TP is the number of true positives, TN is the 

number of true negatives, FP is the number of false 

positives and FN is the number of false negatives. 

 

3. RESULTS  

 

In this study, watermelons were sourced from grocery 

stores and directly from fields. After being tapped by 

hand, the resulting sounds were recorded. Classification 

was determined post-cut based on internal color and taste: 

red and sweet watermelons were labeled mature, 

deteriorated or degraded watermelons as overmature, and 

white or pink interiors as immature, resulting in three 

classes. The dataset comprised 1,672 samples: 802 

mature, 500 overmature, and 370 immature. Features 

were extracted using spectrograms, mel-spectrograms, 

MFCC images, RMS energy, and ZCR curves via 

Librosa, totaling 120 features each sample. 

 

The dataset was split into 80% training and 20% test data. 

Training data were applied to classification models 

including MLP, KNC, SVC, RFC, DTC, GBC, HGBC, 

GNB, and BGC. Model performance was evaluated using 

precision, recall, and F1 scores. As shown in Table 2, 

KNC achieved the highest accuracy at 96.66%, while 

GNB had the lowest at 51%. KNC attained the highest 

precision (98.77%) for the mature class, whereas HGBC 

scored highest for immature (100%) and overmature 

(96.34%). Regarding recall, MLP scored highest for 

overmature (98.15%), and KNC performed best for 

mature (98.78%) and immature (96.15%). These results 

demonstrate that sound-based classification provides a 
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reliable, non-destructive method for assessing 

watermelon maturity. 

  

For F1 scores, the KNC model achieved the highest score 

of 97.3% for the mature class, while HGBC scored highest 

for overmature (95.93%) and immature (96.61%). The 

DTC, GNB, and BGC models showed lower F1 scores. 

Overall, precision, recall, and F1 analyses indicate that 

KNC and HGBC outperformed the others, particularly for 

the mature and overmature classes, whereas GNB and 

BGC underperformed. Classification training results are 

presented in Figure 4, highlighting KNC and HGBC as 

the most effective models for predicting watermelon 

maturity. 

 

Confusion matrices generated from test data are shown in 

Figure 5. These matrices compare actual versus predicted 

classes to determine prediction success. For MLP, 159 of 

167 mature samples were correctly classified (95.2%), 96 

of 108 overmature samples were correctly predicted  

(88.9%), and 73 of 78 immature samples were correctly 

identified (93.6%). Misclassifications occurred among the 

remaining samples across the classes. 
 

Table 2. Classification metric results 

Model Class 
Accuracy Precision Recall f1 

(%) (%) (%) (%) 

MLP 

mature 

92.92 

97.39 89.22 93.13 

overmature 86.18 98.15 91.78 

immature 90.91 89.75 90.33 

RFC 

mature 

95.46 

93.72 98.2 95.91 

overmature 96.23 94.45 95.33 

immature 98.61 91.03 94.67 

DTC 

mature 

70.26 

78.95 71.86 75.24 

overmature 65.22 69.45 67.27 

immature 62.8 69.23 65.86 

HGBC 

mature 

96.34 

94.12 97.56 95.81 

overmature 96.34 95.5 95.93 

immature 100 93.59 96.61 

GBC 

mature 

93.21 

91.48 96.41 93.88 

overmature 94.34 92.6 93.46 

immature 95.78 87.18 91.28 

SVC 

mature 

91.5 

91.13 92.22 91.67 

overmature 94.4 93.52 93.96 

immature 88.32 87.18 87.75 

GNB 

mature 

51 

53.61 71.26 61.19 

overmature 55 30.56 39.29 

immature 39.44 35.9 37.59 

KNC 

mature 

96.66 

98.77 98.78 97.3 

overmature 95.42 93.7 95.86 

immature 91.47 96.15 96.16 

BGC 

mature 

87.82 

85.03 95.21 89.84 

overmature 90.91 83.34 86.96 

immature 91.05 78.21 84.14 

 

 
Figure 4. Results of training a) Accuracy_score b) f1_score c) Precission_score d) Recall_score 

 

These confusion matrices illustrate model prediction 

accuracy across watermelon maturity classes. High 

success rates demonstrate that the classification models 

generally perform well, though some variation exists 

between classes. The RFC model achieved the highest 

accuracy for the mature class, while KNC performed best 

for the immature and overmature classes. In contrast, 

GNB exhibited the lowest accuracy across all classes. For 

the mature class, the top-performing model correctly 

predicted 164 of 167 test samples (98.2%), whereas the 

lowest-performing model correctly predicted only 119 

samples (71.3%). For overmature, the best model 

achieved 104 correct predictions out of 108 (96.3%), 

while the lowest model predicted 33 correctly (30.6%). 

Similarly, for immature, the highest-performing model 

achieved 75 correct predictions out of 78 (96.2%), 

compared to 28 correct predictions (35.9%) by the lowest-

performing model. 
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Figure 5. Predicting classification for machine learning models 

 

Success rates, along with visualizations of true and false 

predictions for each class, are presented in Figure 6. DTC 

and GNB showed comparatively lower accuracy, whereas 

RFC and KNC demonstrated strong overall performance. 

These findings indicate that machine learning models, 

particularly RFC and KNC, can effectively predict 

watermelon maturity based on hand-tapping sounds.

 
Figure 6.  Predicting results for classification model
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4. DISCUSSION AND CONCLUSION  

 

This study demonstrates the potential of sound-based 

classification for assessing watermelon maturity, 

achieving a high accuracy of 96.66% using the KNC 

model. These results are comparable to or surpass those 

reported in similar studies across various domains, 

including animal sounds, environmental noises, and 

health-related audio data. The findings highlight the 

robustness of the proposed method, particularly under 

real-world conditions with ambient noise, and underscore 

the effectiveness of machine learning models in 

processing complex audio signals. 

 

Previous studies have successfully applied sound 

classification, as shown in the research summarized in 

Table 3. For example, VGGish-MFCC features combined 

with KNC achieved 94.79% accuracy for honey bee 

sound classification [25], transformer CNN achieved 

96.05% for domestic pig sounds [39], subspace KNC 

ensembles reached 96.23% for environmental sounds 

using spectrograms [40], and RFC-SVC models achieved 

96.9% for fish sound classification [23]. Health-related 

studies, such as heartbeat and respiratory sound analysis, 

achieved accuracies ranging from 85% to 93% [21,41]. 

 
Table 3. Sample studies for sound classification 

The studies 
Sound 

dataset 

Feature 

Extraction 

Classification 

method 

Accuracy 

(%) 

[25] Colony honey bee VGGish-MFCC KNC 94.79 

[39] Domestic pig sound LM, MFCC, spectrogram Transformer CNN 96.05 

[22] Bird sound 
Mel-spectrogram, harmonic-component based 
spectrogram 

CNN 86.31 

[21] Heartbeat sound MFCC ABC-ANFIS 93 

[40] Enviromental sound Spectrogram image, CNN 
Subspace KNC 

ensembles 
96.23 

[41] Respiratory Sound Chrome vector, MFCC, ZCR MLP 85 

[23] Fish sound time, frequency, and cepstral domains RFC-SVC 96.9 

[42] Chewing sound Bottleneck-DNN Bi-LSTM 97.42 

[17]  
Watermelon Tapping 

sound 
Image processing  GBC 92 

This study Hand hitting sound Spectrogram, MFCC, ZCR, RMS energy KNC 96.66 

 

In comparison, the 96.66% accuracy obtained in this study 

using KNC is competitive with the highest performing 

methods in the literature. Notably, this performance was 

achieved despite background noise in recordings, 

reflecting real-world conditions in grocery stores, fields, 

and markets, unlike many studies that minimize ambient 

noise. Feature extraction employed spectrograms, mel-

spectrograms, MFCC, ZCR, and RMS energy curves, 

which are widely recognized as effective for audio 

analysis. This combination allowed the extraction of 120 

distinct features each sound sample, providing a robust 

dataset for classification and enabling reliable assessment 

of watermelon maturity. 

  

Among the machine learning models tested, KNC and 

RFC demonstrated superior performance, achieving the 

highest accuracy and precision. KNC excelled in 

classifying immature and overmature watermelons, with 

success rates of 96.2% and 96.3%, respectively, while 

RFC achieved 98.2% for the mature class. These results 

align with previous studies, where KNC and RFC 

performed well in sound classification tasks [23, 40]. 

 

A key innovation of this study is the use of sound data 

recorded under natural conditions, including ambient 

noise. This is the first study to employ sound recordings 

obtained by tapping under natural conditions for 

watermelon maturity classification. Unlike traditional 

approaches that minimize background noise, this study 

reflects real-world scenarios where consumers and 

producers select watermelons based on tapping sounds. 

The high prediction accuracy under such conditions 

demonstrates the robustness of the proposed method and 

its potential for practical agricultural applications. 

 

This study also builds on research linking watermelon 

sound characteristics to internal qualities such as 

sweetness and maturity. By applying machine learning, it 

provides an objective and scalable alternative to 

subjective methods like visual inspection or manual 

tapping, offering a reliable, non-destructive assessment of 

watermelon quality. However, there are limitations. The 

dataset was limited to a specific region and recordings 

were conducted under controlled but natural conditions. 

Future studies should include watermelons from diverse 

regions and growing conditions and examine the impact 

of varying ambient noise levels on classification accuracy. 

Additionally, while traditional machine learning models 

were employed, future work could explore deep learning 

architectures, such as CNN or transformer-based models, 

which have shown success in other sound classification 

tasks [33,42]. Integrating these techniques could further 

enhance the accuracy and robustness of watermelon 

maturity classification. 

 

Overall, this study demonstrates the effectiveness of 

sound-based classification for assessing watermelon 

maturity, achieving high accuracy despite ambient noise. 

By combining advanced feature extraction with robust 

machine learning models, particularly KNC and RFC, it 

provides a practical and innovative solution for non-

destructive quality assessment in agriculture. Future 

research should expand datasets and explore advanced 

machine learning methods to improve both accuracy and 

applicability. 

 

Estimating the quality and maturity of fruits without 

cutting is a critical challenge for both producers and 

consumers. This study demonstrated the effectiveness of 

sound-based, non-destructive methods for assessing 
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watermelon maturity. By recording the sounds produced 

when watermelons were hand-tapped and extracting 

features such as MFCC, ZCR, RMS energy, spectrogram, 

and mel spectrogram, a total of 120 features per sample 

were obtained. These features were used to train multiple 

machine learning models, with KNC achieving the 

highest overall accuracy (96.66%) and RFC showing the 

highest precision for mature watermelons (98.2%). KNC 

also performed best for overmature (96.3%) and immature 

(96.2%) classes. 

 

The study highlights that KNC and RFC models are 

highly effective for predicting watermelon maturity, even 

in natural environments with ambient noise, reflecting 

real-world conditions. Compared to previous studies 

reporting accuracies between 85% and 99.6%, the results 

of this work are competitive, underscoring the robustness 

and practical applicability of the proposed method. 

A key contribution of this study is the integration of 

traditional empirical practices, such as tapping and 

auditory evaluation, with advanced feature extraction and 

machine learning techniques. This approach provides a 

scalable, objective, and non-destructive solution for 

quality assessment, enabling consumers to make informed 

decisions and assisting producers in maintaining product 

standards. 

 

Future work could expand the dataset to include 

watermelons from diverse regions and cultivation 

conditions, investigate the impact of varying ambient 

noise levels, and explore advanced deep learning models, 

such as CNN or transformer-based architectures, to 

further improve classification accuracy and robustness. 

Overall, the findings demonstrate that sound-based 

machine learning methods offer a practical, innovative, 

and reliable approach for non-destructive quality 

evaluation in agriculture. 
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