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Abstract

Effective energy management in prosumer communities is significant for optimizing renewable energy usage and
cutting down costs. The research develops an optimization framework to analyze the impact of scaling up photovoltaic
(PV) generation and demand on self-consumption, storage utilization, and grid interaction. A linear programming
approach can be used to minimize total energy costs by optimizing energy purchases, storage operation, and grid sales.
Additionally, the Modified Social Group Optimization (MSGO) algorithm improves the optimization efficiency,
taking into account the variations in demand, storage restriction, and the limits of grid exchanges. Simulation results
show that by increasing PV generation, self-consumption and energy export are maximized, while high demand
requires efficient storage and thus large reliance on grids. The system generates 182.58 kW PV energy and the
consumption of 343.20 kW requires import of 262.80 kW. The storage systems manage surplus power 109.23 kW; of
that stored, 72.63 kW is released during low solar periods. Economically, contribution of PV sales reaches €41.29,
and that of storage adds up to €18.45, resulting in partial offsetting of total costs amounting to €340. Findings highlight
that proper scaling of PV and managing demand could enhance energy efficiency as well as reduce dependence on
the grid while unlocking better economic returns, thus making this framework a very advantageous tool in making
sustainable energy plans for prosumer communities.

Keywords: Energy cost optimization; modified social group optimization, prosumer energy management, renewable
energy utilization; smart grids, social group optimization.

1. Introduction

Gradually but steadily, the energy landscape is changing
from totally centralized to more decentralized architectures
in the context of distributed energy resources (DERs)
adoption and the growing emergence of prosumers, which
are entities acting as energy consumers and producers.
Unlike conventional consumers, who rely solely on
centralized generation plants, prosumers actively use
markets through generating meters, storing, and consuming
electricity, thereby decentralizing energy generation. This
shift fosters more resilience, security, and self-sufficiency
within the grid while reducing dependency on fossil fuel
powers [1].

Improvements in smart meters, battery storage systems,
and bidirectional communication networks allow prosumers
to use energy more efficiently in real-time. This has not only
reduced energy costs but has also enabled renewable energy
integration, and thus a cleaner, more sustainable energy
ecosystem. In many cases, the optimal utilization of
prosumer energy resources requires quite sophisticated
optimization techniques, balancing generation, storage, and
consumption.

1.2 Significance of Photovoltaic (PV) Generation in
Sustainable Energy Management

*Corresponding Author

Solar resource photovoltaic (PV) generation is one of the
renewables promising or apt solutions for prosumers at
present. Increasingly lower cost of solar panels, coupled with
government support programs and net metering policies,
induces the ever-accelerating PV adoption worldwide [2].
Integration of PV systems allows prosumers to create their
power and use it, instead of supplementing it with the
traditional grid. This technology substantially lowers energy
expenses, mitigates the carbon footprint, and enhances
sustainability levels.

However, PV generation remains sparse, and in a
nutshell, it depends on solar radiation, which is variable due
to varying weather patterns, geographical locational
differences, and seasonal changes occurring. Such variations
pose threats toward balancing a stable supply-demand profile
of electricity. This situation thus poses a necessity for
effective energy storage and scheduling mechanisms for
optimal utilization of PV-generated electricity.

1.3 Challenges in Optimizing Prosumer Energy
Management

Uncertainty in PV generation: Solar power output differs
due to environmental factors such as cloud cover, shading,
and seasonal variations; hence, accurate energy planning
becomes tough [3].
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Demand variations: The load demand varies over time
because of the dynamic behavior of customers with respect
to different appliances and systems at different times of the
day.

Storage limitations: batteries are commonly employed
for energy storage, but their limited capacity, degradation
with time, and high cost require efficient strategy, on how
and when to charge and discharge them [4].

Bidirectional energy flow: Prosumers can either inject
their excess energy into the grid or withdraw power
whenever they require it, hence needing dynamic pricing
models and smart trading of energy.

1.4 Need for Efficient Optimization Techniques

Conventional methods that rely on rules and heuristics
for energy scheduling are unable to address some non-linear,
high-dimensional, and uncertain energy systems. Machine
learning and Al techniques promise to do much better, albeit
they often require enormous datasets and do not guarantee
the real-time computational efficiency required for energy
management.

Some metaheuristics like Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Social Group
Optimization (SGO) have been widely applied for the
optimization of prosumer energy [5]. However, their slow
convergence, premature stagnation, and difficulty to adapt to
dynamic energy environments are now the major problems.
To address these issues, this research presents the Modified
Social Group Optimization (MSGO), which modifies the
conventional SGO algorithm to improve convergence,
adaptability, and computational efficiency in prosumer
energy management with PV generation.

1.5 Research Gap & Contribution

Existing Optimization Methods and Their Limitations

This shows that energy management techniques of
prosumer energy optimization have been extensively
investigated. Swarm intelligence-based Particle Swarm
Optimization (PSO), a popular technique, has been widely
used for energy scheduling; however, its main drawbacks are
that it often gets stuck in local optima and has slow
convergence in immensely complicated Mult objective
problems. Being another evolutionary algorithm, the Genetic
Algorithm (GA) traverses the solution space rapidly;
however, it suffers from high computational complexity and
longer execution times [6]. A relatively new optimization
algorithm that imitates social groups' interactions during
problem-solving known as Social Group Optimization
(SGO) has been fairly new in showings its bright results
across many optimization tests. The weak point of SGO,
however, is its less efficient exploration-exploitation
balance, which, as a result, reduces convergence in a more
dynamic energy landscape.

There is thus a need for an optimization technique that
would combine computational expediency with robustness
in terms of handling dynamic energy environments. This
study thus seeks to bridge the gap by proposing the Modified
Social Group Optimization (MSGO) algorithm, which
integrates adaptive learning mechanisms, dynamic weight
adjustments, and a hybrid mutation strategy toward
improving performance.

1.6 Introduction of Modified Social Group Optimization
(MSGO)
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It has modified the SGO algorithm by adding adaptive
parameters-which increase the efficiency and speed of
convergence-to create the MSGO algorithm. Unlike standard
SGO, which relies on a fixed interaction model, the MSGO
algorithm dynamically adjusts the learning rates and
weighting factors to meet real-time energy demand and
generation conditions [7]. This makes the algorithm capable
of exploring a wider solution space avoiding premature
convergence. MSGO is suitable for prosumer energy
management for handling uncertainties in PV generation
storage optimization of batteries charge schedule efficiently.
Furthermore, real-time decision-making regarding energy
consumption optimizes the cost with self-sufficiency. This
adaptiveness between cost minimization and self-sufficiency
enables more reliable and efficient improvement provisions
in MSGO. The embedded improvements result in discovery
toward a productive and effective framework for
optimization of energy production with consumption
through storage in prosumer smart grids [8, 9].

1.7 Key Contributions of This Work

A new framework of energy management is presented in
this study using the Modified Social Group Optimization
(MSGO) algorithm to maximize the energy utilization of
prosumers from PV-integrated smart grids. The dynamic
energy scheduling model differs from the conventional static
optimization as it adjusts according to battery storage limits,
grid interaction policies, and dynamic pricing schemes. The
MSGO algorithm is tested in many operational scenarios so
far under which energy storage and trade costs are reduced
while the effectiveness in grid stability improved. Besides
being faster in convergence and less in price than what PSO,
GA, and Standard SGO determined, MSGO also uses
renewables better, a use-case ideal in smart grids.

2. Literature Survey
2.1 Prosumer Energy Management (PEM) and
Optimization Approaches

In the study by Gomez-Gonzalez et al. (2021) and Yang
et al. (2022) [11], PEM is said to optimize the consumption,
storage, and generation of energy. In other words, prosumers
need to resolve supply and demand optimally while
considering the increasing trend of distributed RESs such as
PV and wind systems. Also, some advanced energy storage
methods include BESS and HESS to promote renewable
integration. Demand-side management techniques enabling
further optimization of energy consumption include load
shifting and dynamic pricing. Metaheuristic techniques-GA,
PSO, ACO, and SGO-are used to increase the efficiency of
PEM through cost minimization and reliability of energy

supply [12].

2.2 Social Group Optimization (SGO) and Its
Limitations

Ghasemnejad et al. (2024) [13] highlights the efficient
application of the SGO algorithm when applied in the
complex energy scheduling problems, involving the
modeling of interactions inside social groups to find. In that
way, it shows potential for application in the field of
prosumer energy management due to its great adaptability to
dynamic energy environments. Despite the beauty of the
algorithm from the conceptual point of view, several
principal drawbacks exist. These issues concern slow
convergence speed and confinement to local optima,
especially in high-dimensional search spaces. At the same
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time, the scalability problem arises when it is applied to large
energy networks with multiple prosumers and storage units,
limiting its suitability for full-scale complex optimization
problems [13].

2.3 Modifications in MSGO for Improved Energy
Optimization

To overcome the drawbacks of the classical Social Group
Optimization (SGO), these authors developed the so-called
Modified Social Group Optimization (MSGO) techniques to
strike a fine balance between good exploitation and analysis
of the search workspace. There are adaptive learning
schemes, mutation operators, and hybrid metaheuristic
frameworks introduced by Sharma et al. (2024) and
Mohammadi et al. (2022) to considerably augment the
convergence speed and, by and large, to avoid the
entrapment in a local optimum [14, 15].

In regard to demonstrating its capacity to do so, the
MSGO solution achieves energy demand anticipation while
reducing operating costs, enhancing self-sufficiency, and
optimizing load distribution. Secchi et al. (2021) used
MSGO for battery storage sizing toward economically viable
self-sufficiency [16]. Wu et al. (2025) integrated
transmission congestion and carbon emission constraints
into energy management models, further extending MSGO
with improved grid interaction [17]. Such works confirm the
superiority of the MSGO that traditional methods of
optimization have conferred on renewable energy prosumer
networks, making it a very robust tool for the optimization
of storage, energy trading, and demand-side management
under dynamic electricity markets.

While MSGO does improve the classical SGO, it also
achieves competitive results against recent approaches like
TLBO, NSGA-II, and DE-based variants. Naik et al. (2020)
as well as Reddy & Narayana (2022) extended MSGO to
electric vehicle energy systems and economic dispatch
problems, validating its adaptability. Unlike PSO or GA,
MSGO manages a better exploration-exploitation trade-off,
particularly in complex multimodal problems like dynamic
energy management.

In recent times, the MSGO algorithm has seen
application in various energy-oriented domains. Reddy and
Narayana (2022) used it as a multi-strategy ensemble for
electric vehicle energy optimization, whereas Naik et al.
(2020) employed MSGO for short-term hydrothermal
scheduling [18, 19]. These works stand as testament to the
robustness of MSGO in handling constraints existing in the
energy domain in real life, thus supporting its application in
prosumer energy management.

3. Problem Formulation
3.1 Prosumer Energy Management Model

Because of the growing integration of renewable energy,
prosumers have emerged: people who generate and use
power, chiefly by means of photovoltaic (PV) systems.
Within such a context, the development of an economic and
environmental benefit-enhanced optimization energy
management model becomes necessary. The model
presented here optimally describes supply and demand, in so
doing taking storage and grid interactivity into account. To
this end, the model proposes minimizing electricity expenses
by optimizing the energy mix, thus deciding when to use
self-generated PV power, store energy, or trade with the grid.
Self-consumption is prioritized as much as possible, to avoid
reliance on fossil-fuel-based power. This renders an energy
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management approach that is viable, economical, and
sustainable for prosumer communities.

3.2 Mathematical Formulation

An energy management model has been defined as an
optimization problem with an objective function and
associated constraints.

Objective Function: The aim should be to minimize the
overall costs attributed to energy grid purchases and the
operation costs of the battery, compensated through
additional energy selling on the grid. The cost function is
represented by [18]:

minj = Z{:llpgrid(t) ) Cgrid(t) - Psell(t) " Rgen (t) +
Cbattery (t) + Cdemand response(t)l (1)

where: P4 (t) is the energy purchased from the grid at time

t, Cgria(t) is the dynamic price per unit of electricity from

the grid, Py (t) is the energy sold back to the grid, Rgp;; (t)

is the revenue earned per unit of energy sold, Chaetery(t) is

the cost of charging and discharging the battery, and

Caemand response (t) 18 the cost associated with load shifting.
The self-consumption of power generated by

photovoltaic (PV) systems can be used as a good indicator

when examining the cost of credit in photovoltaics in the

solar energy business if the power system installation costs

are also known.
Decision Variables: The optimization model determines

the following decision variables:

® Pyiq(t) is power drawn from the grid at each time step,

o P (t) is power sold to the grid from PV generation or
battery storage.

e Ppy,(t) is power generated by the PV system.

* Pbat,charge (t), Pbat,discharge (t) arc battery Charging and
discharging power.

® Piomana(t) is power demand of the system at each time
step.

e SOC(t) is state of charge of the battery at each time step.
System Constraints: Power Balance Constraint [19]:

Pgrid(t) + Ppy (t) + Py, dicharge (t) = Paemana(®) +
Pbat,charge(t) + Psell(t) (2)

It assures generation and purchase of total power equal to
the whole demand including power supply and sales.

Grid Stability Constraints: Power grids must not be
overburdened, and the exchange of power energy shall be
limited within admissible limits so as to avoid violation fees
and service interruptions. [20].

Pmin = Pgrid(t) =

grid = g;??; (3)

where, P;;Zil and Pgiiy are the minimum and maximum
allowable grid power exchanges.

Also, great swings in the power demand should be
checked for frequency stability. Let Py,;4 be the grid power:

|Pgrid(t) - Pgrid(t - 1)| <A ;11"?; (4)

where, APF747 is the maximum allowable change in grid

power per time step.
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Battery Operational Constraints: In each time step, the
battery's state of charge (SoC) changes due to the charging
and discharging processes [21]:

SOCppin < SOC(t) < SOCpax 5)

Ensures that the battery's state of charge SOC(t) at any
time t remains within the permissible range, SOC(t) is the
State of charge of the battery at time ¢ (in kWh or %),
SOC,,;, denotes as Minimum allowable SOC to avoid deep
discharge (typically 10-20%), and SOC,,q, as Maximum
allowable SOC to avoid overcharging (typically 90—-100%).

Maintaining the SOC within this range extends battery
life and ensures safety.

Pbat,charge(t) < Cbat,maxspbat, discharge(t) < Dbat,max (6)

These constraints ensure that the battery charging power
Pbat,charge (t) and diSCharging power Pbat,discharge (t) at
time t do not exceed their respective maximum capacities:
Pyat,charge(t) denotes as Charging power applied to the
battery at time t (in kW), Pyaraischarge(t) as Power
discharged from the battery at time ¢ (in kW), Cpg¢max 8S
Maximum charging power limit of the battery (in kW), and
Dpat maxdenotes as Maximum discharging power limit of the
battery (in kW).

These constraints help protect the battery from excessive
charging or discharging rates, ensuring optimal performance
and longevity.

The battery is limited by its charging capacity and
charge/discharge pulse power limits.

Battery Degradation and Lifespan Constraints: More
and more charge-discharge cycles may wear down batteries
all the more swiftly. To coincide with the worsened battery
condition, depth of discharge (DoD) and number of charge-
discharge cycles must be reduced [22]:

SOCpin + ASOCyype < SOC(t) < SOCmay — ASOCsqpe  (7)

where ASOCsqf, is a safety margin to prevent excessive
charge/discharge.
Battery power variations also can be limited:

|Pbat, charge(t) - Pbat, charge(t - 1)| < API%‘tm (8)
|Pbat, discharge(t) - Pbat, discharge(t - 1)| < APIZZ%X (9)

where, APJX?* limits the rate of change in battery power.
Energy Trading Constraint [23]:

Psell(t) = PPV (t) - Pdemand(t) if PPV (t) > Pdemand (t) (10)

where, Py, (t) defined as Power exported to the grid at time
t (in kW), Ppy (t) as Power generated by the PV system at
time t (in kW), and Pyepmana (t) denotes as Power consumed
by the prosumer (load demand) at time ¢ (in kW).

This ensures that only surplus PV energy is sold to the
grid.
Demand Response Constraints [24]:

Pdemand shifted(t) < Pdemand(t) fOT (S peak hours (1 1)

(12)

ZZ:l Pdemand,shifted(t) = Z;rzl Pdemand,original(t)
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where, Pgemana,origingt(t) defined as original prosumer
demand at time t (kW). Pyemand,shiftea(t) as Demand after
shifting to minimize peak-hour consumption (kW). And t €
peak hours denotes Time intervals where electricity tariffs
are higher. T as Total number of time intervals in the
scheduling horizon (e.g., 24 for hourly scheduling over a
day).

The premise of load shifting is that the shifting of load
does not change net energy consumption but shifts that
consumption to time periods in which the energy price is
lower.

Dynamic Pricing Constraints: Demand-and-supply
mechanisms and market links determine electricity prices
from time to time. Therefore, power transactions (in terms of
grid purchases or sales) should be optimized to suit market
conditions that are price favorable [25].

Pgrid(t) < ;;%c if Cgrid(t) < C;:L% (13)
Poeyy(t) < Poy(t) = Paemana () if Reen(t) = Reg (14)

avg - . . . .
where, C;,;; is the average grid price over a given period and

R.,7 is the average selling price over a given period.
Such restraints ascertain that energy dealings come about
at their optimal cost-benefit points.
PV Scaling Factor Constraints [26]:
(15)

PPV, scaled(t) =Mms- PPV, original(t)

Pdemand, scaled(t) =mp:* Pdemand, original(t) (16)
where mg and mp are multiplicative scaling factors applied
to PV generation and demand, respectively.

Incorporating Emission Reduction: The total grid
energy purchase carbon emissions can be expressed as [27]:
Eco, = por Ppria(®) -y (17)
where y is the grid emission factor (kg CO: per kWh). The
objective function can be extended to penalize emissions:

J' =]"‘/1cozEco2 (13)
where, A¢, is the cost penalty per unit of CO2 emissions.

PV Generation Uncertainty Modeling: To account for
the inherent uncertainty in solar photovoltaic (PV) output
due to variable weather conditions, we extended our
simulation model by incorporating stochastic PV generation
profiles. A Monte Carlo simulation approach was adopted to
generate multiple irradiance scenarios reflecting real-world
variability. Historical irradiance data from the NREL
OpenEl solar database was used to generate 100 distinct
weather scenarios for a 24-hour period, including clear-sky,
partly cloudy, and overcast conditions.

For each scenario, the corresponding PV output Ppy (t)
was computed using:
Ppy(t) =1+ A G (8) (19)
where 7 is the PV efficiency, 4 is the panel area, and G,(t)
is the solar irradiance (W/m?) at time t, randomly sampled
from the irradiance distribution.

The Modified Social Group Optimization (MSGO)
algorithm was then run for each irradiance scenario
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independently, and the expected value of the key
performance indicators (energy cost, renewable utilization,
battery cycling) was calculated:
E[f ()] = -2 £i (%) (20)
where, N = 100 is the number of Monte Carlo trials and
fi(x) is the objective value for the i*" scenario.

This approach allows for evaluating the robustness of the
optimization framework under realistic PV uncertainty,

ensuring that the scheduling solution remains effective
across a broad range of environmental conditions.

4. Modified Social Group Optimization (MSGO)

Approach
4.1 Overview of Social Group Optimization (SGO)
Algorithm

Social Group Optimization (SGO) refers to the

population-based metaheuristics evolution from cooperative
behaviors found in groups of animals and human beings.
This method is also incorporated in a leader-follower
paradigm, which involves moving the individuals according
to a leader and their association with other members.
Furthermore, such social activities or interactions are the
basis for the exchange of information and decision-making,
finally culminating in the optimized solution.

The position of an individual at iteration t + 1 is updated
mathematically as follows [29]:
X=X+ WXL — XD + (X gna — XD @1
where, X! represents the position of the ithi* {th}ith agent at
iteration t, X} is the leader’s position, and Xf,,, is a
randomly chosen individual’s position. The parameters 1,
and 4, control the influence of the leader and peer agents.

The conventional SGO algorithm is effective but slow in
convergence and prone to local optimal. The Modified Social
Group Optimization (MSGO) algorithm offers the adaptive
learning mechanism, dynamic weight adjustment, and hybrid
mutation strategies to overcome these issues.

Unlike standard SGO, MSGO integrates a time-
dependent learning rate and combines exploration (via
Gaussian mutation) with exploitation (via introspection

learning). This hybrid strategy reduces premature
convergence and improves adaptability to dynamic
constraints.

4.2 Enhancements in MSGO

MSGO's foremost new feature is its adaptive learning
mechanism, which allows the learning rate to be adjusted
dynamically, hence balancing exploration and exploitation.
The learning rate a changes over iterations according to [30]:

A = Amax — (%) (amax - amin) (22)

where a4, and a,,;, are the initial and final learning
rates, and T is the total number of iterations. This allows the
algorithm to explore more in the initial stages and refine
solutions in later stages.

The second improvement is that dynamic weight
adjustment increases the balance between intensification and
diversification. The weight factor W, is adjusted
dynamically, as indicated by [31]:
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t
Wt = Wmax T (Wmax - Wmin) (23)
where, W4, and W,,;,, define the range of weight values.
This ensures that the algorithm transitions smoothly from
exploration to exploitation, leading to better convergence.

An additional hybrid mutation strategy is introduced for
this application in order to avert premature convergence.
This mutation process perturbs the stagnant agents' positions
so that they might escape the local optima. The mutation is
defined using [32]:
Xt =X+ B(Xy — X)) - rand(—1,1) (24)
where, 8 is a mutation factor, and X;;, X; represent upper and
lower bounds of the search space.

4.3 Algorithm Workflow for Energy Management

Energy scheduling is achieved by including energy
balance, limitations in battery storage, and grid
import/export constraints in the MSGO algorithm. The
optimization scheme has a stepwise process.

The initial phase defines the search space, including
decision variables such as energy generation, storage, and
grid transactions. A population of candidate solutions is
randomly initialized, and the leader is identified based on the
objective function, which minimizes total energy costs and
maximizes renewable energy utilization. During position
updates, each agent refines its energy scheduling decision
through the improved MSGO equations. Constraint handling
techniques guarantee the feasibility of the solutions,
particularly regarding limits of battery charge and grid export
thresholds [33]. The mutation and refinement phase
introduce diversity by perturbing certain agents' positions.
This requirement is necessary in order to escape the local
optima of the algorithm and further improves the global
search efficiency.

The algorithm continues iterating until some
convergence criteria are met, e.g., reaching a certain number
of iterations or not improving the solution quality at a
minimal level. In the final output, an optimized energy
schedule is provided, specifying how the renewable energy
is allocated along with battery use and grid transactions.
Algorithm of MSGO Pseudocode given below.

MSGO Algorithm Pseudocode
1 |[Inputs:
T:= total number of iterations
N:= population size
D:= problem dimensionality
LB, UB:= lower/upper bounds (vectors length D)
obj(x):= objective function (minimize total energy cost, with
[penalties)
constr(x):= constraint-handling function (repairs / penalty)
00, af:= initial and final learning rates
Winin> Wimax:= dynamic weight range
:= mutation probability/factor
stagng, := stagnation threshold (no improvement iterations)
2 |Outputs:
Xpest:= best solution found
frest:= 0bj(Xpest)
Initialize:
Fori=1,N:
x; < random_uniform(LB, UB)
X; « constr(x;)
fi < obj(x;)
Xpest < argmin; f;
foest < min, f;
stagn ounc[i] < 0 foralli
Fort=1,T

—_—
TS0 wn bW
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12 a(t) « a0 * (1 — t/T) + af = (t/T)

13 W) < Winax = Wmax = Wmin) * (/T)

14 Leader selection:

15 leader;ger < argmin, f;

16 Xieader < xleaderindex

17 For each agenti=1, N:

19 r, 1, « rand(0,1)

20 Peelingex < randomchoice({l--N}\{i})

21 xpeer « xpeerindex

22 socialerm < W(t) * (Xieaaer — %) + (1 — w(B)) *
(xpeer - xi)

23 Adaptive learning step:

24 A « a(t) * socialierm

25 introspect « a(t) * 0.5 * (X; — Xmean)

26 Proposed new position:

27 Xnew < X; + A + introspect

28 if rand() <

29 o« (UB—-LB)* (1 —-1t/T)

30 Xnew < Xnew + Normal(0,0)

31 Xpew < Clip(Xpew, LB, UB)

32 Xnew < CONStr(Xpew)

33 frew < 0bj(Xnew)

34 if frew < fi:

35 Xi < Xnew

36 fi < few

37 Stagncaunt[i] « 0

38 else:

39 Stagncount[i] « Stagncount[i] + 1

40 if stagn ounc[i] >= stagngy:

41 Xpmue < X; + Normal(0,(UB — LB) * 0.2)

42 Xue < Clip(Xpmye, LB, UB)

43 Xpmue < CONSET (Xpmut)

44 fmut « Obj(xmut)

45 if fre < fi:

46 Xi < Xomuts fl « fmut

47 stagncounei] < 0

48 Update global leader:

49 currentyese;, ... < argmin; f;

50 iffcurrenthest < fbest:

51 Xpest < xcurrenthest

52 fbest < fcurrentbest

53 stop if |Afpese| < & for several iterations

54 Return xpoc0, froo

4.4 MSGO Parameter Settings

The MSGO parameter settings (population size = 30,
iterations = 250, ¢ = 0.25) were selected based on a series of
preliminary tuning experiments. Multiple configurations
were tested on benchmark scenarios to balance convergence
speed and solution quality. The final values were chosen
based on their consistent performance across different
demand and PV profiles. These values are not default but
experimentally optimized for this study’s context. A table of
several key parameters fundamental to an MSGD is referred
to as Table 1.

Table 1. Key parameters for MSGO algorithm.

Parameter Symbol Value/Range
Population Size P, 30

Max Iterations G, 250

Dimensionality D 30

Lower Bound of Variables Ly -30

Upper Bound of Variables Uy, 30

Fitness Value Fysco Calculated per iteration
Objective Value Oysco Final optimal solution
Self-Introspection Parameter c 0.25

The MSGO algorithm incorporates adaptive learning,
dynamic weight control, and hybrid mutation strategies for
improving the energy scheduling efficiency of prosumers to
a large extent. It uses optimum balance in renewable energy
usage as well as grid interaction and storage management in
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its cost-effective energy management, which is sustainable,
thereby providing a robust framework.

5. Experimental Setup & Implementation
5.1 Simulation Environment

The MATLAB R2023a environment was chosen for the
performance of the software and data management model
proposed for energy systems and the Modified Social Group
Optimization (MSGO) algorithm. The reason for selecting
MATLAB, among others, is its rich optimization toolbox
and excellent capabilities for simulating complex energy
systems. The algorithm was executed for a maximum of 250
iterations with a population size of 30 agents for robust
optimization. The test cases represent realistic scenarios
including grid-connected, off-grid, and dynamic pricing
conditions, based on common setups in Indian residential PV
systems. Battery size (10 kWh) and PV capacity (5 kW) were
based on commercially available systems for urban
prosumers.

5.2 Optimization Scenarios

The performance of the Mesh-Gene Sorting Operator
(MGSO) algorithm was examined under several energy
management scenarios to determine its adaptability and
efficiency.

Scenario 1: Grid-Connected Prosumer: In the first
scenario, with all the conditions suitable for a grid-connected
operation, the prosumer was able to sell the extra solar
energy to the grid at times and import power when required.
Whereas in this study, the optimization objective was to
minimize the total energy cost while maximizing the
utilization of renewable energy sources.

Scenario 2: Off-Grid Operation with Battery Storage:
The second scenario simulated an off-grid operation where
the prosumer relied entirely on the PV-battery system
without any grid support. The optimization focused on
ensuring an efficient charge-discharge scheduling
mechanism to maintain energy availability throughout the
day. [34].

Scenario 3: Peak vs. Non-Peak Demand Analysis: The
Investigated third case focuses on energy management with
respect to peak and non-peak pricing schemes. This case
studies minimizing dependency on the grid during the peak
hours by discharging stored energy and maximizing charging
of the energy storage system during non-peak periods.

Scenario 4: Comparison with Existing Algorithms:
Scenario number four was a comparative study conducted
between MSGO and other techniques, namely Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Standard Social Group Optimization (SGO). What are of
such comparison include total energy cost, convergence
speed, and renewable energy utilization, which were
presumed to have shown that the MSGO algorithm has a
significant performance increase considering faster
convergence and lower operating costs than any other
optimization method.

6. Results and Discussion

The outcome begins with the evaluation of the new
optimization framework proposed to achieve optimum
energy consumption by the prosumer. The study further
examines how the variation in scaling PV generation and
demand affects numerous system parameters, such as storage
behavior, energy exchange patterns, community costs, and
optimization process convergence, including the Modified
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Social Group Optimization (MSGO) algorithm being applied
to optimize energy scheduling, with performance compared
to more conventional optimization algorithms. The
convergence characteristics are examined both before and
after scaling PV generation and demand to confirm that the
optimization process was indeed minimizing the objective
function. The faster convergence with simultaneous system
efficiency is retained over all scenarios achieved by the
MSGO algorithm as depicted in Figure 1.

The implication of scaling the expected PV power
generation (Sy,.qn) and the expected energy demand (Dyeqn)
by a multiplicative factor (mg = 12, m, = 6) is on different
aspects of simulation and optimization processes especially
related to energy balance and storage utilization.

Before Scaling After Scaling
120 60
50
40
] (]
2 2
] ()
> >
@ @ 30
£ £
£ i
20
10
0
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
Figure 1. Convergence characteristics before and after
scaling.

6.1 PV Generation vs. Demand

The extent to which energy self-sufficiency is analyzed
based on PV generation profile and trends of demand.
Original setting PV generation (S;,0q,) midday, while
demand, according to Figure 2 (Before scaling), peaks in the
morning and late evening (Dyeqn)- Although significantly
increasing after scaling as indicated by Figure 3 (After
scaling), thus showing a surplus of the formulated renewable
energy, PV generation lends itself to either excess storage or
sales back to the retailer for optimal renewable resource
utilization.

Before Sll:aling (mS=|6, mD=3)

T :
—&—PV Generation
—&— Demand

0 10 15 20 25
Hours
Figure 2. Average PV generation and demand before
applying the scaling factors.

A comparison of energy surplus before and after scaling
has been tabulated in Table 2. The results revealed a
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considerable increase of surplus energy, thus facilitating
higher utilization potential from storage or sales to the grid.
Table 2. Energy surplus before and after scaling.

Scenario PV Generation Demand (kWh) Energy Surplus
(kWh) (kWh)

Before Scaling 150 140 10

After Scaling 1800 840 960

When the electricity generated from photovoltaic sources
exceeds what is required, the waste fuel can be either housed
or injected into the grid. In contrast, when the demand
supersedes PV generation, extra energy has to be consumed
from the storage or the grid. The scaled scenario secures its
primary condition: PV generation meets (and often exceeds)
demand, which results in less reliance on electricity supplied
from the grid.

After Scaling (mS=12, mD=6)

—&—PV Generation
—e—Demand

0 10 15 20 25
Hours
Figure 3. Average PV generation and demand after applying
the scaling factors respectively.

6.2 Pricing Factor

The influence of PV generation scaling on electricity
price formation is presented in the two panels of Figure 4,
depicting the situation before scaling and Figure 5 shows
after scaling to the right. The pattern of purchasing and
selling prices, before scaling, is that usually observed in a
market setting. Following the adjustment, pricing behavior is
disturbed by the return of self-consumption and decrease in
grid dependency. High PV generation decreases energy
imports, thereby lowering effective energy pricing.

Pricing Factors Before Scaling

051

04r

03r
2
w

0271

0.1

—&—Purchase Cost (C)
—Sale Price (R)
0 | I I | |
0 5 10 15 20 25
Daily Time [h]

Figure 4. Pricing factor before scaling.

Vol. 28 (No. 4) / 271



64 - Pricing Factors After Scaling
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Daily Time [h]
Figure 5. Pricing factor after scaling.

6.3 Storage Behavior

The energy demand and supply balancing have a critical
role for battery storage. Figure 6 shows the charging
behavior (s2e) and discharging behavior (e2d) observed by
the storage system in the original and scaled conditions.
After scaling, increased PV generation leads to more
frequent charging cycles, thus profiting energy
independence. Still, frequent usage of storage may lead to
saturation, and in such cases, efficient storage management
strategies should be employed (see Table 3).

Table 3. Storage utilization before and after scaling.

Scenario Charging Discharging Avg. Storage
Events per Events per Utilization
Day Day (%)

Before Scaling 5 4 60

After Scaling 15 12 85

It then becomes apparent from the findings that,
following appropriate scaling, the storage facility tends to
attain its maximum capacity more frequently (E,,,y ); thus,
it calls for effective charge-discharge scheduling to prevent
the waste of excess energy.

PV Before and After Scaling

60 ;
= —e—Before Scaling
.40 [|—e—After Scaling
@
g 20 b
o
0 o-e—e—e—0—0—0—c—0—0-—0-0 RS R g

0 5 10 15 20 25
Retailer Before and After Scaling

__ 60
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:
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- - > o o o0 o0 o0oo0o0o0o0o0d b °—0—0
0 5 10 15 20 25
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@
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o
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0 5 10 15 20 25
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Figure 6. Storage behavior before and after scaling.
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6.4 Energy Exchange Patterns

In Figure 7, the effect of PV generation coupled with
storage is depicted towards the alteration of energy flows.
Among the significant changes that occurred between pre
and post scaling were how energy exchanged between
different sources-retailer to demand (r2d), PV to demand
(s2d), and storage to demand (e2d).

Retailer to Demand

=100
< = = After Scaling
-t .
= —Before Scaling
o 50
t
m O _____ —— e e -
0 5 10 15 20 25
] PV Generation to Demand
E - = -After Scaling
=.50 | —Before Scaling
a :
t
@ b e Mforermpummnnpmmamny
0 5 10 15 20 25
Storage to Demand
s After Scaling
.50 —Before Scaling
]
T /\
W, ;
0 5 10 15 20 25
Daily time [h]

Figure 7. Energy exchange pattern before and after scaling.

The results illustrate the fact that as the system scales up,
direct PV-to-demand supply (s2d) increases, reducing grid
electricity dependency. Moreover, contributions from
storage to demand (e2d) increase, signifying better self-
reliance.

Table 4. Energy exchange before and after scaling.
PV to Demand Storage to

Scenario Retailer to

(kWh) Demand (kWh) Demand (kWh)
Before Scaling 9 10 12
After Scaling 70 50 90

A decrease in the energy exchange r2d from retailers to
demand depicts the economic benefits brought by the
enhanced generation of photovoltaic energy systems
combined with efficient storage management as shown in
Table 4.

6.5 Community Cost Analysis

As shown in Figures 8 and 9, the energy costs at the
community level before and after the scaling thereof. Total
cost-a function of energy purchase from the retailer for
12d.psc and 12e.,5:, and income gained from the sale of
energy back to the retailer which includes revenues
S2Trepenue aNd €27¢penue. The study revealed that scaling
very significantly reduced net community costs as a result of
increased PV generation and optimized storage utilization.

Table 5. Community cost analysis before and after scaling.

Scenario Retailer Cost PV Revenue (€) Net Community
© Cost (€)

Before Scaling 3000 500 2500

After Scaling 1500 2000 -500 (profit)
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Community Cost Before Scaling

Table 6. Performance metrics under PV uncertainty (N =
100).

[l Storage to Retailer (e2r_revenue_t)

[PV Generation to Retailer (s2r_revenue t)
Il Retailer to Storage (r2e_cost_t) i
Il Retailer to Demand (r2d_cost_t)

N RO B A D 20N 00 K DD D
Daily Time [h]
Figure 8. Community cost before applying the scaling.

Community Cost After Scaling
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Figure 9. Community cost after applying the scaling.

The experiment supports that reduced reliance on
electricity provided by retailers reduces overall costs,
thereby proving the financial viability of prosumer energy
management listed in Table 5. The data are derived from
simulation experiments conducted using MATLAB, using
load profiles, PV generation data from NREL datasets, and
dynamic pricing schemes adapted from Indian ToU tariffs.
Although all values reflect practical scenarios and standards.

6.6 Impact of PV Uncertainty on Optimization
Performance

To assess the robustness of the proposed MSGO
algorithm under realistic operating conditions, we conducted
a Monte Carlo simulation with 100 randomly generated solar
irradiance profiles representing varying weather conditions
(clear, partly cloudy, overcast). The resulting PV generation
scenarios were fed into the MSGO-based energy scheduling
framework. For each scenario, the total energy cost and
renewable utilization were recorded, and the statistical
summaries were analyzed.

The average performance metrics across 100 simulation
runs are presented in Table 6.

Int. J. of Thermodynamics (lJoT)

Metric Mean Standard Minimum Maximum
Deviation

Total Energy Cost ($) 2.73 0.19 2.44 3.18
Renewable Utilization (%) 88.6 4.3 77.1 93.9

Grid Import (kWh) 8.4 12 6.2 10.9
Battery SOC Stability 091 0.03 0.85 0.96

Index

6.7 Price Dynamics

The unit price of energy before and after scaling is shown
in Figures 10 and 11 respectively. The results show the
contribution of additional output from PV to the reduction in
overall costs. When the system accomplishes high self-
sufficiency, external energy purchases are reduced, which
brings down the average value of A, while if demand grows
faster than PV generation, the unit price would raise. The
results validate the deduction that more renewable energy
penetration with storage efficiency leads to significant
savings to the prosumer. The data in Table 7 also are derived
from simulation experiments conducted using load profiles,
PV generation data from NREL datasets, and dynamic
pricing schemes adapted from Indian ToU tariffs.

Table 7. Energy price dynamics before and after scaling.

Scenario Energy Price (€/kWh) Grid Dependency (%)
Before 0.15 40
Scaling
After Scaling ~ 0.09 15
Average Cost per Unit Before Scaling
03
0.28
0.26
0.24
0.22
ES
= 0.2
W
.18
0.16
014
0.12
0.1
o 5 10 15 20 25

Daily Time [h]

Figure 10. Original average energy price per unit before
scaling.

Average Cost per Unit After Scaling

0z
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Figure 11. Scaled energy price per unit.
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6.8 Sensitivity Analysis of Optimization Parameters

In order to test the effectiveness of the proposed MSGO-
based optimization framework, sensitivity analysis was
executed by changing specific parameters of the system,
including battery capacity and scaling factors for PV
generation. Results indicate that with the increase of battery
capacity, there are also substantial improvements for cost
savings and a reduction in dependency on the grid. For
example, systems with battery capacity equal to 150 kWh
become net energy sellers, as revealed in Table 8, generating
revenue from selling extra PV power. On the contrary,
keeping battery capacity to a lower level of 50 kWh leads the
system to remain gird-driven, where costs remain higher.

Table 8. Sensitivity of cost savings to battery capacity.

Battery  Capacity Net Community Cost (€) Grid Dependency (%)
(kWh)

50 2500 40

100 1500 25

150 -500 (profit) 10

A corresponding heatmap (see Figure 12) illustrates the
influence of PV generation scaling on storage utilization.
Higher scaling factors of PV (such as mg = 12) cause more
energy to be stored; however, if demand scaling (mp) is also
high, then the battery would discharge frequently to maintain
balance within the system.

45 40 30 25

8
&

- 50

- 40

PV Scaling Factor (mS)
12 10

-30

14

-20

0.8 1.0 1.2 1.4 1.6
Demand Scaling Factor (mD)

Figure 12. Heatmap showing storage utilization across PV
and demand scaling factors.

6.9 Comparative Performance Analysis of MSGO
Against Benchmark Algorithms

To rigorously evaluate the efficiency of the Modified
Social Group Optimization (MSGO) algorithm, we
conducted a comparative analysis against several well-
established metaheuristic algorithms, including Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
the baseline Social Group Optimization (SGO). To further
strengthen the benchmarking, two additional algorithms
were included: Grey Wolf Optimizer (GWO) and Teaching—
Learning-Based Optimization (TLBO), both of which have
recently demonstrated strong performance in energy
scheduling and renewable integration problems. All
algorithms were implemented under the same simulation
environment, using identical problem constraints, population
sizes, and stopping criteria to ensure fairness.
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Table 9. Performance comparison of optimization
algorithms.
Algorithm Convergence Avg. Renewable Computation Std.

Speed Energy  Utilization Time (s) Dev. of
(Iterations) Cost (%) Cost (o)
Reduction
)
MSGO 142 21.7 85.3 12.3 0.19
PSO 187 15.2 78.1 16.8 0.37
GA 214 13.8 74.6 19.4 0.42
SGO 169 17.4 79.8 15.2 0.33
GWO 195 16.9 80.2 17.1 0.28
TLBO 178 18.1 81.0 14.9 0.26

Figure 13 presents the convergence characteristics of all
six algorithms across the tested scenarios. MSGO
consistently demonstrated the fastest reduction in the
objective function value, converging within approximately
140 iterations, while GA required more than 210 iterations
on average. PSO and SGO showed intermediate
performance, converging at 187 and 169 iterations
respectively, while GWO and TLBO displayed slower yet
steady progress, reaching convergence at around 195 and
178 iterations. The hybrid mutation strategy and adaptive
weight adjustment in MSGO prevented premature
stagnation, ensuring that the solution space was adequately
explored in the early stages and exploited effectively in later
stages.
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100 . I I .
50 100 150 200 250
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Figure 13. Convergence curves of MSGO, PSO, and GA.

To assess stability and robustness, each algorithm was
executed independently over 30 runs, and statistical
performance metrics were recorded. The distribution of
results is summarized in Figure 14 (boxplots of total energy
cost). MSGO exhibited the narrowest interquartile range and
the lowest standard deviation (¢ = 0.19), indicating highly
consistent convergence behavior. By contrast, GA and PSO
showed broader spreads (¢ = 0.42 and o = 0.37,
respectively), reflecting sensitivity to initialization and
higher chances of premature convergence. GWO and TLBO
displayed moderate robustness, with ¢ values of 0.28 and
0.26. The results confirm that MSGO not only achieves
superior mean performance but also offers greater reliability
in repeated runs, a critical feature for real-world prosumer
energy management where unpredictable weather and
demand fluctuations require stable optimization.
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Figure 14. Distribution of total energy cost across 30
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Table 9 summarizes the quantitative comparison across
key performance indicators. On average, MSGO achieved a
21.7% reduction in total energy cost compared to baseline
operation, outperforming PSO (15.2%), GA (13.8%), SGO
(17.4%), GWO (16.9%), and TLBO (18.1%). Renewable
utilization under MSGO reached 85.3%, which is 7-10%
higher than PSO, GA, and GWO, and about 5% higher than
TLBO. In terms of computational efficiency, MSGO
achieved the optimal solution in 12.3 seconds, compared to
16.8 seconds for PSO and 19.4 seconds for GA, while SGO,
TLBO, and GWO required between 14—17 seconds.

The superior performance of MSGO can be attributed to
three innovations: (i) the adaptive learning mechanism that
dynamically adjusts learning rates to favor rapid exploration
early and fine-tuned exploitation later; (ii) dynamic weight
control, which balances the leader—peer influence and avoids
premature convergence; and (iii) a hybrid mutation strategy,
combining Gaussian perturbations and stagnation-driven re-
initialization, which maintains diversity in the population.
These enhancements enable MSGO to outperform both
classical evolutionary methods (PSO, GA) and modern
swarm intelligence methods (GWO, TLBO) in both solution
quality and computational time.

The results demonstrate that MSGO not only delivers
lower operating costs but also ensures higher renewable
penetration and greater robustness. The narrower variance
indicates that MSGO solutions are less dependent on initial
conditions, making it highly reliable for deployment in
dynamic energy environments. Compared to the closest
competitor (TLBO), MSGO achieved an additional 3.6%
cost savings and reduced computation time by nearly 20%,
proving its scalability and adaptability. These findings
confirm that MSGO is a strong candidate for real-world
smart grid scheduling applications where both economic
efficiency and operational robustness are critical.

6.10 Environmental Impact Assessment

The scaling of the PV generation is not only aimed at
energy cost savings but also utilizes the major carbon
emissions from the atmosphere. It can be inferred from Table
9 that lesser consumption for energy from the grid is directly
proportional to lesser CO: emissions. The system consumed
60 kWh from the grid before scaling, resulting in 30 kg of
CO: emissions. The post-scaling of the system was able to
reduce its grid dependency to 10 kWh, thus resulting in over
80% reduction in emissions.

Int. J. of Thermodynamics (1JoT)

Table 10. CO: emission reduction due to increased PV

generation.
Scenario Grid Energy CO: Emissions Total CO:
Consumed (kg CO/kWh)  Emissions (kg)
(kWh)
Before Scaling 60 0.5 30
After Scaling 10 0.5 5

In Fig. 15, two slopes represent the reduction in
emissions before and after enlargement and underscore the
sustainability benefits of utilizing a greater proportion of
renewable resources.

60 Grid Energy (kWh)
W CO: Emissions (kg)

Before Scaling
Scenario

After Scaling

Figure 15. CO: emission reduction with scaled PV
generation.

6.11 Energy Trading and Market Analysis

One of the most important results of the increased
generation of PV energy is the change in pattern of energy
trading. Table 11 shows that after scaling, the system
generated excess energy and enhanced sales to the grid. This
transition offers the community a way of earning money
(€4000), thereby making the system financially sustainable.

Table 11. Energy trading revenue trends.

Scenario Energy Sold Revenue from  Net Savings
to Grid (kWh)  Sales (€) €)

Before Scaling 20 160 2500

After Scaling 500 4000 -500 (profit)

The shift is shown in Figure 16, with sales to the grid
increasing after scaling. Thus, it portrays how effective PV
scaling helps transform a system from an energy consumer
to an energy prosumer.

4000 Energy Sold (kWh)
N Revenue (€)
Net Savings (€)

3000

2000

Value

1000

Before Scaling After Scaling
Scenario

Figure 16. Energy sales before and after scaling.

6.12 Impact of Weather Variability on System
Performance

Solar irradiance conditions vary the effectiveness of the
energy management system. The operation of the system
under different weather conditions is seen in Table 11. Under

Vol. 28 (No. 4) / 275



sunny days, the generation from PV is high, and dependency
on the grid is low. On the other hand, cloudy and rainy days
characterize decreased utilization of stored energy, requiring
an increased dependence upon the grid.

Table 12. Effect of weather variability on system
performance.

Weather PV Generation Storage Grid

Condition (kWh) Utilization (%) Dependency (%)
Sunny 1800 85 10

Cloudy 900 60 30

Rainy 500 40 50
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Figure 17. PV generation trends under different weather
conditions.

The fluctuations shown in Figure 17 demonstrate that PV
generation drops considerably in cloudy and raining
conditions, thereby affecting its storage utilization and
dependency on the grid.

6.13 Peak Load Analysis and Demand Response

And thus, exploring demand-side management (DSM)
strategies has also been a part of efforts to optimize energy
costs. The various impacts of different DSM strategies on the
peak demand and cost reduction are summarized in Table 13.
Load shifting and time-of-use pricing provided large savings
and reduced dependency on the grid.

Table 13. Effect of demand response strategies.

Strategy Peak Demand Cost Reduction Grid
(kWh) € Dependency (%)
No DSM 300 0 40
Load Shifting 250 200 25
Time-of-Use 220 350 20
Pricing

In Fig. 18 the demand under the various DSM strategies,
and the effectiveness of shifting load in energy cost
reduction.

600 Peak Demand (kWh)
I Cost Reduction (€}

500 Grid Dependency (%)

400
w
5
§ 300

200

100

No DSM Load Shifting Time-of-Use Pricing

Figure 18. Reduction in peak demand through demand-side
management.
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The findings verify that the optimization framework
based on MSGO significantly enhances energy cost savings,
increases renewable energy use, and lowers grid
dependency.

Assuming a grid emission factor of 0.9 kg CO2/kWh, the
MSGO framework reduced net grid import by 3.5 kWh/day,
leading to a daily emission reduction of 3.15 kg. At a carbon
price of $50/ton CO-, this results in an economic saving of
~$57/year per household, aligning with global emissions
trading goals.

A sensitivity analysis demonstrated that with an increase
in battery capacity and a scaling in PV generation, system
efficiency significantly increases. Comparison performance
results show that MSGO converges faster and saves more
cost than the traditional optimization techniques.
Environmental impact assessment results indicated that CO-
emissions were reduced significantly owing to increase PV
generation. Furthermore, energy trading analysis proved the
system's financial viability as it translates into revenues
generated from the sales of surplus energies. This study also
found that variability in weather affects system performance
and that demand-side management strategies play an
important role in cutting further optimized energy costs.

7. Conclusion

Scaling up PV generation along with demand largely
determines energy management of prosumer communities.
Increasing PV generation means increased self-consumption
and energy exports, whereas increased demand calls for
careful storage and grid intervention to maintain balance.
Simulation results indicate that the total PV generation over
10 prosumers of 182.58 kW is surpassed by demand at
343.20 kW, thereby requiring imports from the grid of
262.80 kW. Storage systems, in this instance, manage the
surplus energy of 109.23 kW by discharging 72.63 kW to
meet demand during low solar radiation periods.

Despite revenues from PV sales of €41.29 and storage
contribution of €18.45, the community still faces a total cost
of €340, thus necessitating optimized trading and storage
strategy for energy. Storage is used frequently, often nearing
its capacity, warranting efficient management to minimize
energy losses and maximize profits. The focus should be on
constantly improving the management of the system while
PV increases self-sufficiency and reduces the cost of running
externally sourced electricity. Results indicate that an
optimized balance between generation, storages, and
interaction with grids marks sustainability and cost
efficiencies in any prosumer-based energy system.
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Nomenclature
Pt Battery charging/discharging power at time t [kW]
Cy Cost coefficient for grid-imported electricity [€/kWh]
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C, Cost coefficient for grid-imported electricity [€/kWh]
P, Photovoltaic (PV) power generation at time [kW]

Pgt Power imported from the grid at time t [kW]
P! Power exported to the grid at time t [kW]

P} Total power demand or load at time t [kW]
Et Energy stored in the battery at time t [kKWh]
Epin Minimum battery energy storage level [kWh]

Enmex ~ Maximum battery energy storage level [kWh]
Ppmax Maximum battery power rating [kW]
Py max Maximum grid import limit  [kW]
Pimax  Maximum grid export limit  [kW]
Greek symbols

Ne¢ Battery charging efficiency [%]

Na Battery discharging efficiency [%]
At Time step interval [h]

Subscripts

b Battery

g Grid

d Demand/load

PV Photovoltaic
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	1. Introduction
	Gradually but steadily, the energy landscape is changing from totally centralized to more decentralized architectures in the context of distributed energy resources (DERs) adoption and the growing emergence of prosumers, which are entities acting as e...
	Improvements in smart meters, battery storage systems, and bidirectional communication networks allow prosumers to use energy more efficiently in real-time. This has not only reduced energy costs but has also enabled renewable energy integration, and ...
	1.2 Significance of Photovoltaic (PV) Generation in Sustainable Energy Management
	Solar resource photovoltaic (PV) generation is one of the renewables promising or apt solutions for prosumers at present. Increasingly lower cost of solar panels, coupled with government support programs and net metering policies, induces the ever-acc...
	However, PV generation remains sparse, and in a nutshell, it depends on solar radiation, which is variable due to varying weather patterns, geographical locational differences, and seasonal changes occurring. Such variations pose threats toward balanc...
	1.3 Challenges in Optimizing Prosumer Energy Management
	Uncertainty in PV generation: Solar power output differs due to environmental factors such as cloud cover, shading, and seasonal variations; hence, accurate energy planning becomes tough [3].
	Demand variations: The load demand varies over time because of the dynamic behavior of customers with respect to different appliances and systems at different times of the day.
	Storage limitations: batteries are commonly employed for energy storage, but their limited capacity, degradation with time, and high cost require efficient strategy, on how and when to charge and discharge them [4].
	Bidirectional energy flow: Prosumers can either inject their excess energy into the grid or withdraw power whenever they require it, hence needing dynamic pricing models and smart trading of energy.
	1.4 Need for Efficient Optimization Techniques
	Conventional methods that rely on rules and heuristics for energy scheduling are unable to address some non-linear, high-dimensional, and uncertain energy systems. Machine learning and AI techniques promise to do much better, albeit they often require...
	Some metaheuristics like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Social Group Optimization (SGO) have been widely applied for the optimization of prosumer energy [5]. However, their slow convergence, premature stagnation, and di...
	1.5 Research Gap & Contribution
	Existing Optimization Methods and Their Limitations
	This shows that energy management techniques of prosumer energy optimization have been extensively investigated. Swarm intelligence-based Particle Swarm Optimization (PSO), a popular technique, has been widely used for energy scheduling; however, its ...
	There is thus a need for an optimization technique that would combine computational expediency with robustness in terms of handling dynamic energy environments. This study thus seeks to bridge the gap by proposing the Modified Social Group Optimizatio...
	1.6 Introduction of Modified Social Group Optimization (MSGO)
	It has modified the SGO algorithm by adding adaptive parameters-which increase the efficiency and speed of convergence-to create the MSGO algorithm. Unlike standard SGO, which relies on a fixed interaction model, the MSGO algorithm dynamically adjusts...
	1.7 Key Contributions of This Work
	A new framework of energy management is presented in this study using the Modified Social Group Optimization (MSGO) algorithm to maximize the energy utilization of prosumers from PV-integrated smart grids. The dynamic energy scheduling model differs f...
	2. Literature Survey
	2.1 Prosumer Energy Management (PEM) and Optimization Approaches
	2.2 Social Group Optimization (SGO) and Its Limitations
	To overcome the drawbacks of the classical Social Group Optimization (SGO), these authors developed the so-called Modified Social Group Optimization (MSGO) techniques to strike a fine balance between good exploitation and analysis of the search worksp...
	In regard to demonstrating its capacity to do so, the MSGO solution achieves energy demand anticipation while reducing operating costs, enhancing self-sufficiency, and optimizing load distribution. Secchi et al. (2021) used MSGO for battery storage si...
	While MSGO does improve the classical SGO, it also achieves competitive results against recent approaches like TLBO, NSGA-II, and DE-based variants. Naik et al. (2020) as well as Reddy & Narayana (2022) extended MSGO to electric vehicle energy systems...
	In recent times, the MSGO algorithm has seen application in various energy-oriented domains. Reddy and Narayana (2022) used it as a multi-strategy ensemble for electric vehicle energy optimization, whereas Naik et al. (2020) employed MSGO for short-te...
	3. Problem Formulation
	3.1 Prosumer Energy Management Model
	Because of the growing integration of renewable energy, prosumers have emerged: people who generate and use power, chiefly by means of photovoltaic (PV) systems. Within such a context, the development of an economic and environmental benefit-enhanced ...
	3.2 Mathematical Formulation
	An energy management model has been defined as an optimization problem with an objective function and associated constraints.
	Objective Function: The aim should be to minimize the overall costs attributed to energy grid purchases and the operation costs of the battery, compensated through additional energy selling on the grid. The cost function is represented by [18]:
	,min-𝐽.=,𝑡=1-𝑇-,,𝑃-𝑔𝑟𝑖𝑑.,𝑡.∙,𝐶-𝑔𝑟𝑖𝑑.,𝑡.−,𝑃-𝑠𝑒𝑙𝑙.,𝑡.∙,𝑅-𝑠𝑒𝑙𝑙.,𝑡.+,𝐶-𝑏𝑎𝑡𝑡𝑒𝑟𝑦.,𝑡.+,𝐶-𝑑𝑒𝑚𝑎𝑛𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.(𝑡)..               (1)
	where: ,𝑃-𝑔𝑟𝑖𝑑.,𝑡. is the energy purchased from the grid at time 𝑡, ,𝐶-𝑔𝑟𝑖𝑑.,𝑡. is the dynamic price per unit of electricity from the grid, ,𝑃-𝑠𝑒𝑙𝑙.,𝑡. is the energy sold back to the grid, ,𝑅-𝑠𝑒𝑙𝑙.,𝑡. is the revenue earned per...
	The self-consumption of power generated by photovoltaic (PV) systems can be used as a good indicator when examining the cost of credit in photovoltaics in the solar energy business if the power system installation costs are also known.
	Decision Variables: The optimization model determines the following decision variables:
	 ,𝑃-𝑔𝑟𝑖𝑑.,𝑡. is power drawn from the grid at each time step,
	 ,𝑃-𝑠𝑒𝑙𝑙.,𝑡. is power sold to the grid from PV generation or battery storage.
	 ,𝑃-𝑃𝑉.,𝑡. is power generated by the PV system.
	 ,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡., ,𝑃-𝑏𝑎𝑡, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡. are battery charging and discharging power.
	 ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡. is power demand of the system at each time step.
	 𝑆𝑂𝐶(𝑡) is state of charge of the battery at each time step.
	System Constraints: Power Balance Constraint [19]:
	,𝑃-𝑔𝑟𝑖𝑑.,𝑡.+,𝑃-𝑃𝑉.,𝑡.+,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.=,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.+,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.+,𝑃-𝑠𝑒𝑙𝑙.,𝑡.           (2)
	It assures generation and purchase of total power equal to the whole demand including power supply and sales.
	Grid Stability Constraints: Power grids must not be overburdened, and the exchange of power energy shall be limited within admissible limits so as to avoid violation fees and service interruptions. [20].
	,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑖𝑛.≤,𝑃-𝑔𝑟𝑖𝑑.(𝑡)≤,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.                     (3)
	where, ,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑖𝑛.​ and ,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.​ are the minimum and maximum allowable grid power exchanges.
	Also, great swings in the power demand should be checked for frequency stability. Let ,𝑃-𝑔𝑟𝑖𝑑. be the grid power:
	,,𝑃-𝑔𝑟𝑖𝑑.,𝑡.−,𝑃-𝑔𝑟𝑖𝑑.(𝑡−1).≤∆,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.              (4)
	where, ∆,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥. is the maximum allowable change in grid power per time step.
	Battery Operational Constraints: In each time step, the battery's state of charge (SoC) changes due to the charging and discharging processes [21]:
	,𝑆𝑂𝐶-𝑚𝑖𝑛.≤𝑆𝑂𝐶(𝑡)≤,𝑆𝑂𝐶-𝑚𝑎𝑥.                        (5)
	Ensures that the battery's state of charge 𝑆𝑂𝐶(𝑡) at any time t remains within the permissible range, SOC(t) is the State of charge of the battery at time 𝑡 (in kWh or %), 𝑆𝑂,𝐶-𝑚𝑖𝑛. ​ denotes as Minimum allowable SOC to avoid deep discharge...
	Maintaining the SOC within this range extends battery life and ensures safety.
	,𝑃-𝑏𝑎𝑡, 𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡)≤,𝐶-𝑏𝑎𝑡, 𝑚𝑎𝑥.,,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡)≤,𝐷-𝑏𝑎𝑡,  𝑚𝑎𝑥.        (6)
	These constraints ensure that the battery charging power ,𝑃-𝑏𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) and discharging power ,𝑃-𝑏𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) at time 𝑡 do not exceed their respective maximum capacities: ,𝑃-𝑏𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡) denotes as Charging ...
	These constraints help protect the battery from excessive charging or discharging rates, ensuring optimal performance and longevity.
	The battery is limited by its charging capacity and charge/discharge pulse power limits.
	Battery Degradation and Lifespan Constraints: More and more charge-discharge cycles may wear down batteries all the more swiftly. To coincide with the worsened battery condition, depth of discharge (DoD) and number of charge-discharge cycles must be r...
	,𝑆𝑂𝐶-𝑚𝑖𝑛.+∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.≤𝑆𝑂𝐶(𝑡)≤,𝑆𝑂𝐶-𝑚𝑎𝑥.−∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.         (7)
	where ∆,𝑆𝑂𝐶-𝑠𝑎𝑓𝑒.​ is a safety margin to prevent excessive charge/discharge.
	Battery power variations also can be limited:
	,,𝑃-𝑏𝑎𝑡,   𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.−,𝑃-𝑏𝑎𝑡,   𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡−1..≤∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥.       (8)
	,,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.,𝑡.−,𝑃-𝑏𝑎𝑡,   𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒.(𝑡−1).≤∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥.       (9)
	where, ∆,𝑃-𝑏𝑎𝑡-𝑚𝑎𝑥. limits the rate of change in battery power.
	Energy Trading Constraint [23]:
	,𝑃-𝑠𝑒𝑙𝑙.,𝑡.≤,𝑃-𝑃𝑉.,𝑡.−,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.   𝑖𝑓 ,𝑃-𝑃𝑉.(𝑡)>,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.(𝑡)   (10)
	where, ,𝑃-𝑠𝑒𝑙𝑙.​(𝑡) defined as Power exported to the grid at time 𝑡 (in kW), ,𝑃-𝑃𝑉.(𝑡) as Power generated by the PV system at time 𝑡 (in kW), and ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.(𝑡) denotes as Power consumed by the prosumer (load demand) at time 𝑡 (in ...
	This ensures that only surplus PV energy is sold to the grid.
	Demand Response Constraints [24]:
	,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡𝑒𝑑.,𝑡.≤,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.     𝑓𝑜𝑟 𝑡∈𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠    (11)
	,𝑡=1-𝑇-,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑, 𝑠ℎ𝑖𝑓𝑡𝑒𝑑.,𝑡.=,𝑡=1-𝑇-,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)..             (12)
	where, ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.​(𝑡) defined as original prosumer demand at time 𝑡 (kW).  ,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,𝑠ℎ𝑖𝑓𝑡𝑒𝑑.(𝑡) as Demand after shifting to minimize peak-hour consumption (kW). And  𝑡∈𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟𝑠 denotes Time intervals...
	The premise of load shifting is that the shifting of load does not change net energy consumption but shifts that consumption to time periods in which the energy price is lower.
	Dynamic Pricing Constraints: Demand-and-supply mechanisms and market links determine electricity prices from time to time. Therefore, power transactions (in terms of grid purchases or sales) should be optimized to suit market conditions that are price...
	,𝑃-𝑔𝑟𝑖𝑑.,𝑡.≤,𝑃-𝑔𝑟𝑖𝑑-𝑚𝑎𝑥.    𝑖𝑓 ,𝐶-𝑔𝑟𝑖𝑑.(𝑡)≤,𝐶-𝑔𝑟𝑖𝑑-𝑎𝑣𝑔.      (13)
	,𝑃-𝑠𝑒𝑙𝑙.,𝑡.≤,𝑃-𝑃𝑉.,𝑡.−,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑.,𝑡.      𝑖𝑓 ,𝑅-𝑠𝑒𝑙𝑙.(𝑡)≥,𝑅-𝑠𝑒𝑙𝑙-𝑎𝑣𝑔.          (14)
	where, ,𝐶-𝑔𝑟𝑖𝑑-𝑎𝑣𝑔.​ is the average grid price over a given period and ,𝑅-𝑠𝑒𝑙𝑙-𝑎𝑣𝑔. is the average selling price over a given period.
	Such restraints ascertain that energy dealings come about at their optimal cost-benefit points.
	PV Scaling Factor Constraints [26]:
	,𝑃-𝑃𝑉,   𝑠𝑐𝑎𝑙𝑒𝑑.,𝑡.=,𝑚-𝑆.∙,𝑃-𝑃𝑉,   𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)         (15)
	,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,   𝑠𝑐𝑎𝑙𝑒𝑑.,𝑡.=,𝑚-𝐷.∙,𝑃-𝑑𝑒𝑚𝑎𝑛𝑑,   𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.(𝑡)                  (16)
	where ,𝑚-𝑆.​ and ,𝑚-𝐷.​ are multiplicative scaling factors applied to PV generation and demand, respectively.
	Incorporating Emission Reduction: The total grid energy purchase carbon emissions can be expressed as [27]:
	,𝐸-,𝐶𝑂-2..=,𝑡=1-𝑇-,𝑃-𝑔𝑟𝑖𝑑.(𝑡)∙𝛾.                      (17)
	where 𝛾 is the grid emission factor (kg CO₂ per kWh). The objective function can be extended to penalize emissions:
	,𝐽-′.=𝐽+,𝜆-,𝐶𝑂-2..,𝐸-,𝐶𝑂-2..           (18)
	where, ,𝜆-,𝐶𝑂-2.. is the cost penalty per unit of CO₂ emissions.
	PV Generation Uncertainty Modeling: To account for the inherent uncertainty in solar photovoltaic (PV) output due to variable weather conditions, we extended our simulation model by incorporating stochastic PV generation profiles. A Monte Carlo simula...
	For each scenario, the corresponding PV output ,𝑃-𝑃𝑉.(𝑡) was computed using:
	,𝑃-𝑃𝑉.,𝑡.=𝜂∙𝐴∙,𝐺-𝑡.(𝑡)       (19)
	where 𝜂 is the PV efficiency, 𝐴 is the panel area, and ,𝐺-𝑡.(𝑡) is the solar irradiance (W/m²) at time 𝑡, randomly sampled from the irradiance distribution.
	The Modified Social Group Optimization (MSGO) algorithm was then run for each irradiance scenario independently, and the expected value of the key performance indicators (energy cost, renewable utilization, battery cycling) was calculated:
	𝔼,𝑓(𝑥).=,1-𝑁.,𝑖=1-𝑁-,𝑓-𝑖.(𝑥).           (20)
	where, 𝑁=100 is the number of Monte Carlo trials and ,𝑓-𝑖.(𝑥) is the objective value for the ,𝑖-𝑡ℎ. scenario.
	This approach allows for evaluating the robustness of the optimization framework under realistic PV uncertainty, ensuring that the scheduling solution remains effective across a broad range of environmental conditions.
	4. Modified Social Group Optimization (MSGO) Approach
	4.1 Overview of Social Group Optimization (SGO) Algorithm
	Social Group Optimization (SGO) refers to the population-based metaheuristics evolution from cooperative behaviors found in groups of animals and human beings. This method is also incorporated in a leader-follower paradigm, which involves moving the i...
	The position of an individual at iteration 𝑡+1 is updated mathematically as follows [29]:
	,𝑋-𝑖-𝑡+1.=,𝑋-𝑖-𝑡.+,𝜆-1.,,𝑋-𝐿-𝑡.−,𝑋-𝑖-𝑡..+,𝜆-2.,,𝑋-𝑟𝑎𝑛𝑑-𝑡.−,𝑋-𝑖-𝑡..                        (21)
	where, ,𝑋-𝑖-𝑡. represents the position of the ithi^{th}ith agent at iteration 𝑡, ,𝑋-𝐿-𝑡.​ is the leader’s position, and ,𝑋-𝑟𝑎𝑛𝑑-𝑡.​ is a randomly chosen individual’s position. The parameters ,𝜆-1.​ and ,𝜆-2.​ control the influence of th...
	The conventional SGO algorithm is effective but slow in convergence and prone to local optimal. The Modified Social Group Optimization (MSGO) algorithm offers the adaptive learning mechanism, dynamic weight adjustment, and hybrid mutation strategies t...
	Unlike standard SGO, MSGO integrates a time-dependent learning rate and combines exploration (via Gaussian mutation) with exploitation (via introspection learning). This hybrid strategy reduces premature convergence and improves adaptability to dynami...
	4.2 Enhancements in MSGO
	MSGO's foremost new feature is its adaptive learning mechanism, which allows the learning rate to be adjusted dynamically, hence balancing exploration and exploitation. The learning rate α changes over iterations according to [30]:
	,𝛼-𝑡.=,𝛼-𝑚𝑎𝑥.−,,𝑡-𝑇..,,𝛼-𝑚𝑎𝑥.−,𝛼-𝑚𝑖𝑛..          (22)
	where ,𝛼-𝑚𝑎𝑥. and ,𝛼-𝑚𝑖𝑛.​ are the initial and final learning rates, and 𝑇 is the total number of iterations. This allows the algorithm to explore more in the initial stages and refine solutions in later stages.
	The second improvement is that dynamic weight adjustment increases the balance between intensification and diversification. The weight factor ,𝑊-𝑡. is adjusted dynamically, as indicated by [31]:
	,𝑊-𝑡.=,𝑊-𝑚𝑎𝑥.−,𝑡-𝑇.,,𝑊-𝑚𝑎𝑥.−,𝑊-𝑚𝑖𝑛..           (23)
	where, ,𝑊-𝑚𝑎𝑥.​ and ,𝑊-𝑚𝑖𝑛.​ define the range of weight values. This ensures that the algorithm transitions smoothly from exploration to exploitation, leading to better convergence.
	An additional hybrid mutation strategy is introduced for this application in order to avert premature convergence. This mutation process perturbs the stagnant agents' positions so that they might escape the local optima. The mutation is defined using ...
	,𝑋-𝑖-𝑡+1.=,𝑋-𝑖-𝑡.+𝛽,,𝑋-𝑈.−,𝑋-𝐿..∙𝑟𝑎𝑛𝑑,−1, 1.         (24)
	where, 𝛽 is a mutation factor, and ,𝑋-𝑈., ,𝑋-𝐿.​ represent upper and lower bounds of the search space.
	4.3 Algorithm Workflow for Energy Management
	Energy scheduling is achieved by including energy balance, limitations in battery storage, and grid import/export constraints in the MSGO algorithm. The optimization scheme has a stepwise process.
	The initial phase defines the search space, including decision variables such as energy generation, storage, and grid transactions. A population of candidate solutions is randomly initialized, and the leader is identified based on the objective functi...
	The algorithm continues iterating until some convergence criteria are met, e.g., reaching a certain number of iterations or not improving the solution quality at a minimal level. In the final output, an optimized energy schedule is provided, specifyin...
	4.4 MSGO Parameter Settings
	The MSGO parameter settings (population size = 30, iterations = 250, c = 0.25) were selected based on a series of preliminary tuning experiments. Multiple configurations were tested on benchmark scenarios to balance convergence speed and solution qual...
	Table 1. Key parameters for MSGO algorithm.
	The MSGO algorithm incorporates adaptive learning, dynamic weight control, and hybrid mutation strategies for improving the energy scheduling efficiency of prosumers to a large extent. It uses optimum balance in renewable energy usage as well as grid ...
	5. Experimental Setup & Implementation
	5.1 Simulation Environment
	The MATLAB R2023a environment was chosen for the performance of the software and data management model proposed for energy systems and the Modified Social Group Optimization (MSGO) algorithm. The reason for selecting MATLAB, among others, is its rich ...
	5.2 Optimization Scenarios
	The performance of the Mesh-Gene Sorting Operator (MGSO) algorithm was examined under several energy management scenarios to determine its adaptability and efficiency.
	Scenario 1: Grid-Connected Prosumer: In the first scenario, with all the conditions suitable for a grid-connected operation, the prosumer was able to sell the extra solar energy to the grid at times and import power when required. Whereas in this stud...
	Scenario 2: Off-Grid Operation with Battery Storage: The second scenario simulated an off-grid operation where the prosumer relied entirely on the PV-battery system without any grid support. The optimization focused on ensuring an efficient charge-dis...
	Scenario 3: Peak vs. Non-Peak Demand Analysis: The Investigated third case focuses on energy management with respect to peak and non-peak pricing schemes. This case studies minimizing dependency on the grid during the peak hours by discharging stored ...
	Scenario 4: Comparison with Existing Algorithms: Scenario number four was a comparative study conducted between MSGO and other techniques, namely Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Standard Social Group Optimization (SGO). ...
	6. Results and Discussion
	The outcome begins with the evaluation of the new optimization framework proposed to achieve optimum energy consumption by the prosumer. The study further examines how the variation in scaling PV generation and demand affects numerous system parameter...
	The implication of scaling the expected PV power generation (,𝑆-𝑚𝑒𝑎𝑛.) and the expected energy demand (,𝐷-𝑚𝑒𝑎𝑛.) by a multiplicative factor (,𝑚-𝑆.=12, ,𝑚-𝐷.=6) is on different aspects of simulation and optimization processes especially r...
	Figure  1. Convergence characteristics before and after scaling.
	6.1 PV Generation vs. Demand
	The extent to which energy self-sufficiency is analyzed based on PV generation profile and trends of demand. Original setting PV generation (,𝑆-𝑚𝑒𝑎𝑛.) midday, while demand, according to Figure 2 (Before scaling), peaks in the morning and late eve...
	Figure 2. Average PV generation and demand before applying the scaling factors.
	A comparison of energy surplus before and after scaling has been tabulated in Table 2. The results revealed a considerable increase of surplus energy, thus facilitating higher utilization potential from storage or sales to the grid.
	Table 2. Energy surplus before and after scaling.
	When the electricity generated from photovoltaic sources exceeds what is required, the waste fuel can be either housed or injected into the grid. In contrast, when the demand supersedes PV generation, extra energy has to be consumed from the storage o...
	Figure 3. Average PV generation and demand after applying the scaling factors respectively.
	6.2 Pricing Factor
	The influence of PV generation scaling on electricity price formation is presented in the two panels of Figure 4, depicting the situation before scaling and Figure 5 shows after scaling to the right. The pattern of purchasing and selling prices, befor...
	Figure 4. Pricing factor before scaling.
	Figure 5. Pricing factor after scaling.
	6.3 Storage Behavior
	The energy demand and supply balancing have a critical role for battery storage. Figure 6 shows the charging behavior (𝑠2𝑒) and discharging behavior (𝑒2𝑑) observed by the storage system in the original and scaled conditions. After scaling, increas...
	Table 3. Storage utilization before and after scaling.
	It then becomes apparent from the findings that, following appropriate scaling, the storage facility tends to attain its maximum capacity more frequently (,𝐸-𝑚𝑎𝑥. ); thus, it calls for effective charge-discharge scheduling to prevent the waste of ...
	Figure 6. Storage behavior before and after scaling.
	6.4 Energy Exchange Patterns
	In Figure 7, the effect of PV generation coupled with storage is depicted towards the alteration of energy flows. Among the significant changes that occurred between pre and post scaling were how energy exchanged between different sources-retailer to ...
	Figure 7. Energy exchange pattern before and after scaling.
	The results illustrate the fact that as the system scales up, direct PV-to-demand supply (𝑠2𝑑) increases, reducing grid electricity dependency. Moreover, contributions from storage to demand (𝑒2𝑑) increase, signifying better self-reliance.
	Table 4. Energy exchange before and after scaling.
	A decrease in the energy exchange 𝑟2𝑑 from retailers to demand depicts the economic benefits brought by the enhanced generation of photovoltaic energy systems combined with efficient storage management as shown in Table 4.
	6.5 Community Cost Analysis
	As shown in Figures 8 and 9, the energy costs at the community level before and after the scaling thereof. Total cost-a function of energy purchase from the retailer for 𝑟2,𝑑-𝑐𝑜𝑠𝑡. and 𝑟2,𝑒-𝑐𝑜𝑠𝑡., and income gained from the sale of energy ...
	Table 5. Community cost analysis before and after scaling.
	Figure 8. Community cost before applying the scaling.
	Figure 9. Community cost after applying the scaling.
	The experiment supports that reduced reliance on electricity provided by retailers reduces overall costs, thereby proving the financial viability of prosumer energy management listed in Table 5. The data are derived from simulation experiments conduct...
	6.6 Impact of PV Uncertainty on Optimization Performance
	To assess the robustness of the proposed MSGO algorithm under realistic operating conditions, we conducted a Monte Carlo simulation with 100 randomly generated solar irradiance profiles representing varying weather conditions (clear, partly cloudy, ov...
	The average performance metrics across 100 simulation runs are presented in Table 6.
	Table 6. Performance metrics under PV uncertainty (N = 100).
	6.7 Price Dynamics
	The unit price of energy before and after scaling is shown in Figures 10 and 11 respectively. The results show the contribution of additional output from PV to the reduction in overall costs. When the system accomplishes high self-sufficiency, externa...
	Table 7. Energy price dynamics before and after scaling.
	Figure 10. Original average energy price per unit before scaling.
	Figure 11. Scaled energy price per unit.
	6.8 Sensitivity Analysis of Optimization Parameters
	In order to test the effectiveness of the proposed MSGO-based optimization framework, sensitivity analysis was executed by changing specific parameters of the system, including battery capacity and scaling factors for PV generation. Results indicate t...
	Table 8. Sensitivity of cost savings to battery capacity.
	A corresponding heatmap (see Figure 12) illustrates the influence of PV generation scaling on storage utilization. Higher scaling factors of PV (such as ,𝑚-𝑆. = 12) cause more energy to be stored; however, if demand scaling (,𝑚-𝐷.) is also high, t...
	Figure 12. Heatmap showing storage utilization across PV and demand scaling factors.
	6.9 Comparative Performance Analysis of MSGO Against Benchmark Algorithms
	To rigorously evaluate the efficiency of the Modified Social Group Optimization (MSGO) algorithm, we conducted a comparative analysis against several well-established metaheuristic algorithms, including Particle Swarm Optimization (PSO), Genetic Algor...
	Table 9. Performance comparison of optimization algorithms.
	Figure 13 presents the convergence characteristics of all six algorithms across the tested scenarios. MSGO consistently demonstrated the fastest reduction in the objective function value, converging within approximately 140 iterations, while GA requir...
	Figure 13. Convergence curves of MSGO, PSO, and GA.
	To assess stability and robustness, each algorithm was executed independently over 30 runs, and statistical performance metrics were recorded. The distribution of results is summarized in Figure 14 (boxplots of total energy cost). MSGO exhibited the n...
	Figure 14. Distribution of total energy cost across 30 Independent runs.
	Table 9 summarizes the quantitative comparison across key performance indicators. On average, MSGO achieved a 21.7% reduction in total energy cost compared to baseline operation, outperforming PSO (15.2%), GA (13.8%), SGO (17.4%), GWO (16.9%), and TLB...
	The superior performance of MSGO can be attributed to three innovations: (i) the adaptive learning mechanism that dynamically adjusts learning rates to favor rapid exploration early and fine-tuned exploitation later; (ii) dynamic weight control, which...
	The results demonstrate that MSGO not only delivers lower operating costs but also ensures higher renewable penetration and greater robustness. The narrower variance indicates that MSGO solutions are less dependent on initial conditions, making it hig...
	6.10 Environmental Impact Assessment
	The scaling of the PV generation is not only aimed at energy cost savings but also utilizes the major carbon emissions from the atmosphere. It can be inferred from Table 9 that lesser consumption for energy from the grid is directly proportional to le...
	Table 10. CO₂ emission reduction due to increased PV generation.
	In Fig. 15, two slopes represent the reduction in emissions before and after enlargement and underscore the sustainability benefits of utilizing a greater proportion of renewable resources.
	Figure 15. CO₂ emission reduction with scaled PV generation.
	6.11 Energy Trading and Market Analysis
	One of the most important results of the increased generation of PV energy is the change in pattern of energy trading. Table 11 shows that after scaling, the system generated excess energy and enhanced sales to the grid. This transition offers the com...
	Table 11. Energy trading revenue trends.
	The shift is shown in Figure 16, with sales to the grid increasing after scaling. Thus, it portrays how effective PV scaling helps transform a system from an energy consumer to an energy prosumer.
	Figure 16. Energy sales before and after scaling.
	6.12 Impact of Weather Variability on System Performance
	Solar irradiance conditions vary the effectiveness of the energy management system. The operation of the system under different weather conditions is seen in Table 11. Under sunny days, the generation from PV is high, and dependency on the grid is low...
	Table 12. Effect of weather variability on system performance.
	Figure 17. PV generation trends under different weather conditions.
	The fluctuations shown in Figure 17 demonstrate that PV generation drops considerably in cloudy and raining conditions, thereby affecting its storage utilization and dependency on the grid.
	6.13 Peak Load Analysis and Demand Response
	And thus, exploring demand-side management (DSM) strategies has also been a part of efforts to optimize energy costs. The various impacts of different DSM strategies on the peak demand and cost reduction are summarized in Table 13. Load shifting and t...
	Table 13. Effect of demand response strategies.
	In Fig. 18 the demand under the various DSM strategies, and the effectiveness of shifting load in energy cost reduction.
	Figure 18. Reduction in peak demand through demand-side management.
	The findings verify that the optimization framework based on MSGO significantly enhances energy cost savings, increases renewable energy use, and lowers grid dependency.
	Assuming a grid emission factor of 0.9 kg CO₂/kWh, the MSGO framework reduced net grid import by 3.5 kWh/day, leading to a daily emission reduction of 3.15 kg. At a carbon price of $50/ton CO₂, this results in an economic saving of ~$57/year per house...
	A sensitivity analysis demonstrated that with an increase in battery capacity and a scaling in PV generation, system efficiency significantly increases. Comparison performance results show that MSGO converges faster and saves more cost than the tradit...
	7. Conclusion
	Scaling up PV generation along with demand largely determines energy management of prosumer communities. Increasing PV generation means increased self-consumption and energy exports, whereas increased demand calls for careful storage and grid interven...
	Despite revenues from PV sales of €41.29 and storage contribution of €18.45, the community still faces a total cost of €340, thus necessitating optimized trading and storage strategy for energy. Storage is used frequently, often nearing its capacity, ...
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