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Abstract 
 
Effective energy management in prosumer communities is significant for optimizing renewable energy usage and 
cutting down costs. The research develops an optimization framework to analyze the impact of scaling up photovoltaic 
(PV) generation and demand on self-consumption, storage utilization, and grid interaction. A linear programming 
approach can be used to minimize total energy costs by optimizing energy purchases, storage operation, and grid sales. 
Additionally, the Modified Social Group Optimization (MSGO) algorithm improves the optimization efficiency, 
taking into account the variations in demand, storage restriction, and the limits of grid exchanges. Simulation results 
show that by increasing PV generation, self-consumption and energy export are maximized, while high demand 
requires efficient storage and thus large reliance on grids. The system generates 182.58 kW PV energy and the 
consumption of 343.20 kW requires import of 262.80 kW. The storage systems manage surplus power 109.23 kW; of 
that stored, 72.63 kW is released during low solar periods. Economically, contribution of PV sales reaches €41.29, 
and that of storage adds up to €18.45, resulting in partial offsetting of total costs amounting to €340. Findings highlight 
that proper scaling of PV and managing demand could enhance energy efficiency as well as reduce dependence on 
the grid while unlocking better economic returns, thus making this framework a very advantageous tool in making 
sustainable energy plans for prosumer communities.  
 
Keywords: Energy cost optimization; modified social group optimization; prosumer energy management; renewable 
energy utilization; smart grids; social group optimization. 

 
1. Introduction 

Gradually but steadily, the energy landscape is changing 
from totally centralized to more decentralized architectures 
in the context of distributed energy resources (DERs) 
adoption and the growing emergence of prosumers, which 
are entities acting as energy consumers and producers. 
Unlike conventional consumers, who rely solely on 
centralized generation plants, prosumers actively use 
markets through generating meters, storing, and consuming 
electricity, thereby decentralizing energy generation. This 
shift fosters more resilience, security, and self-sufficiency 
within the grid while reducing dependency on fossil fuel 
powers [1]. 

Improvements in smart meters, battery storage systems, 
and bidirectional communication networks allow prosumers 
to use energy more efficiently in real-time. This has not only 
reduced energy costs but has also enabled renewable energy 
integration, and thus a cleaner, more sustainable energy 
ecosystem. In many cases, the optimal utilization of 
prosumer energy resources requires quite sophisticated 
optimization techniques, balancing generation, storage, and 
consumption. 

 
1.2 Significance of Photovoltaic (PV) Generation in 
Sustainable Energy Management 

Solar resource photovoltaic (PV) generation is one of the 
renewables promising or apt solutions for prosumers at 
present. Increasingly lower cost of solar panels, coupled with 
government support programs and net metering policies, 
induces the ever-accelerating PV adoption worldwide [2]. 
Integration of PV systems allows prosumers to create their 
power and use it, instead of supplementing it with the 
traditional grid. This technology substantially lowers energy 
expenses, mitigates the carbon footprint, and enhances 
sustainability levels. 

However, PV generation remains sparse, and in a 
nutshell, it depends on solar radiation, which is variable due 
to varying weather patterns, geographical locational 
differences, and seasonal changes occurring. Such variations 
pose threats toward balancing a stable supply-demand profile 
of electricity. This situation thus poses a necessity for 
effective energy storage and scheduling mechanisms for 
optimal utilization of PV-generated electricity. 

 
1.3 Challenges in Optimizing Prosumer Energy 
Management 

Uncertainty in PV generation: Solar power output differs 
due to environmental factors such as cloud cover, shading, 
and seasonal variations; hence, accurate energy planning 
becomes tough [3]. 
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Demand variations: The load demand varies over time 
because of the dynamic behavior of customers with respect 
to different appliances and systems at different times of the 
day. 

Storage limitations: batteries are commonly employed 
for energy storage, but their limited capacity, degradation 
with time, and high cost require efficient strategy, on how 
and when to charge and discharge them [4]. 

Bidirectional energy flow: Prosumers can either inject 
their excess energy into the grid or withdraw power 
whenever they require it, hence needing dynamic pricing 
models and smart trading of energy. 

 
1.4 Need for Efficient Optimization Techniques 

Conventional methods that rely on rules and heuristics 
for energy scheduling are unable to address some non-linear, 
high-dimensional, and uncertain energy systems. Machine 
learning and AI techniques promise to do much better, albeit 
they often require enormous datasets and do not guarantee 
the real-time computational efficiency required for energy 
management.  

Some metaheuristics like Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), and Social Group 
Optimization (SGO) have been widely applied for the 
optimization of prosumer energy [5]. However, their slow 
convergence, premature stagnation, and difficulty to adapt to 
dynamic energy environments are now the major problems. 
To address these issues, this research presents the Modified 
Social Group Optimization (MSGO), which modifies the 
conventional SGO algorithm to improve convergence, 
adaptability, and computational efficiency in prosumer 
energy management with PV generation. 

 
1.5 Research Gap & Contribution 

Existing Optimization Methods and Their Limitations 
This shows that energy management techniques of 

prosumer energy optimization have been extensively 
investigated. Swarm intelligence-based Particle Swarm 
Optimization (PSO), a popular technique, has been widely 
used for energy scheduling; however, its main drawbacks are 
that it often gets stuck in local optima and has slow 
convergence in immensely complicated Mult objective 
problems. Being another evolutionary algorithm, the Genetic 
Algorithm (GA) traverses the solution space rapidly; 
however, it suffers from high computational complexity and 
longer execution times [6]. A relatively new optimization 
algorithm that imitates social groups' interactions during 
problem-solving known as Social Group Optimization 
(SGO) has been fairly new in showings its bright results 
across many optimization tests. The weak point of SGO, 
however, is its less efficient exploration-exploitation 
balance, which, as a result, reduces convergence in a more 
dynamic energy landscape.  

There is thus a need for an optimization technique that 
would combine computational expediency with robustness 
in terms of handling dynamic energy environments. This 
study thus seeks to bridge the gap by proposing the Modified 
Social Group Optimization (MSGO) algorithm, which 
integrates adaptive learning mechanisms, dynamic weight 
adjustments, and a hybrid mutation strategy toward 
improving performance. 

 
1.6 Introduction of Modified Social Group Optimization 
(MSGO) 

It has modified the SGO algorithm by adding adaptive 
parameters-which increase the efficiency and speed of 
convergence-to create the MSGO algorithm. Unlike standard 
SGO, which relies on a fixed interaction model, the MSGO 
algorithm dynamically adjusts the learning rates and 
weighting factors to meet real-time energy demand and 
generation conditions [7]. This makes the algorithm capable 
of exploring a wider solution space avoiding premature 
convergence. MSGO is suitable for prosumer energy 
management for handling uncertainties in PV generation 
storage optimization of batteries charge schedule efficiently. 
Furthermore, real-time decision-making regarding energy 
consumption optimizes the cost with self-sufficiency. This 
adaptiveness between cost minimization and self-sufficiency 
enables more reliable and efficient improvement provisions 
in MSGO. The embedded improvements result in discovery 
toward a productive and effective framework for 
optimization of energy production with consumption 
through storage in prosumer smart grids [8, 9]. 

 
1.7 Key Contributions of This Work 

A new framework of energy management is presented in 
this study using the Modified Social Group Optimization 
(MSGO) algorithm to maximize the energy utilization of 
prosumers from PV-integrated smart grids. The dynamic 
energy scheduling model differs from the conventional static 
optimization as it adjusts according to battery storage limits, 
grid interaction policies, and dynamic pricing schemes. The 
MSGO algorithm is tested in many operational scenarios so 
far under which energy storage and trade costs are reduced 
while the effectiveness in grid stability improved. Besides 
being faster in convergence and less in price than what PSO, 
GA, and Standard SGO determined, MSGO also uses 
renewables better, a use-case ideal in smart grids. 
 
2. Literature Survey  
2.1 Prosumer Energy Management (PEM) and 
Optimization Approaches 

In the study by Gomez-Gonzalez et al. (2021) and Yang 
et al. (2022) [11], PEM is said to optimize the consumption, 
storage, and generation of energy. In other words, prosumers 
need to resolve supply and demand optimally while 
considering the increasing trend of distributed RESs such as 
PV and wind systems. Also, some advanced energy storage 
methods include BESS and HESS to promote renewable 
integration. Demand-side management techniques enabling 
further optimization of energy consumption include load 
shifting and dynamic pricing. Metaheuristic techniques-GA, 
PSO, ACO, and SGO-are used to increase the efficiency of 
PEM through cost minimization and reliability of energy 
supply [12].  
 
2.2 Social Group Optimization (SGO) and Its 
Limitations 

Ghasemnejad et al. (2024) [13] highlights the efficient 
application of the SGO algorithm when applied in the 
complex energy scheduling problems, involving the 
modeling of interactions inside social groups to find. In that 
way, it shows potential for application in the field of 
prosumer energy management due to its great adaptability to 
dynamic energy environments. Despite the beauty of the 
algorithm from the conceptual point of view, several 
principal drawbacks exist. These issues concern slow 
convergence speed and confinement to local optima, 
especially in high-dimensional search spaces. At the same 
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time, the scalability problem arises when it is applied to large 
energy networks with multiple prosumers and storage units, 
limiting its suitability for full-scale complex optimization 
problems [13].  

 
2.3 Modifications in MSGO for Improved Energy 
Optimization 

To overcome the drawbacks of the classical Social Group 
Optimization (SGO), these authors developed the so-called 
Modified Social Group Optimization (MSGO) techniques to 
strike a fine balance between good exploitation and analysis 
of the search workspace. There are adaptive learning 
schemes, mutation operators, and hybrid metaheuristic 
frameworks introduced by Sharma et al. (2024) and 
Mohammadi et al. (2022) to considerably augment the 
convergence speed and, by and large, to avoid the 
entrapment in a local optimum [14, 15]. 

In regard to demonstrating its capacity to do so, the 
MSGO solution achieves energy demand anticipation while 
reducing operating costs, enhancing self-sufficiency, and 
optimizing load distribution. Secchi et al. (2021) used 
MSGO for battery storage sizing toward economically viable 
self-sufficiency [16]. Wu et al. (2025) integrated 
transmission congestion and carbon emission constraints 
into energy management models, further extending MSGO 
with improved grid interaction [17]. Such works confirm the 
superiority of the MSGO that traditional methods of 
optimization have conferred on renewable energy prosumer 
networks, making it a very robust tool for the optimization 
of storage, energy trading, and demand-side management 
under dynamic electricity markets.  

While MSGO does improve the classical SGO, it also 
achieves competitive results against recent approaches like 
TLBO, NSGA-II, and DE-based variants. Naik et al. (2020) 
as well as Reddy & Narayana (2022) extended MSGO to 
electric vehicle energy systems and economic dispatch 
problems, validating its adaptability. Unlike PSO or GA, 
MSGO manages a better exploration-exploitation trade-off, 
particularly in complex multimodal problems like dynamic 
energy management. 

In recent times, the MSGO algorithm has seen 
application in various energy-oriented domains. Reddy and 
Narayana (2022) used it as a multi-strategy ensemble for 
electric vehicle energy optimization, whereas Naik et al. 
(2020) employed MSGO for short-term hydrothermal 
scheduling [18, 19]. These works stand as testament to the 
robustness of MSGO in handling constraints existing in the 
energy domain in real life, thus supporting its application in 
prosumer energy management.  
 
3. Problem Formulation 
3.1 Prosumer Energy Management Model 

Because of the growing integration of renewable energy, 
prosumers have emerged: people who generate and use 
power, chiefly by means of photovoltaic (PV) systems. 
Within such a context, the development of an economic and 
environmental benefit-enhanced optimization energy 
management model becomes necessary. The model 
presented here optimally describes supply and demand, in so 
doing taking storage and grid interactivity into account. To 
this end, the model proposes minimizing electricity expenses 
by optimizing the energy mix, thus deciding when to use 
self-generated PV power, store energy, or trade with the grid. 
Self-consumption is prioritized as much as possible, to avoid 
reliance on fossil-fuel-based power. This renders an energy 

management approach that is viable, economical, and 
sustainable for prosumer communities. 
 
3.2 Mathematical Formulation 

An energy management model has been defined as an 
optimization problem with an objective function and 
associated constraints. 

Objective Function: The aim should be to minimize the 
overall costs attributed to energy grid purchases and the 
operation costs of the battery, compensated through 
additional energy selling on the grid. The cost function is 
represented by [18]: 

 
min 𝐽𝐽 = ∑ �𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) ∙ 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ∙ 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) +𝑇𝑇

𝑡𝑡=1

𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)�               (1) 
 

where: 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) is the energy purchased from the grid at time 
𝑡𝑡, 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) is the dynamic price per unit of electricity from 
the grid, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is the energy sold back to the grid, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 
is the revenue earned per unit of energy sold,  𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) is 
the cost of charging and discharging the battery, and 
𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the cost associated with load shifting. 

The self-consumption of power generated by 
photovoltaic (PV) systems can be used as a good indicator 
when examining the cost of credit in photovoltaics in the 
solar energy business if the power system installation costs 
are also known. 

Decision Variables: The optimization model determines 
the following decision variables: 
• 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) is power drawn from the grid at each time step, 
• 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) is power sold to the grid from PV generation or 

battery storage. 
• 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is power generated by the PV system. 
• 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) are battery charging and 

discharging power. 
• 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) is power demand of the system at each time 

step. 
• 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) is state of charge of the battery at each time step. 

System Constraints: Power Balance Constraint [19]: 
 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) +
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)           (2) 

 
It assures generation and purchase of total power equal to 

the whole demand including power supply and sales. 
Grid Stability Constraints: Power grids must not be 

overburdened, and the exchange of power energy shall be 
limited within admissible limits so as to avoid violation fees 
and service interruptions. [20]. 

 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚                      (3) 

 
where, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum 
allowable grid power exchanges. 

Also, great swings in the power demand should be 
checked for frequency stability. Let 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  be the grid power: 

 
�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) − 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡 − 1)� ≤ ∆𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚              (4) 

 
where, ∆𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum allowable change in grid 

power per time step. 
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Battery Operational Constraints: In each time step, the 
battery's state of charge (SoC) changes due to the charging 
and discharging processes [21]: 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚                         (5) 

 
Ensures that the battery's state of charge 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) at any 

time t remains within the permissible range, SOC(t) is the 
State of charge of the battery at time 𝑡𝑡 (in kWh or %), 
𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚   denotes as Minimum allowable SOC to avoid deep 
discharge (typically 10–20%), and 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  as Maximum 
allowable SOC to avoid overcharging (typically 90–100%). 

Maintaining the SOC within this range extends battery 
life and ensures safety. 

 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) ≤ 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) ≤ 𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚        (6) 

 
These constraints ensure that the battery charging power 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) and discharging power 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) at 
time 𝑡𝑡 do not exceed their respective maximum capacities: 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) denotes as Charging power applied to the 
battery at time 𝑡𝑡 (in kW), 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) as Power 
discharged from the battery at time 𝑡𝑡 (in kW), 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚 as 
Maximum charging power limit of the battery (in kW), and 
𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚denotes as Maximum discharging power limit of the 
battery (in kW). 

These constraints help protect the battery from excessive 
charging or discharging rates, ensuring optimal performance 
and longevity. 

The battery is limited by its charging capacity and 
charge/discharge pulse power limits. 

Battery Degradation and Lifespan Constraints: More 
and more charge-discharge cycles may wear down batteries 
all the more swiftly. To coincide with the worsened battery 
condition, depth of discharge (DoD) and number of charge-
discharge cycles must be reduced [22]: 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠          (7)        

                       
where ∆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a safety margin to prevent excessive 
charge/discharge. 

Battery power variations also can be limited: 
 

�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡 − 1)� ≤ ∆𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚       (8) 
 
�𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡 − 1)� ≤ ∆𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚       (9) 

 
where, ∆𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 limits the rate of change in battery power. 

Energy Trading Constraint [23]: 
 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)   𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) > 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)   (10) 
 

where, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) defined as Power exported to the grid at time 
𝑡𝑡 (in kW), 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) as Power generated by the PV system at 
time 𝑡𝑡 (in kW), and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) denotes as Power consumed 
by the prosumer (load demand) at time 𝑡𝑡 (in kW). 

 
This ensures that only surplus PV energy is sold to the 

grid. 
Demand Response Constraints [24]: 
 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) ≤ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)     𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ∈ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜    (11) 
 
∑ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = ∑ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)𝑇𝑇

𝑡𝑡=1
𝑇𝑇
𝑡𝑡=1              (12) 

where, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) defined as original prosumer 
demand at time 𝑡𝑡 (kW).  𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) as Demand after 
shifting to minimize peak-hour consumption (kW). And  𝑡𝑡 ∈
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 denotes Time intervals where electricity tariffs 
are higher. 𝑇𝑇 as Total number of time intervals in the 
scheduling horizon (e.g., 24 for hourly scheduling over a 
day). 

The premise of load shifting is that the shifting of load 
does not change net energy consumption but shifts that 
consumption to time periods in which the energy price is 
lower. 

Dynamic Pricing Constraints: Demand-and-supply 
mechanisms and market links determine electricity prices 
from time to time. Therefore, power transactions (in terms of 
grid purchases or sales) should be optimized to suit market 
conditions that are price favorable [25]. 

 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚    𝑖𝑖𝑖𝑖 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) ≤ 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑎𝑎𝑎𝑎𝑎𝑎       (13) 
 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ≤ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)      𝑖𝑖𝑖𝑖 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) ≥ 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑎𝑎          (14) 

 
where, 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑎𝑎𝑎𝑎𝑎𝑎  is the average grid price over a given period and 
𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑎𝑎 is the average selling price over a given period. 

Such restraints ascertain that energy dealings come about 
at their optimal cost-benefit points. 

PV Scaling Factor Constraints [26]: 
 

𝑃𝑃𝑃𝑃𝑃𝑃,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑚𝑚𝑆𝑆 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃,   𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)         (15) 
 
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑚𝑚𝐷𝐷 ∙ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,   𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)                  (16) 

 
where 𝑚𝑚𝑆𝑆 and 𝑚𝑚𝐷𝐷 are multiplicative scaling factors applied 
to PV generation and demand, respectively. 

Incorporating Emission Reduction: The total grid 
energy purchase carbon emissions can be expressed as [27]: 

 
𝐸𝐸𝐶𝐶𝐶𝐶2 = ∑ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) ∙ 𝛾𝛾𝑇𝑇

𝑡𝑡=1                       (17) 
 

where 𝛾𝛾 is the grid emission factor (kg CO₂ per kWh). The 
objective function can be extended to penalize emissions: 

 
𝐽𝐽′ = 𝐽𝐽 + 𝜆𝜆𝐶𝐶𝐶𝐶2𝐸𝐸𝐶𝐶𝐶𝐶2           (18) 

 
where, 𝜆𝜆𝐶𝐶𝐶𝐶2  is the cost penalty per unit of CO₂ emissions. 

PV Generation Uncertainty Modeling: To account for 
the inherent uncertainty in solar photovoltaic (PV) output 
due to variable weather conditions, we extended our 
simulation model by incorporating stochastic PV generation 
profiles. A Monte Carlo simulation approach was adopted to 
generate multiple irradiance scenarios reflecting real-world 
variability. Historical irradiance data from the NREL 
OpenEI solar database was used to generate 100 distinct 
weather scenarios for a 24-hour period, including clear-sky, 
partly cloudy, and overcast conditions. 

For each scenario, the corresponding PV output 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) 
was computed using: 

 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝜂𝜂 ∙ 𝐴𝐴 ∙ 𝐺𝐺𝑡𝑡(𝑡𝑡)       (19) 
 
where 𝜂𝜂 is the PV efficiency, 𝐴𝐴 is the panel area, and 𝐺𝐺𝑡𝑡(𝑡𝑡) 
is the solar irradiance (W/m²) at time 𝑡𝑡, randomly sampled 
from the irradiance distribution. 

The Modified Social Group Optimization (MSGO) 
algorithm was then run for each irradiance scenario 
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independently, and the expected value of the key 
performance indicators (energy cost, renewable utilization, 
battery cycling) was calculated: 

 
𝔼𝔼[𝑓𝑓(𝑥𝑥)] = 1

𝑁𝑁
∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑁𝑁
𝑖𝑖=1            (20) 

 
where, 𝑁𝑁 = 100 is the number of Monte Carlo trials and 
𝑓𝑓𝑖𝑖(𝑥𝑥) is the objective value for the 𝑖𝑖𝑡𝑡ℎ scenario. 

This approach allows for evaluating the robustness of the 
optimization framework under realistic PV uncertainty, 
ensuring that the scheduling solution remains effective 
across a broad range of environmental conditions. 
 
4. Modified Social Group Optimization (MSGO) 
Approach 
4.1 Overview of Social Group Optimization (SGO) 
Algorithm 

Social Group Optimization (SGO) refers to the 
population-based metaheuristics evolution from cooperative 
behaviors found in groups of animals and human beings. 
This method is also incorporated in a leader-follower 
paradigm, which involves moving the individuals according 
to a leader and their association with other members. 
Furthermore, such social activities or interactions are the 
basis for the exchange of information and decision-making, 
finally culminating in the optimized solution. 

The position of an individual at iteration 𝑡𝑡 + 1 is updated 
mathematically as follows [29]: 

 
𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝜆𝜆1(𝑋𝑋𝐿𝐿𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡) + 𝜆𝜆2(𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡)                        (21) 

 
where, 𝑋𝑋𝑖𝑖𝑡𝑡 represents the position of the ithi^{th}ith agent at 
iteration 𝑡𝑡, 𝑋𝑋𝐿𝐿𝑡𝑡 is the leader’s position, and 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡  is a 
randomly chosen individual’s position. The parameters 𝜆𝜆1 
and 𝜆𝜆2 control the influence of the leader and peer agents. 

The conventional SGO algorithm is effective but slow in 
convergence and prone to local optimal. The Modified Social 
Group Optimization (MSGO) algorithm offers the adaptive 
learning mechanism, dynamic weight adjustment, and hybrid 
mutation strategies to overcome these issues. 

Unlike standard SGO, MSGO integrates a time-
dependent learning rate and combines exploration (via 
Gaussian mutation) with exploitation (via introspection 
learning). This hybrid strategy reduces premature 
convergence and improves adaptability to dynamic 
constraints. 

 
4.2 Enhancements in MSGO 

MSGO's foremost new feature is its adaptive learning 
mechanism, which allows the learning rate to be adjusted 
dynamically, hence balancing exploration and exploitation. 
The learning rate α changes over iterations according to [30]: 

 
𝛼𝛼𝑡𝑡 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 − �𝑡𝑡

𝑇𝑇
� (𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚)          (22) 

 
where 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 are the initial and final learning 

rates, and 𝑇𝑇 is the total number of iterations. This allows the 
algorithm to explore more in the initial stages and refine 
solutions in later stages. 

The second improvement is that dynamic weight 
adjustment increases the balance between intensification and 
diversification. The weight factor 𝑊𝑊𝑡𝑡 is adjusted 
dynamically, as indicated by [31]: 

 

𝑊𝑊𝑡𝑡 = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −
𝑡𝑡
𝑇𝑇

(𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚)           (23) 
  

where, 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 define the range of weight values. 
This ensures that the algorithm transitions smoothly from 
exploration to exploitation, leading to better convergence. 

An additional hybrid mutation strategy is introduced for 
this application in order to avert premature convergence. 
This mutation process perturbs the stagnant agents' positions 
so that they might escape the local optima. The mutation is 
defined using [32]: 

 
𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛽𝛽(𝑋𝑋𝑈𝑈 − 𝑋𝑋𝐿𝐿) ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(−1, 1)         (24) 

 
where, 𝛽𝛽 is a mutation factor, and 𝑋𝑋𝑈𝑈, 𝑋𝑋𝐿𝐿 represent upper and 
lower bounds of the search space. 

 
4.3 Algorithm Workflow for Energy Management 

Energy scheduling is achieved by including energy 
balance, limitations in battery storage, and grid 
import/export constraints in the MSGO algorithm. The 
optimization scheme has a stepwise process.  

The initial phase defines the search space, including 
decision variables such as energy generation, storage, and 
grid transactions. A population of candidate solutions is 
randomly initialized, and the leader is identified based on the 
objective function, which minimizes total energy costs and 
maximizes renewable energy utilization. During position 
updates, each agent refines its energy scheduling decision 
through the improved MSGO equations. Constraint handling 
techniques guarantee the feasibility of the solutions, 
particularly regarding limits of battery charge and grid export 
thresholds [33]. The mutation and refinement phase 
introduce diversity by perturbing certain agents' positions. 
This requirement is necessary in order to escape the local 
optima of the algorithm and further improves the global 
search efficiency. 

The algorithm continues iterating until some 
convergence criteria are met, e.g., reaching a certain number 
of iterations or not improving the solution quality at a 
minimal level. In the final output, an optimized energy 
schedule is provided, specifying how the renewable energy 
is allocated along with battery use and grid transactions. 
Algorithm of MSGO Pseudocode given below. 

 
MSGO Algorithm Pseudocode 

1 Inputs: 
   T:= total number of iterations 

  N:= population size 
  D:= problem dimensionality 
  LB, UB:= lower/upper bounds (vectors length D) 
  obj(x):= objective function (minimize total energy cost, with 

penalties) 
  constr(x):= constraint-handling function (repairs / penalty) 
  α0, αf:= initial and final learning rates 
  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚:= dynamic weight range 
  μ:= mutation probability/factor 
  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡    := stagnation threshold (no improvement iterations) 

2 Outputs: 
   𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:= best solution found 

  𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:= obj(𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 
3 Initialize: 
4   For i = 1, N: 
5     𝑥𝑥𝑖𝑖 ← random_uniform(LB, UB) 
6     𝑥𝑥𝑖𝑖 ← constr(𝑥𝑥𝑖𝑖)           
7     𝑓𝑓𝑖𝑖  ←  𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑖𝑖) 
8   𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖  𝑓𝑓𝑖𝑖 
9   𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ←  𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖  𝑓𝑓𝑖𝑖 

10   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  ←  0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 
11 For t = 1, T 



 

 
270 / Vol. 28 (No. 4)     Int. Centre for Applied Thermodynamics (ICAT) 

12   𝛼𝛼(𝑡𝑡)  ←  𝛼𝛼0 ∗  (1 −  𝑡𝑡/𝑇𝑇)  +  𝛼𝛼𝛼𝛼 ∗  (𝑡𝑡/𝑇𝑇)  
13   𝑤𝑤(𝑡𝑡)  ←  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  −  (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) ∗  (𝑡𝑡/𝑇𝑇) 
14   Leader selection: 
15     𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖  𝑓𝑓𝑖𝑖 
16     𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ←  𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   
17   For each agent i = 1, N: 
19     𝑟𝑟1, 𝑟𝑟2  ←  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1)  
20     𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ←  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜({1. .𝑁𝑁}\{𝑖𝑖}) 
21     𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ←  𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
22     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  ←  𝑤𝑤(𝑡𝑡)  ∗  (𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  −  𝑥𝑥𝑖𝑖) + (1 −  𝑤𝑤(𝑡𝑡))  ∗

 (𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  −  𝑥𝑥𝑖𝑖) 
23     Adaptive learning step: 
24     𝛥𝛥 ←  𝛼𝛼(𝑡𝑡)  ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
25     𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←  𝛼𝛼(𝑡𝑡)  ∗  0.5 ∗  (𝑥𝑥𝑖𝑖  −  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
26     Proposed new position: 
27     𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  ←  𝑥𝑥𝑖𝑖  +  𝛥𝛥 +  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
28     if rand() < μ: 
29       𝜎𝜎 ←  (𝑈𝑈𝑈𝑈 −  𝐿𝐿𝐿𝐿)  ∗  (1 −  𝑡𝑡/𝑇𝑇)  
30       𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  ←  𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  +  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎) 
31     𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ,𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈)  
32     𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛) 
33     𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛  ←  𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛)  
34     if 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛  <  𝑓𝑓𝑖𝑖: 
35       𝑥𝑥𝑖𝑖  ←  𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 
36       𝑓𝑓𝑖𝑖  ←  𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 
37       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  ←  0 
38     else: 
39       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  ←  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  +  1 
40     if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  >=  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡: 
41       𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ←  𝑥𝑥𝑖𝑖  +  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, (𝑈𝑈𝑈𝑈 −  𝐿𝐿𝐿𝐿)  ∗  0.2) 
42       𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈) 
43       𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) 
44       𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  ←  𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) 
45       if 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  <  𝑓𝑓𝑖𝑖: 
46         𝑥𝑥𝑖𝑖  ←  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚;  𝑓𝑓𝑖𝑖  ←  𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 
47       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑖𝑖]  ←  0 
48   Update global leader: 
49   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖  𝑓𝑓𝑖𝑖 
50   if 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  <  𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 
51     𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ←  𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
52     𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ←  𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
53   stop if |𝛥𝛥𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|  <  𝜀𝜀 for several iterations 
54 Return 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

 
4.4 MSGO Parameter Settings 

The MSGO parameter settings (population size = 30, 
iterations = 250, c = 0.25) were selected based on a series of 
preliminary tuning experiments. Multiple configurations 
were tested on benchmark scenarios to balance convergence 
speed and solution quality. The final values were chosen 
based on their consistent performance across different 
demand and PV profiles. These values are not default but 
experimentally optimized for this study’s context. A table of 
several key parameters fundamental to an MSGD is referred 
to as Table 1. 

 
Table 1. Key parameters for MSGO algorithm. 

Parameter Symbol Value/Range 
Population Size 𝑃𝑃𝑛𝑛 30 
Max Iterations 𝐺𝐺𝑛𝑛 250 
Dimensionality 𝐷𝐷 30 
Lower Bound of Variables  𝐿𝐿𝑏𝑏 -30 
Upper Bound of Variables 𝑈𝑈𝑏𝑏 30 
Fitness Value 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Calculated per iteration 
Objective Value 𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Final optimal solution 
Self-Introspection Parameter 𝑐𝑐 0.25 

 
The MSGO algorithm incorporates adaptive learning, 

dynamic weight control, and hybrid mutation strategies for 
improving the energy scheduling efficiency of prosumers to 
a large extent. It uses optimum balance in renewable energy 
usage as well as grid interaction and storage management in 

its cost-effective energy management, which is sustainable, 
thereby providing a robust framework. 

 
5. Experimental Setup & Implementation 
5.1 Simulation Environment 

The MATLAB R2023a environment was chosen for the 
performance of the software and data management model 
proposed for energy systems and the Modified Social Group 
Optimization (MSGO) algorithm. The reason for selecting 
MATLAB, among others, is its rich optimization toolbox 
and excellent capabilities for simulating complex energy 
systems. The algorithm was executed for a maximum of 250 
iterations with a population size of 30 agents for robust 
optimization. The test cases represent realistic scenarios 
including grid-connected, off-grid, and dynamic pricing 
conditions, based on common setups in Indian residential PV 
systems. Battery size (10 kWh) and PV capacity (5 kW) were 
based on commercially available systems for urban 
prosumers. 

 
5.2 Optimization Scenarios 

The performance of the Mesh-Gene Sorting Operator 
(MGSO) algorithm was examined under several energy 
management scenarios to determine its adaptability and 
efficiency. 

Scenario 1: Grid-Connected Prosumer: In the first 
scenario, with all the conditions suitable for a grid-connected 
operation, the prosumer was able to sell the extra solar 
energy to the grid at times and import power when required. 
Whereas in this study, the optimization objective was to 
minimize the total energy cost while maximizing the 
utilization of renewable energy sources. 

Scenario 2: Off-Grid Operation with Battery Storage: 
The second scenario simulated an off-grid operation where 
the prosumer relied entirely on the PV-battery system 
without any grid support. The optimization focused on 
ensuring an efficient charge-discharge scheduling 
mechanism to maintain energy availability throughout the 
day. [34]. 

Scenario 3: Peak vs. Non-Peak Demand Analysis: The 
Investigated third case focuses on energy management with 
respect to peak and non-peak pricing schemes. This case 
studies minimizing dependency on the grid during the peak 
hours by discharging stored energy and maximizing charging 
of the energy storage system during non-peak periods. 

Scenario 4: Comparison with Existing Algorithms: 
Scenario number four was a comparative study conducted 
between MSGO and other techniques, namely Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and 
Standard Social Group Optimization (SGO). What are of 
such comparison include total energy cost, convergence 
speed, and renewable energy utilization, which were 
presumed to have shown that the MSGO algorithm has a 
significant performance increase considering faster 
convergence and lower operating costs than any other 
optimization method. 

 
6. Results and Discussion 

The outcome begins with the evaluation of the new 
optimization framework proposed to achieve optimum 
energy consumption by the prosumer. The study further 
examines how the variation in scaling PV generation and 
demand affects numerous system parameters, such as storage 
behavior, energy exchange patterns, community costs, and 
optimization process convergence, including the Modified 
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Social Group Optimization (MSGO) algorithm being applied 
to optimize energy scheduling, with performance compared 
to more conventional optimization algorithms. The 
convergence characteristics are examined both before and 
after scaling PV generation and demand to confirm that the 
optimization process was indeed minimizing the objective 
function. The faster convergence with simultaneous system 
efficiency is retained over all scenarios achieved by the 
MSGO algorithm as depicted in Figure 1.  

The implication of scaling the expected PV power 
generation (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the expected energy demand (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
by a multiplicative factor (𝑚𝑚𝑆𝑆 = 12, 𝑚𝑚𝐷𝐷 = 6) is on different 
aspects of simulation and optimization processes especially 
related to energy balance and storage utilization. 

 

 
Figure  1. Convergence characteristics before and after 
scaling. 

 
6.1 PV Generation vs. Demand 

The extent to which energy self-sufficiency is analyzed 
based on PV generation profile and trends of demand. 
Original setting PV generation (𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) midday, while 
demand, according to Figure 2 (Before scaling), peaks in the 
morning and late evening (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). Although significantly 
increasing after scaling as indicated by Figure 3 (After 
scaling), thus showing a surplus of the formulated renewable 
energy, PV generation lends itself to either excess storage or 
sales back to the retailer for optimal renewable resource 
utilization. 

 
Figure 2. Average PV generation and demand before 
applying the scaling factors. 

 
A comparison of energy surplus before and after scaling 

has been tabulated in Table 2. The results revealed a 

considerable increase of surplus energy, thus facilitating 
higher utilization potential from storage or sales to the grid. 

Table 2. Energy surplus before and after scaling. 
Scenario PV Generation 

(kWh) 
Demand (kWh) Energy Surplus 

(kWh) 
Before Scaling 150 140 10 
After Scaling 1800 840 960 

 
When the electricity generated from photovoltaic sources 

exceeds what is required, the waste fuel can be either housed 
or injected into the grid. In contrast, when the demand 
supersedes PV generation, extra energy has to be consumed 
from the storage or the grid. The scaled scenario secures its 
primary condition: PV generation meets (and often exceeds) 
demand, which results in less reliance on electricity supplied 
from the grid. 

 

 
Figure 3. Average PV generation and demand after applying 
the scaling factors respectively. 

 
6.2 Pricing Factor 

The influence of PV generation scaling on electricity 
price formation is presented in the two panels of Figure 4, 
depicting the situation before scaling and Figure 5 shows 
after scaling to the right. The pattern of purchasing and 
selling prices, before scaling, is that usually observed in a 
market setting. Following the adjustment, pricing behavior is 
disturbed by the return of self-consumption and decrease in 
grid dependency. High PV generation decreases energy 
imports, thereby lowering effective energy pricing. 

 

 
Figure 4. Pricing factor before scaling. 
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Figure 5. Pricing factor after scaling. 

 
6.3 Storage Behavior 

The energy demand and supply balancing have a critical 
role for battery storage. Figure 6 shows the charging 
behavior (𝑠𝑠2𝑒𝑒) and discharging behavior (𝑒𝑒2𝑑𝑑) observed by 
the storage system in the original and scaled conditions. 
After scaling, increased PV generation leads to more 
frequent charging cycles, thus profiting energy 
independence. Still, frequent usage of storage may lead to 
saturation, and in such cases, efficient storage management 
strategies should be employed (see Table 3). 

 
Table 3. Storage utilization before and after scaling. 

Scenario Charging 
Events per 
Day 

Discharging 
Events per 
Day 

Avg. Storage 
Utilization 
(%) 

Before Scaling 5 4 60 
After Scaling 15 12 85 

 
It then becomes apparent from the findings that, 

following appropriate scaling, the storage facility tends to 
attain its maximum capacity more frequently (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  ); thus, 
it calls for effective charge-discharge scheduling to prevent 
the waste of excess energy. 

 

 
Figure 6. Storage behavior before and after scaling. 

6.4 Energy Exchange Patterns 
In Figure 7, the effect of PV generation coupled with 

storage is depicted towards the alteration of energy flows. 
Among the significant changes that occurred between pre 
and post scaling were how energy exchanged between 
different sources-retailer to demand (𝑟𝑟2𝑑𝑑), PV to demand 
(𝑠𝑠2𝑑𝑑), and storage to demand (𝑒𝑒2𝑑𝑑).  

 

 
Figure 7. Energy exchange pattern before and after scaling. 

 
The results illustrate the fact that as the system scales up, 

direct PV-to-demand supply (𝑠𝑠2𝑑𝑑) increases, reducing grid 
electricity dependency. Moreover, contributions from 
storage to demand (𝑒𝑒2𝑑𝑑) increase, signifying better self-
reliance. 

 
Table 4. Energy exchange before and after scaling. 

Scenario PV to Demand 
(kWh) 

Storage to 
Demand (kWh) 

Retailer to 
Demand (kWh) 

Before Scaling 9 10 12 
After Scaling 70 50 90 

 
A decrease in the energy exchange 𝑟𝑟2𝑑𝑑 from retailers to 

demand depicts the economic benefits brought by the 
enhanced generation of photovoltaic energy systems 
combined with efficient storage management as shown in 
Table 4. 

 
6.5 Community Cost Analysis 

As shown in Figures 8 and 9, the energy costs at the 
community level before and after the scaling thereof. Total 
cost-a function of energy purchase from the retailer for 
𝑟𝑟2𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑟𝑟2𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and income gained from the sale of 
energy back to the retailer which includes revenues 
𝑠𝑠2𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑒𝑒2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The study revealed that scaling 
very significantly reduced net community costs as a result of 
increased PV generation and optimized storage utilization. 

 
Table 5. Community cost analysis before and after scaling. 
Scenario Retailer Cost 

(€) 
PV Revenue (€) Net Community 

Cost (€) 
Before Scaling 3000 500 2500 
After Scaling 1500 2000 -500 (profit) 
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Figure 8. Community cost before applying the scaling. 

 

 
Figure 9. Community cost after applying the scaling. 
 
The experiment supports that reduced reliance on 

electricity provided by retailers reduces overall costs, 
thereby proving the financial viability of prosumer energy 
management listed in Table 5. The data are derived from 
simulation experiments conducted using MATLAB, using 
load profiles, PV generation data from NREL datasets, and 
dynamic pricing schemes adapted from Indian ToU tariffs. 
Although all values reflect practical scenarios and standards. 

 
6.6 Impact of PV Uncertainty on Optimization 
Performance 

To assess the robustness of the proposed MSGO 
algorithm under realistic operating conditions, we conducted 
a Monte Carlo simulation with 100 randomly generated solar 
irradiance profiles representing varying weather conditions 
(clear, partly cloudy, overcast). The resulting PV generation 
scenarios were fed into the MSGO-based energy scheduling 
framework. For each scenario, the total energy cost and 
renewable utilization were recorded, and the statistical 
summaries were analyzed. 

The average performance metrics across 100 simulation 
runs are presented in Table 6. 

Table 6. Performance metrics under PV uncertainty (N = 
100). 

Metric Mean Standard 
Deviation 

Minimum Maximum 

Total Energy Cost ($) 2.73 0.19 2.44 3.18 
Renewable Utilization (%) 88.6 4.3 77.1 93.9 
Grid Import (kWh) 8.4 1.2 6.2 10.9 
Battery SOC Stability 
Index 

0.91 0.03 0.85 0.96 

 
6.7 Price Dynamics 

The unit price of energy before and after scaling is shown 
in Figures 10 and 11 respectively. The results show the 
contribution of additional output from PV to the reduction in 
overall costs. When the system accomplishes high self-
sufficiency, external energy purchases are reduced, which 
brings down the average value of 𝜆𝜆, while if demand grows 
faster than PV generation, the unit price would raise. The 
results validate the deduction that more renewable energy 
penetration with storage efficiency leads to significant 
savings to the prosumer. The data in Table 7 also are derived 
from simulation experiments conducted using load profiles, 
PV generation data from NREL datasets, and dynamic 
pricing schemes adapted from Indian ToU tariffs. 

 
Table 7. Energy price dynamics before and after scaling. 
Scenario Energy Price (€/kWh) Grid Dependency (%) 
Before 
Scaling 

0.15 40 

After Scaling 0.09 15 
 

 
Figure 10. Original average energy price per unit before 

scaling. 

 
Figure 11. Scaled energy price per unit. 
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6.8 Sensitivity Analysis of Optimization Parameters 
In order to test the effectiveness of the proposed MSGO-

based optimization framework, sensitivity analysis was 
executed by changing specific parameters of the system, 
including battery capacity and scaling factors for PV 
generation. Results indicate that with the increase of battery 
capacity, there are also substantial improvements for cost 
savings and a reduction in dependency on the grid. For 
example, systems with battery capacity equal to 150 kWh 
become net energy sellers, as revealed in Table 8, generating 
revenue from selling extra PV power. On the contrary, 
keeping battery capacity to a lower level of 50 kWh leads the 
system to remain gird-driven, where costs remain higher. 

 
Table 8. Sensitivity of cost savings to battery capacity. 

Battery Capacity 
(kWh) 

Net Community Cost (€) Grid Dependency (%) 

50 2500 40 
100 1500 25 
150 -500 (profit) 10 

 
A corresponding heatmap (see Figure 12) illustrates the 

influence of PV generation scaling on storage utilization. 
Higher scaling factors of PV (such as 𝑚𝑚𝑆𝑆  =  12) cause more 
energy to be stored; however, if demand scaling (𝑚𝑚𝐷𝐷) is also 
high, then the battery would discharge frequently to maintain 
balance within the system. 

 

 
Figure 12. Heatmap showing storage utilization across PV 

and demand scaling factors. 
 

6.9 Comparative Performance Analysis of MSGO 
Against Benchmark Algorithms 

To rigorously evaluate the efficiency of the Modified 
Social Group Optimization (MSGO) algorithm, we 
conducted a comparative analysis against several well-
established metaheuristic algorithms, including Particle 
Swarm Optimization (PSO), Genetic Algorithm (GA), and 
the baseline Social Group Optimization (SGO). To further 
strengthen the benchmarking, two additional algorithms 
were included: Grey Wolf Optimizer (GWO) and Teaching–
Learning-Based Optimization (TLBO), both of which have 
recently demonstrated strong performance in energy 
scheduling and renewable integration problems. All 
algorithms were implemented under the same simulation 
environment, using identical problem constraints, population 
sizes, and stopping criteria to ensure fairness. 

Table 9. Performance comparison of optimization 
algorithms. 

Algorithm Convergence 
Speed 
(Iterations) 

Avg. 
Energy 
Cost 
Reduction 
(%) 

Renewable 
Utilization 
(%) 

Computation 
Time (s) 

Std. 
Dev. of 
Cost (σ) 

MSGO 142 21.7 85.3 12.3 0.19 
PSO 187 15.2 78.1 16.8 0.37 
GA 214 13.8 74.6 19.4 0.42 
SGO 169 17.4 79.8 15.2 0.33 
GWO 195 16.9 80.2 17.1 0.28 
TLBO 178 18.1 81.0 14.9 0.26 

 
Figure 13 presents the convergence characteristics of all 

six algorithms across the tested scenarios. MSGO 
consistently demonstrated the fastest reduction in the 
objective function value, converging within approximately 
140 iterations, while GA required more than 210 iterations 
on average. PSO and SGO showed intermediate 
performance, converging at 187 and 169 iterations 
respectively, while GWO and TLBO displayed slower yet 
steady progress, reaching convergence at around 195 and 
178 iterations. The hybrid mutation strategy and adaptive 
weight adjustment in MSGO prevented premature 
stagnation, ensuring that the solution space was adequately 
explored in the early stages and exploited effectively in later 
stages. 

 

 
Figure 13. Convergence curves of MSGO, PSO, and GA. 

 
To assess stability and robustness, each algorithm was 

executed independently over 30 runs, and statistical 
performance metrics were recorded. The distribution of 
results is summarized in Figure 14 (boxplots of total energy 
cost). MSGO exhibited the narrowest interquartile range and 
the lowest standard deviation (σ = 0.19), indicating highly 
consistent convergence behavior. By contrast, GA and PSO 
showed broader spreads (σ = 0.42 and σ = 0.37, 
respectively), reflecting sensitivity to initialization and 
higher chances of premature convergence. GWO and TLBO 
displayed moderate robustness, with σ values of 0.28 and 
0.26. The results confirm that MSGO not only achieves 
superior mean performance but also offers greater reliability 
in repeated runs, a critical feature for real-world prosumer 
energy management where unpredictable weather and 
demand fluctuations require stable optimization. 

 



 

 
Int. J. of Thermodynamics (IJoT) Vol. 28 (No. 4) / 275 

 
Figure 14. Distribution of total energy cost across 30 

Independent runs. 
 
Table 9 summarizes the quantitative comparison across 

key performance indicators. On average, MSGO achieved a 
21.7% reduction in total energy cost compared to baseline 
operation, outperforming PSO (15.2%), GA (13.8%), SGO 
(17.4%), GWO (16.9%), and TLBO (18.1%). Renewable 
utilization under MSGO reached 85.3%, which is 7–10% 
higher than PSO, GA, and GWO, and about 5% higher than 
TLBO. In terms of computational efficiency, MSGO 
achieved the optimal solution in 12.3 seconds, compared to 
16.8 seconds for PSO and 19.4 seconds for GA, while SGO, 
TLBO, and GWO required between 14–17 seconds. 

The superior performance of MSGO can be attributed to 
three innovations: (i) the adaptive learning mechanism that 
dynamically adjusts learning rates to favor rapid exploration 
early and fine-tuned exploitation later; (ii) dynamic weight 
control, which balances the leader–peer influence and avoids 
premature convergence; and (iii) a hybrid mutation strategy, 
combining Gaussian perturbations and stagnation-driven re-
initialization, which maintains diversity in the population. 
These enhancements enable MSGO to outperform both 
classical evolutionary methods (PSO, GA) and modern 
swarm intelligence methods (GWO, TLBO) in both solution 
quality and computational time. 

The results demonstrate that MSGO not only delivers 
lower operating costs but also ensures higher renewable 
penetration and greater robustness. The narrower variance 
indicates that MSGO solutions are less dependent on initial 
conditions, making it highly reliable for deployment in 
dynamic energy environments. Compared to the closest 
competitor (TLBO), MSGO achieved an additional 3.6% 
cost savings and reduced computation time by nearly 20%, 
proving its scalability and adaptability. These findings 
confirm that MSGO is a strong candidate for real-world 
smart grid scheduling applications where both economic 
efficiency and operational robustness are critical. 

 
6.10 Environmental Impact Assessment 

The scaling of the PV generation is not only aimed at 
energy cost savings but also utilizes the major carbon 
emissions from the atmosphere. It can be inferred from Table 
9 that lesser consumption for energy from the grid is directly 
proportional to lesser CO₂ emissions. The system consumed 
60 kWh from the grid before scaling, resulting in 30 kg of 
CO₂ emissions. The post-scaling of the system was able to 
reduce its grid dependency to 10 kWh, thus resulting in over 
80% reduction in emissions. 

 

Table 10. CO₂ emission reduction due to increased PV 
generation. 

Scenario Grid Energy 
Consumed 
(kWh) 

CO₂ Emissions 
(kg CO₂/kWh) 

Total CO₂ 
Emissions (kg) 

Before Scaling 60 0.5 30 
After Scaling 10 0.5 5 

 
In Fig. 15, two slopes represent the reduction in 

emissions before and after enlargement and underscore the 
sustainability benefits of utilizing a greater proportion of 
renewable resources. 

 

 
Figure 15. CO₂ emission reduction with scaled PV 

generation. 
 

6.11 Energy Trading and Market Analysis 
One of the most important results of the increased 

generation of PV energy is the change in pattern of energy 
trading. Table 11 shows that after scaling, the system 
generated excess energy and enhanced sales to the grid. This 
transition offers the community a way of earning money 
(€4000), thereby making the system financially sustainable. 

 
Table 11. Energy trading revenue trends. 

Scenario Energy Sold 
to Grid (kWh) 

Revenue from 
Sales (€) 

Net Savings 
(€) 

Before Scaling 20 160 2500 
After Scaling 500 4000 -500 (profit) 

 
The shift is shown in Figure 16, with sales to the grid 

increasing after scaling. Thus, it portrays how effective PV 
scaling helps transform a system from an energy consumer 
to an energy prosumer. 

 

 
Figure 16. Energy sales before and after scaling. 

 
6.12 Impact of Weather Variability on System 
Performance 

Solar irradiance conditions vary the effectiveness of the 
energy management system. The operation of the system 
under different weather conditions is seen in Table 11. Under 



 

 
276 / Vol. 28 (No. 4)     Int. Centre for Applied Thermodynamics (ICAT) 

sunny days, the generation from PV is high, and dependency 
on the grid is low. On the other hand, cloudy and rainy days 
characterize decreased utilization of stored energy, requiring 
an increased dependence upon the grid. 

 
Table 12. Effect of weather variability on system 

performance. 
Weather 
Condition 

PV Generation 
(kWh) 

Storage 
Utilization (%) 

Grid 
Dependency (%) 

Sunny 1800 85 10 
Cloudy 900 60 30 
Rainy 500 40 50 

 

 
Figure 17. PV generation trends under different weather 

conditions. 
 
The fluctuations shown in Figure 17 demonstrate that PV 

generation drops considerably in cloudy and raining 
conditions, thereby affecting its storage utilization and 
dependency on the grid. 

 
6.13 Peak Load Analysis and Demand Response 

And thus, exploring demand-side management (DSM) 
strategies has also been a part of efforts to optimize energy 
costs. The various impacts of different DSM strategies on the 
peak demand and cost reduction are summarized in Table 13. 
Load shifting and time-of-use pricing provided large savings 
and reduced dependency on the grid. 

 
Table 13. Effect of demand response strategies. 

Strategy Peak Demand 
(kWh) 

Cost Reduction 
(€) 

Grid 
Dependency (%) 

No DSM 300 0 40 
Load Shifting 250 200 25 
Time-of-Use 
Pricing 

220 350 20 

 
In Fig. 18 the demand under the various DSM strategies, 

and the effectiveness of shifting load in energy cost 
reduction. 

 

 
Figure 18. Reduction in peak demand through demand-side 

management. 

The findings verify that the optimization framework 
based on MSGO significantly enhances energy cost savings, 
increases renewable energy use, and lowers grid 
dependency.  

Assuming a grid emission factor of 0.9 kg CO₂/kWh, the 
MSGO framework reduced net grid import by 3.5 kWh/day, 
leading to a daily emission reduction of 3.15 kg. At a carbon 
price of $50/ton CO₂, this results in an economic saving of 
~$57/year per household, aligning with global emissions 
trading goals. 

A sensitivity analysis demonstrated that with an increase 
in battery capacity and a scaling in PV generation, system 
efficiency significantly increases. Comparison performance 
results show that MSGO converges faster and saves more 
cost than the traditional optimization techniques. 
Environmental impact assessment results indicated that CO₂ 
emissions were reduced significantly owing to increase PV 
generation. Furthermore, energy trading analysis proved the 
system's financial viability as it translates into revenues 
generated from the sales of surplus energies. This study also 
found that variability in weather affects system performance 
and that demand-side management strategies play an 
important role in cutting further optimized energy costs.  

 
7. Conclusion 

Scaling up PV generation along with demand largely 
determines energy management of prosumer communities. 
Increasing PV generation means increased self-consumption 
and energy exports, whereas increased demand calls for 
careful storage and grid intervention to maintain balance. 
Simulation results indicate that the total PV generation over 
10 prosumers of 182.58 kW is surpassed by demand at 
343.20 kW, thereby requiring imports from the grid of 
262.80 kW. Storage systems, in this instance, manage the 
surplus energy of 109.23 kW by discharging 72.63 kW to 
meet demand during low solar radiation periods.  

Despite revenues from PV sales of €41.29 and storage 
contribution of €18.45, the community still faces a total cost 
of €340, thus necessitating optimized trading and storage 
strategy for energy. Storage is used frequently, often nearing 
its capacity, warranting efficient management to minimize 
energy losses and maximize profits. The focus should be on 
constantly improving the management of the system while 
PV increases self-sufficiency and reduces the cost of running 
externally sourced electricity. Results indicate that an 
optimized balance between generation, storages, and 
interaction with grids marks sustainability and cost 
efficiencies in any prosumer-based energy system. 
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Nomenclature 
𝑃𝑃𝑏𝑏𝑡𝑡  Battery charging/discharging power at time t [kW] 
𝐶𝐶𝑔𝑔  Cost coefficient for grid-imported electricity [€/kWh] 
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𝐶𝐶𝑏𝑏  Cost coefficient for grid-imported electricity [€/kWh] 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡   Photovoltaic (PV) power generation at time [kW] 
𝑃𝑃𝑔𝑔𝑡𝑡  Power imported from the grid at time t [kW] 
𝑃𝑃𝑠𝑠𝑡𝑡  Power exported to the grid at time t [kW] 
𝑃𝑃𝑑𝑑𝑡𝑡  Total power demand or load at time t [kW] 
𝐸𝐸𝑡𝑡  Energy stored in the battery at time t [kWh] 
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 Minimum battery energy storage level [kWh] 
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚  Maximum battery energy storage level [kWh] 
𝑃𝑃𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚  Maximum battery power rating [kW] 
𝑃𝑃𝑔𝑔,,max  Maximum grid import limit [kW] 
𝑃𝑃𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚  Maximum grid export limit [kW] 

Greek symbols 
𝜂𝜂𝑐𝑐  Battery charging efficiency [%] 
𝜂𝜂𝑑𝑑  Battery discharging efficiency [%] 
Δ𝑡𝑡  Time step interval [h] 

Subscripts 
𝑏𝑏  Battery 
𝑔𝑔  Grid 
𝑑𝑑  Demand/load 
𝑃𝑃𝑃𝑃  Photovoltaic 
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	Conventional methods that rely on rules and heuristics for energy scheduling are unable to address some non-linear, high-dimensional, and uncertain energy systems. Machine learning and AI techniques promise to do much better, albeit they often require...
	Some metaheuristics like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Social Group Optimization (SGO) have been widely applied for the optimization of prosumer energy [5]. However, their slow convergence, premature stagnation, and di...
	1.5 Research Gap & Contribution
	Existing Optimization Methods and Their Limitations
	This shows that energy management techniques of prosumer energy optimization have been extensively investigated. Swarm intelligence-based Particle Swarm Optimization (PSO), a popular technique, has been widely used for energy scheduling; however, its ...
	There is thus a need for an optimization technique that would combine computational expediency with robustness in terms of handling dynamic energy environments. This study thus seeks to bridge the gap by proposing the Modified Social Group Optimizatio...
	1.6 Introduction of Modified Social Group Optimization (MSGO)
	It has modified the SGO algorithm by adding adaptive parameters-which increase the efficiency and speed of convergence-to create the MSGO algorithm. Unlike standard SGO, which relies on a fixed interaction model, the MSGO algorithm dynamically adjusts...
	1.7 Key Contributions of This Work
	A new framework of energy management is presented in this study using the Modified Social Group Optimization (MSGO) algorithm to maximize the energy utilization of prosumers from PV-integrated smart grids. The dynamic energy scheduling model differs f...
	2. Literature Survey
	2.1 Prosumer Energy Management (PEM) and Optimization Approaches
	2.2 Social Group Optimization (SGO) and Its Limitations
	To overcome the drawbacks of the classical Social Group Optimization (SGO), these authors developed the so-called Modified Social Group Optimization (MSGO) techniques to strike a fine balance between good exploitation and analysis of the search worksp...
	In regard to demonstrating its capacity to do so, the MSGO solution achieves energy demand anticipation while reducing operating costs, enhancing self-sufficiency, and optimizing load distribution. Secchi et al. (2021) used MSGO for battery storage si...
	While MSGO does improve the classical SGO, it also achieves competitive results against recent approaches like TLBO, NSGA-II, and DE-based variants. Naik et al. (2020) as well as Reddy & Narayana (2022) extended MSGO to electric vehicle energy systems...
	In recent times, the MSGO algorithm has seen application in various energy-oriented domains. Reddy and Narayana (2022) used it as a multi-strategy ensemble for electric vehicle energy optimization, whereas Naik et al. (2020) employed MSGO for short-te...
	3. Problem Formulation
	3.1 Prosumer Energy Management Model
	Because of the growing integration of renewable energy, prosumers have emerged: people who generate and use power, chiefly by means of photovoltaic (PV) systems. Within such a context, the development of an economic and environmental benefit-enhanced ...
	3.2 Mathematical Formulation
	An energy management model has been defined as an optimization problem with an objective function and associated constraints.
	Objective Function: The aim should be to minimize the overall costs attributed to energy grid purchases and the operation costs of the battery, compensated through additional energy selling on the grid. The cost function is represented by [18]:
	,min-𝐽.=,𝑡=1-𝑇-,,𝑃-𝑔𝑟𝑖𝑑.,𝑡.∙,𝐶-𝑔𝑟𝑖𝑑.,𝑡.−,𝑃-𝑠𝑒𝑙𝑙.,𝑡.∙,𝑅-𝑠𝑒𝑙𝑙.,𝑡.+,𝐶-𝑏𝑎𝑡𝑡𝑒𝑟𝑦.,𝑡.+,𝐶-𝑑𝑒𝑚𝑎𝑛𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.(𝑡)..               (1)
	where: ,𝑃-𝑔𝑟𝑖𝑑.,𝑡. is the energy purchased from the grid at time 𝑡, ,𝐶-𝑔𝑟𝑖𝑑.,𝑡. is the dynamic price per unit of electricity from the grid, ,𝑃-𝑠𝑒𝑙𝑙.,𝑡. is the energy sold back to the grid, ,𝑅-𝑠𝑒𝑙𝑙.,𝑡. is the revenue earned per...
	The self-consumption of power generated by photovoltaic (PV) systems can be used as a good indicator when examining the cost of credit in photovoltaics in the solar energy business if the power system installation costs are also known.
	Decision Variables: The optimization model determines the following decision variables:
	 ,𝑃-𝑔𝑟𝑖𝑑.,𝑡. is power drawn from the grid at each time step,
	 ,𝑃-𝑠𝑒𝑙𝑙.,𝑡. is power sold to the grid from PV generation or battery storage.
	 ,𝑃-𝑃𝑉.,𝑡. is power generated by the PV system.
	 ,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡., ,𝑃-𝑏𝑎𝑡, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡. are battery charging and discharging power.
	 ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡. is power demand of the system at each time step.
	 𝑆𝑂𝐶(𝑡) is state of charge of the battery at each time step.
	System Constraints: Power Balance Constraint [19]:
	,𝑃-𝑔𝑟𝑖𝑑.,𝑡.+,𝑃-𝑃𝑉.,𝑡.+,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.=,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.+,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.+,𝑃-𝑠𝑒𝑙𝑙.,𝑡.           (2)
	It assures generation and purchase of total power equal to the whole demand including power supply and sales.
	Grid Stability Constraints: Power grids must not be overburdened, and the exchange of power energy shall be limited within admissible limits so as to avoid violation fees and service interruptions. [20].
	,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑖𝑛.≤,𝑃-𝑔𝑟𝑖𝑑.(𝑡)≤,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.                     (3)
	where, ,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑖𝑛.​ and ,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.​ are the minimum and maximum allowable grid power exchanges.
	Also, great swings in the power demand should be checked for frequency stability. Let ,𝑃-𝑔𝑟𝑖𝑑. be the grid power:
	,,𝑃-𝑔𝑟𝑖𝑑.,𝑡.−,𝑃-𝑔𝑟𝑖𝑑.(𝑡−1).≤∆,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.              (4)
	where, ∆,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥. is the maximum allowable change in grid power per time step.
	Battery Operational Constraints: In each time step, the battery's state of charge (SoC) changes due to the charging and discharging processes [21]:
	,𝑆𝑂𝐶-𝑚𝑖𝑛.≤𝑆𝑂𝐶(𝑡)≤,𝑆𝑂𝐶-𝑚𝑎𝑥.                        (5)
	Ensures that the battery's state of charge 𝑆𝑂𝐶(𝑡) at any time t remains within the permissible range, SOC(t) is the State of charge of the battery at time 𝑡 (in kWh or %), 𝑆𝑂,𝐶-𝑚𝑖𝑛. ​ denotes as Minimum allowable SOC to avoid deep discharge...
	Maintaining the SOC within this range extends battery life and ensures safety.
	,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡)≤,𝐶-𝑏𝑎𝑡, 𝑚𝑎𝑥.,,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡)≤,𝐷-𝑏𝑎𝑡,  𝑚𝑎𝑥.        (6)
	These constraints ensure that the battery charging power ,𝑃-𝑏𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) and discharging power ,𝑃-𝑏𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) at time 𝑡 do not exceed their respective maximum capacities: ,𝑃-𝑏𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) denotes as Charging ...
	These constraints help protect the battery from excessive charging or discharging rates, ensuring optimal performance and longevity.
	The battery is limited by its charging capacity and charge/discharge pulse power limits.
	Battery Degradation and Lifespan Constraints: More and more charge-discharge cycles may wear down batteries all the more swiftly. To coincide with the worsened battery condition, depth of discharge (DoD) and number of charge-discharge cycles must be r...
	,𝑆𝑂𝐶-𝑚𝑖𝑛.+∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.≤𝑆𝑂𝐶(𝑡)≤,𝑆𝑂𝐶-𝑚𝑎𝑥.−∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.         (7)
	where ∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.​ is a safety margin to prevent excessive charge/discharge.
	Battery power variations also can be limited:
	,,𝑃-𝑏𝑎𝑡,   𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.−,𝑃-𝑏𝑎𝑡,   𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡−1..≤∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥.       (8)
	,,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.−,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡−1).≤∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥.       (9)
	where, ∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥. limits the rate of change in battery power.
	Energy Trading Constraint [23]:
	,𝑃-𝑠𝑒𝑙𝑙.,𝑡.≤,𝑃-𝑃𝑉.,𝑡.−,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.   𝑖𝑓 ,𝑃-𝑃𝑉.(𝑡)>,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.(𝑡)   (10)
	where, ,𝑃-𝑠𝑒𝑙𝑙.​(𝑡) defined as Power exported to the grid at time 𝑡 (in kW), ,𝑃-𝑃𝑉.(𝑡) as Power generated by the PV system at time 𝑡 (in kW), and ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.(𝑡) denotes as Power consumed by the prosumer (load demand) at time 𝑡 (in ...
	This ensures that only surplus PV energy is sold to the grid.
	Demand Response Constraints [24]:
	,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡𝑒𝑑.,𝑡.≤,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.     𝑓𝑜𝑟 𝑡∈𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠    (11)
	,𝑡=1-𝑇-,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑, 𝑠ℎ𝑖𝑓𝑡𝑒𝑑.,𝑡.=,𝑡=1-𝑇-,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)..             (12)
	where, ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.​(𝑡) defined as original prosumer demand at time 𝑡 (kW).  ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,𝑠ℎ𝑖𝑓𝑡𝑒𝑑.(𝑡) as Demand after shifting to minimize peak-hour consumption (kW). And  𝑡∈𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠 denotes Time intervals...
	The premise of load shifting is that the shifting of load does not change net energy consumption but shifts that consumption to time periods in which the energy price is lower.
	Dynamic Pricing Constraints: Demand-and-supply mechanisms and market links determine electricity prices from time to time. Therefore, power transactions (in terms of grid purchases or sales) should be optimized to suit market conditions that are price...
	,𝑃-𝑔𝑟𝑖𝑑.,𝑡.≤,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.    𝑖𝑓 ,𝐶-𝑔𝑟𝑖𝑑.(𝑡)≤,𝐶-𝑔𝑟𝑖𝑑-𝑎𝑣𝑔.      (13)
	,𝑃-𝑠𝑒𝑙𝑙.,𝑡.≤,𝑃-𝑃𝑉.,𝑡.−,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.      𝑖𝑓 ,𝑅-𝑠𝑒𝑙𝑙.(𝑡)≥,𝑅-𝑠𝑒𝑙𝑙-𝑎𝑣𝑔.          (14)
	where, ,𝐶-𝑔𝑟𝑖𝑑-𝑎𝑣𝑔.​ is the average grid price over a given period and ,𝑅-𝑠𝑒𝑙𝑙-𝑎𝑣𝑔. is the average selling price over a given period.
	Such restraints ascertain that energy dealings come about at their optimal cost-benefit points.
	PV Scaling Factor Constraints [26]:
	,𝑃-𝑃𝑉,   𝑠𝑐𝑎𝑙𝑒𝑑.,𝑡.=,𝑚-𝑆.∙,𝑃-𝑃𝑉,   𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)         (15)
	,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,   𝑠𝑐𝑎𝑙𝑒𝑑.,𝑡.=,𝑚-𝐷.∙,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,   𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)                  (16)
	where ,𝑚-𝑆.​ and ,𝑚-𝐷.​ are multiplicative scaling factors applied to PV generation and demand, respectively.
	Incorporating Emission Reduction: The total grid energy purchase carbon emissions can be expressed as [27]:
	,𝐸-,𝐶𝑂-2..=,𝑡=1-𝑇-,𝑃-𝑔𝑟𝑖𝑑.(𝑡)∙𝛾.                      (17)
	where 𝛾 is the grid emission factor (kg CO₂ per kWh). The objective function can be extended to penalize emissions:
	,𝐽-′.=𝐽+,𝜆-,𝐶𝑂-2..,𝐸-,𝐶𝑂-2..           (18)
	where, ,𝜆-,𝐶𝑂-2.. is the cost penalty per unit of CO₂ emissions.
	PV Generation Uncertainty Modeling: To account for the inherent uncertainty in solar photovoltaic (PV) output due to variable weather conditions, we extended our simulation model by incorporating stochastic PV generation profiles. A Monte Carlo simula...
	For each scenario, the corresponding PV output ,𝑃-𝑃𝑉.(𝑡) was computed using:
	,𝑃-𝑃𝑉.,𝑡.=𝜂∙𝐴∙,𝐺-𝑡.(𝑡)       (19)
	where 𝜂 is the PV efficiency, 𝐴 is the panel area, and ,𝐺-𝑡.(𝑡) is the solar irradiance (W/m²) at time 𝑡, randomly sampled from the irradiance distribution.
	The Modified Social Group Optimization (MSGO) algorithm was then run for each irradiance scenario independently, and the expected value of the key performance indicators (energy cost, renewable utilization, battery cycling) was calculated:
	𝔼,𝑓(𝑥).=,1-𝑁.,𝑖=1-𝑁-,𝑓-𝑖.(𝑥).           (20)
	where, 𝑁=100 is the number of Monte Carlo trials and ,𝑓-𝑖.(𝑥) is the objective value for the ,𝑖-𝑡ℎ. scenario.
	This approach allows for evaluating the robustness of the optimization framework under realistic PV uncertainty, ensuring that the scheduling solution remains effective across a broad range of environmental conditions.
	4. Modified Social Group Optimization (MSGO) Approach
	4.1 Overview of Social Group Optimization (SGO) Algorithm
	Social Group Optimization (SGO) refers to the population-based metaheuristics evolution from cooperative behaviors found in groups of animals and human beings. This method is also incorporated in a leader-follower paradigm, which involves moving the i...
	The position of an individual at iteration 𝑡+1 is updated mathematically as follows [29]:
	,𝑋-𝑖-𝑡+1.=,𝑋-𝑖-𝑡.+,𝜆-1.,,𝑋-𝐿-𝑡.−,𝑋-𝑖-𝑡..+,𝜆-2.,,𝑋-𝑟𝑎𝑛𝑑-𝑡.−,𝑋-𝑖-𝑡..                        (21)
	where, ,𝑋-𝑖-𝑡. represents the position of the ithi^{th}ith agent at iteration 𝑡, ,𝑋-𝐿-𝑡.​ is the leader’s position, and ,𝑋-𝑟𝑎𝑛𝑑-𝑡.​ is a randomly chosen individual’s position. The parameters ,𝜆-1.​ and ,𝜆-2.​ control the influence of th...
	The conventional SGO algorithm is effective but slow in convergence and prone to local optimal. The Modified Social Group Optimization (MSGO) algorithm offers the adaptive learning mechanism, dynamic weight adjustment, and hybrid mutation strategies t...
	Unlike standard SGO, MSGO integrates a time-dependent learning rate and combines exploration (via Gaussian mutation) with exploitation (via introspection learning). This hybrid strategy reduces premature convergence and improves adaptability to dynami...
	4.2 Enhancements in MSGO
	MSGO's foremost new feature is its adaptive learning mechanism, which allows the learning rate to be adjusted dynamically, hence balancing exploration and exploitation. The learning rate α changes over iterations according to [30]:
	,𝛼-𝑡.=,𝛼-𝑚𝑎𝑥.−,,𝑡-𝑇..,,𝛼-𝑚𝑎𝑥.−,𝛼-𝑚𝑖𝑛..          (22)
	where ,𝛼-𝑚𝑎𝑥. and ,𝛼-𝑚𝑖𝑛.​ are the initial and final learning rates, and 𝑇 is the total number of iterations. This allows the algorithm to explore more in the initial stages and refine solutions in later stages.
	The second improvement is that dynamic weight adjustment increases the balance between intensification and diversification. The weight factor ,𝑊-𝑡. is adjusted dynamically, as indicated by [31]:
	,𝑊-𝑡.=,𝑊-𝑚𝑎𝑥.−,𝑡-𝑇.,,𝑊-𝑚𝑎𝑥.−,𝑊-𝑚𝑖𝑛..           (23)
	where, ,𝑊-𝑚𝑎𝑥.​ and ,𝑊-𝑚𝑖𝑛.​ define the range of weight values. This ensures that the algorithm transitions smoothly from exploration to exploitation, leading to better convergence.
	An additional hybrid mutation strategy is introduced for this application in order to avert premature convergence. This mutation process perturbs the stagnant agents' positions so that they might escape the local optima. The mutation is defined using ...
	,𝑋-𝑖-𝑡+1.=,𝑋-𝑖-𝑡.+𝛽,,𝑋-𝑈.−,𝑋-𝐿..∙𝑟𝑎𝑛𝑑,−1, 1.         (24)
	where, 𝛽 is a mutation factor, and ,𝑋-𝑈., ,𝑋-𝐿.​ represent upper and lower bounds of the search space.
	4.3 Algorithm Workflow for Energy Management
	Energy scheduling is achieved by including energy balance, limitations in battery storage, and grid import/export constraints in the MSGO algorithm. The optimization scheme has a stepwise process.
	The initial phase defines the search space, including decision variables such as energy generation, storage, and grid transactions. A population of candidate solutions is randomly initialized, and the leader is identified based on the objective functi...
	The algorithm continues iterating until some convergence criteria are met, e.g., reaching a certain number of iterations or not improving the solution quality at a minimal level. In the final output, an optimized energy schedule is provided, specifyin...
	4.4 MSGO Parameter Settings
	The MSGO parameter settings (population size = 30, iterations = 250, c = 0.25) were selected based on a series of preliminary tuning experiments. Multiple configurations were tested on benchmark scenarios to balance convergence speed and solution qual...
	Table 1. Key parameters for MSGO algorithm.
	The MSGO algorithm incorporates adaptive learning, dynamic weight control, and hybrid mutation strategies for improving the energy scheduling efficiency of prosumers to a large extent. It uses optimum balance in renewable energy usage as well as grid ...
	5. Experimental Setup & Implementation
	5.1 Simulation Environment
	The MATLAB R2023a environment was chosen for the performance of the software and data management model proposed for energy systems and the Modified Social Group Optimization (MSGO) algorithm. The reason for selecting MATLAB, among others, is its rich ...
	5.2 Optimization Scenarios
	The performance of the Mesh-Gene Sorting Operator (MGSO) algorithm was examined under several energy management scenarios to determine its adaptability and efficiency.
	Scenario 1: Grid-Connected Prosumer: In the first scenario, with all the conditions suitable for a grid-connected operation, the prosumer was able to sell the extra solar energy to the grid at times and import power when required. Whereas in this stud...
	Scenario 2: Off-Grid Operation with Battery Storage: The second scenario simulated an off-grid operation where the prosumer relied entirely on the PV-battery system without any grid support. The optimization focused on ensuring an efficient charge-dis...
	Scenario 3: Peak vs. Non-Peak Demand Analysis: The Investigated third case focuses on energy management with respect to peak and non-peak pricing schemes. This case studies minimizing dependency on the grid during the peak hours by discharging stored ...
	Scenario 4: Comparison with Existing Algorithms: Scenario number four was a comparative study conducted between MSGO and other techniques, namely Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Standard Social Group Optimization (SGO). ...
	6. Results and Discussion
	The outcome begins with the evaluation of the new optimization framework proposed to achieve optimum energy consumption by the prosumer. The study further examines how the variation in scaling PV generation and demand affects numerous system parameter...
	The implication of scaling the expected PV power generation (,𝑆-𝑚𝑒𝑎𝑛.) and the expected energy demand (,𝐷-𝑚𝑒𝑎𝑛.) by a multiplicative factor (,𝑚-𝑆.=12, ,𝑚-𝐷.=6) is on different aspects of simulation and optimization processes especially r...
	Figure  1. Convergence characteristics before and after scaling.
	6.1 PV Generation vs. Demand
	The extent to which energy self-sufficiency is analyzed based on PV generation profile and trends of demand. Original setting PV generation (,𝑆-𝑚𝑒𝑎𝑛.) midday, while demand, according to Figure 2 (Before scaling), peaks in the morning and late eve...
	Figure 2. Average PV generation and demand before applying the scaling factors.
	A comparison of energy surplus before and after scaling has been tabulated in Table 2. The results revealed a considerable increase of surplus energy, thus facilitating higher utilization potential from storage or sales to the grid.
	Table 2. Energy surplus before and after scaling.
	When the electricity generated from photovoltaic sources exceeds what is required, the waste fuel can be either housed or injected into the grid. In contrast, when the demand supersedes PV generation, extra energy has to be consumed from the storage o...
	Figure 3. Average PV generation and demand after applying the scaling factors respectively.
	6.2 Pricing Factor
	The influence of PV generation scaling on electricity price formation is presented in the two panels of Figure 4, depicting the situation before scaling and Figure 5 shows after scaling to the right. The pattern of purchasing and selling prices, befor...
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	6.6 Impact of PV Uncertainty on Optimization Performance
	To assess the robustness of the proposed MSGO algorithm under realistic operating conditions, we conducted a Monte Carlo simulation with 100 randomly generated solar irradiance profiles representing varying weather conditions (clear, partly cloudy, ov...
	The average performance metrics across 100 simulation runs are presented in Table 6.
	Table 6. Performance metrics under PV uncertainty (N = 100).
	6.7 Price Dynamics
	The unit price of energy before and after scaling is shown in Figures 10 and 11 respectively. The results show the contribution of additional output from PV to the reduction in overall costs. When the system accomplishes high self-sufficiency, externa...
	Table 7. Energy price dynamics before and after scaling.
	Figure 10. Original average energy price per unit before scaling.
	Figure 11. Scaled energy price per unit.
	6.8 Sensitivity Analysis of Optimization Parameters
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	Figure 15. CO₂ emission reduction with scaled PV generation.
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	Table 11. Energy trading revenue trends.
	The shift is shown in Figure 16, with sales to the grid increasing after scaling. Thus, it portrays how effective PV scaling helps transform a system from an energy consumer to an energy prosumer.
	Figure 16. Energy sales before and after scaling.
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	Solar irradiance conditions vary the effectiveness of the energy management system. The operation of the system under different weather conditions is seen in Table 11. Under sunny days, the generation from PV is high, and dependency on the grid is low...
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	Figure 17. PV generation trends under different weather conditions.
	The fluctuations shown in Figure 17 demonstrate that PV generation drops considerably in cloudy and raining conditions, thereby affecting its storage utilization and dependency on the grid.
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	Figure 18. Reduction in peak demand through demand-side management.
	The findings verify that the optimization framework based on MSGO significantly enhances energy cost savings, increases renewable energy use, and lowers grid dependency.
	Assuming a grid emission factor of 0.9 kg CO₂/kWh, the MSGO framework reduced net grid import by 3.5 kWh/day, leading to a daily emission reduction of 3.15 kg. At a carbon price of $50/ton CO₂, this results in an economic saving of ~$57/year per house...
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	7. Conclusion
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